
  

  

Abstract—In this paper, we investigated the influence of 

resetting weights in what we refer to as safely satisfied sub areas 

within the search space. Our work is divided into two main 

tracks; track one is to search for sub areas within the search 

space where a group of connected clauses are all satisfied. In 

track two, a Weight Reset mechanism is designed and 

implemented within the Multi-Level Weight Distribution 

(mulLWD) algorithm, which produced a new algorithm known 

as mulLWD+WR. 

The impact of our new strategy, the Weight Reset mechanism, 

is illustrated via an extensive experimental range of evaluation 

on benchmarks obtained from the DIMACS and the SAT 

Competition 2017 problem sets. Our investigation and 

experimental evaluation shows that the Weight Reset 

mechanism, when compared to the state-of-the-art solving 

algorithms, can significantly improves the process of searching 

for solutions when solving hard Boolean satisfiability (SAT), 

Planning, scheduling, and many other hard combinatorial 

problems. Furthermore, the weight reset could be generalized 

to be employed by any Dynamic Local Search approach. 

 
Index Terms—Satisfiability, optimization, dynamic local 

search.  

 

I. INTRODUCTION 

Propositional satisfiability problems (SAT) has attracted 

the attention of many researchers in the last two decades due 

to its characteristics, such that, the SAT problem is the first 

known problem to be proven to be NP-complete [1], which 

implies that, finding a generic algorithm to solve every SAT 

problem is yet an open area of research. Nevertheless, Local 

Search (LS) heuristics, were able to solve large SAT 

problems that consists of hundreds of thousands of variables. 

Which is realistic enough to handle many real-world 

problems from computer science fields, specially, artificial 

intelligence. 

In our study, we consider propositional satisfiability 

problems in the form of Conjunctive Normal Form (CNF). 

CNF formulas consist of conjunctions of clauses = c1, c2, 

c3, ...ci, where each clause is a set of disjunctions of literals, 

and each literal is a (propositional variable vj or its negations 

-vj), 

 

  F = ∧ci ∨civj                                 (1) 

 

The task of solving a CNF formula is to assign a value ∈ 

(0, 1) for each literal in F, so that F evaluates to true. In 

 
 

 
 

Manuscript received August 21, 2019; revised October 10, 2019. 

The authors are with the Faculty of Information Technology, Petra 
University, Amman, Jordan, (e-mail: aishtaiwi@uop.edu.jo, 

gissa@uop.edu.jo, whadi@uop.edu.jo, n.ali@uop.edu.jo). 

general, there are two main approaches to solving formulas in 

CNF, 1) Systematic search and 2) Stochastic local search 

(SLS) approaches. Applying systematic search techniques to 

solve randomly generated large SAT formulas is infeasible, 

as all the literals of the CNF formula must be visited in a 

consistent manner until a complete assignment that evaluate 

F to true is found or the search concludes that the problem has 

no true assignment. Thus, systematic search takes huge 

amount of time and the results of the search is obsolete when 

the time is constrained. Despite that, systematic search 

techniques have the advantage of guaranteeing to find a 

solution to the problem if one exists or conclude that the 

problem has no solution. On the other hand, Local search 

techniques have been proven to be able to handle problems of 

very large size (hundreds of thousands of variables and 

millions of clauses), much faster than systematic search [2] 

with the exempt that there is no guarantee to finding a 

solution if one exists. However, SLS solvers, when applied 

for solving problems in the industrial category of the SAT 

competition [3], performed poorly in comparison to the 

systematic solvers. 

A. Dynamic Local Search Approach (DLS) 

Stochastic local search (SLS) techniques follow a general 

scheme in which they start initially by randomly assigning 

Boolean values in (0, 1) to all literals in F. The initialization 

step produces a group of satisfied clauses where each 

satisfied clause (satCl) has at least one true literal, and a 

second group, unsatisfied clauses, where all the literals in 

each unsatisfied clause unSatCl are false. The cost function 

of the current assignment CF = ∑(unSatCl), is then improved 

by the search iteratively, by modifying the values of unSatCl 

literals, so that the ∑(satCl) is maximized (or the sum of the 

unSatCl is minimized), until either CF = zero, or the search 

has reached its predefined time limit. 

The above scheme is very effective as long as the search 

can reduce the cost function CF, once the search is unable to 

reduce the cost function, it gets into trap known as local 

minimum. Therefore, an important challenge of SLS solvers 

is to escaping from local minima or avoiding getting into 

them. Many successful heuristics were produced to deal with 

local minima, for example restarting the search when stuck in 

local minima as in GSAT+Restart heuristic [4], or taking 

random moves as in GSAT+Walk heuristic [5], these two 

heuristics could successfully escape from local minima. 

However, they might lead the search away from reaching 

some optimal solutions. Another heuristic occurred in the 

year 1993 [6] known as Breakout heuristic, where weights 

are used to dynamically alter the search space so that cost 

increasing moves are permitted. The stat-of-the-art local 

search solvers, that use different variants of the weighting 

strategy of the Breakout heuristic, are known as Dynamic 

Local Search weighting solvers. There are many examples of 

Abdelraouf Ishtaiwi, Ghassan Issa, Wael Hadi, and Nawaf Ali 

Weight Resets in Local Search for SAT 

doi: 10.18178/ijmlc.2019.9.6.886

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

874

mailto:aishtaiwi@uop.edu.jo
mailto:gissa@uop.edu.jo
mailto:whadi@uop.edu.jo


  

the state-of-the-art solvers that utilize weights, for example, 

mulLWD+ [7], DCCAlm [8], CSCCSat [9], BalancedZ [10], 

Score2 SAT [11], and previously DLM [12], SAPS [13], 

PAWS [14] and DDFW [15]. 

B. DLS Weighting Mechanisms 

The DLS weighting solvers follow a general approach of 

handling weights during the search. That is, increasing 

weights (multiplicatively as in SAPS or additively as in 

PAWS) on all false clauses, and then periodically decreases 

the weights on the weighted clauses. The additive weighting 

DLS was first introduced in PAWS, which performed more 

efficiently when compared to SAPS [14]. Therefore, the 

weighting scheme used in PAWS has been used in many 

state-of-the-art solvers such as DCCAlm, CSCCSat and more 

recently Score2SAT algorithms. These solvers have shown 

an interesting performance and were superior to 

non-weighting LS techniques. Based on these facts a 

conclusion could be drawn that handling weights has an 

imperative role on the overall performance of all weighting 

DLS solvers. Hence, the decision of whether to increase the 

weights or decreasing them has become the factor that 

distinguishes the solvers performance from each other’s. 

Therefore, the development of strategies to efficiently 

maintaining the weights has become a field of research for 

many researchers and specialists in the area of artificial 

intelligence. 

In this study, we are interested in studying the weights 

behavior on some areas of the search space when a false 

clause (unSatCl) becomes satisfied (satCl), while its 

neighboring clauses, neighbor (unSatCl), are all satisfied. 

More specifically, we are interested in investigating a weight 

reset technique and its impact on the overall performance of 

the search process. Furthermore, we examine the co-relation 

between the clauses, the size of their neighborhoods on one 

side, and the weight reset mechanism on the other side. We 

will also show the effect of resetting the weight strategy when 

implemented in one of the weighting DLS solver, the 

mulLWD+. 

C. Multi-level Weight Distribution (mulLWD+) 

In the year 2005 [15] a new strategy known as Divide and 

Distribute Fixed Weight (DDFW) was introduced with two 

characteristics that uniquely distinguishes it from other 

solvers. One characteristic is that, the clauses at any given 

time of the search process are treated as two separate 

categories depending on whether the clauses are satisfied or 

unsatisfied. The Second and more important characteristic, is 

that, weights are increased and decreased in a combined 

weight distribution mechanism, such that the weights from 

the satisfied clauses are moved to the unsatisfied clauses. In 

the year 2017 [7], DDFW was extended into mulLWD+ 

which is still employ the categorization of the clauses, and 

weight distribution mechanisms with the difference that 

weights distribution is performed via moving weights to a 

false clause from clauses that are directly connected to the 

false clauses (first level neighbor), or from clauses that are in 

the neighborhood of the first level neighbors. In our current 

study, we implemented the weight reset mechanism within 

the mulLWD+ for two important factors: 1) the weight 

distribution is explicit and could be easily traced, and 2) 

mulLWD+ inherits an imperative factor from DDFW, where 

it is a domain independent algorithm that requires no 

parameter tuning. 

 

II. A SATISFIED CLAUSE WITHIN A SATISFIED 

NEIGHBORHOOD 

Maintaining the weights during the search, alter the search 

space so that the search does not get stuck and continue until 

an optimum solution is found, whether weights are 

incremented and periodically decremented as discussed in 

I-B, or as the case of weight distribution of DDFW and 

mulLWD+. However, we observed that some clauses can 

hold the weights while they are satisfied and all their 

neighbors are satisfied. For instance, consider the following: 

Clause unSatC l(c) where ∀ literals ∈ unSatC l(c) = 

false and ∃ a satisfied clause satCl(n) which is a neighbor of c, 

neighbor (unSatC l(c)), such that  a literal(unSatC l(c)) ∈ 

(unSatC l(c) ∧ satC l(n)). And all the neighbors (unSatC l(c)) 

are satisfied. 

We ran mulLWD+ on some problems obtained from the 

DIMACS benchmarks sets, and kept track of the changing 

status of the clauses from unSatCl to satCl, and examined the 

neighboring areas of each newly satisfied clause. Our initial 

observation indicates that newly satisfied clauses maybe 

connected with neighboring areas, where all the clauses are 

satisfied. Moreover, the experiment also indicates that this 

scenario can frequently occur during the run time of 

mulLWD+. 

 

 
Fig. 1. Illustration of a clause and its neighboring clauses, the jnh210. 

 

 
Fig. 2. Illustration of a clause and its neighboring clauses, the f800. 

 

For instance, the above scenario is illustrated in figures (1, 

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

875



  

2, 3), where we picked three problems of different sizes, the 

jnh210, the f800-hard, and the g125-17 from the DIMACS 

benchmarks problems. In each figure, we plotted the clauses 

distribution (x −axis), and the corresponding total number of 

fully satisfied neighborhoods (y − axis). We ran mulLWD+ 

on the three problems while keeping track of whether a clause 

and its neighboring clauses are all satisfied. The jnh210 is a 

small problem, with 100 variables and 800 clauses, that could 

be easily solved in comparison to f800, which is a more 

interesting problem that is randomly generated and a much 

harder problem with 800 variables and 3,440 clauses, and the 

last problem is the hardest and largest among the three 

problems which is generated from the graph theory area, 

known as graph coloring with 2125 variables and 66,272 

clauses. 

As we previously discussed, Fig. 1, Fig. 2, and Fig. 3, 

clearly indicate a high level of frequent occurrence of the 

situation where a clause and its all neighboring clauses are 

satisfied. 
 

 
Fig. 3. Illustration of a clause and its neighboring clauses, the g125. 

 

III.  WEIGHT RESET STRATEGY 

Based on what has been discussed in section II, the 

following questions arise: Is it necessary for a clause to keep 

the weights after it has become satisfied, where all its 

neighboring clauses are satisfied? Also, does resetting the 

weight of a clause to its initial value has any effect, (whether 

negative or positive), on the overall performance of the 

search process? To answer these two questions, we 

performed a wide range of experiments, for instance, in 

results not mentioned here, we examined the process of 

resetting the weights of the clauses for the whole 

neighborhood to their initial value, in the moment of 

satisfying the last unsatisfied clause that belongs to it. The 

results indicate that resetting the weights in a completely 

satisfied neighborhood has a negative impact on the search 

process. It is our conjecture that, the cause for such impact is 

that clauses from other neighborhoods will be affected if they 

are connected to the rested neighborhood. 

In another experiment, we rested the weights to their initial 

value, for a clause when the only remaining unsatisfied 

clause becomes satisfied, within a satisfied neighborhood. 

The initial results of our experiment were showing overall 

better and faster performance, as in some cases, the weight 

reset strategy helped the search reaching solutions in a faster 

CPU time. Algorithm 1 is the original mulLWD+ without the 

weight reset strategy, as we discussed in I-C, for further and 

more details about mulLWD+ please see [7]. The second 

algorithm, (Algorithm 2), shows the weight reset strategy 

pseudocode. Both algorithms are similar in terms of the 

beginning of the search process and the way the weights 

move between the clauses, such that weights move from the 

satisfied clauses to the unsatisfied clauses. The algorithms are 

also similar in the moving the weights from the first-level 

neighborhood when possible (the first neighborhood are all 

the clauses that share at least a same signed literals with any 

given clause); otherwise weights are moved from the 

second-level neighborhood (second level neighborhood 

clauses are any given clause that share at least a same signed 

literal with the first level neighboring clauses). The important 

difference between the two algorithms is that, the second 

algorithm adopted the process of resetting weights, as shown 

by the lines from 22 to 35 in Algorithm 2.  

 

Algorithm 1 mulLWD+(F, Winit) 

 
1: randomly instantiate each literal in F; 
2: set the weight (wi) for each clause ci in F to Winit; 

3: while solution is not found and not timeout do 

4:  find and return a list L of literals causing the greatest reduction in 
weighted cost _w when flipped; 

5:    if (Δ_w < 0) or (Δ_w = 0 and probability _ 15%) then 
6:     randomly flip a literal in L; 

7:    else 

8:     for each false clause cf do 
9:                   search for a satisfied same sign neighboring 

    clause ck with maximum weight wk; 
10:    if ck found then 

11:    transfer a weight of one from ck to cf; 

12:    else 

13:                 select the first satisfied same sign neighbor 

of neighboring clause ck; 
14:    end if 

15:    if wk < Winit then 

16:            randomly select a clause ck with weight  
wk _Winit; 

17:    end if 
18:    if wk >= Winit then 

19:     transfer a weight of one from ck to cf; 

20:    end if 
21:   end for 

22:  end if 
23: end while 

 

Algorithm 2 mulLWD+(F, Winit) 

 
1: randomly instantiate each literal in F; 
2: set the weight (wi) for each clause ci in F to Winit; 

3: while solution is not found and not timeout do 

4:  find and return a list L of literals causing the greatest reduction in 
weighted cost _w when flipped; 

5:  if (Δ_w < 0) or (Δ_w = 0 and probability _ 15%) then 
6:    randomly flip a literal in L; 

7:   else 

8:    for each false clause cf do 
9:    search for a satisfied same sign neighboring 

clause ck with maximum weight wk; 
10:    if ck found then 

11:     transfer a weight of one from ck to cf; 

12:    else 
13:     select the first satisfied same sign neighbour of  

     neighbouring clause ck; 
14:    end if 

15:    if wk < Winit then 

16:     randomly select a clause ck with weight  
wk_Winit; 

17:    end if 

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

876



  

18:    if wk >= Winit then 

19:     transfer a weight of one from ck to cf; 
20:    end if 

21:   end for 

22:   pick a satisfied clause satcl 

23:   for all neighbors of satcl do 

24:    search for an unsatisfied neighboring clause cf; 
25:    if cf found then 

26:     stop; 
27:    else 

28:     found = 1; 

29:    end if 
30:   end for 

31:  if found = 1 then 
32:   reset the weight of satcl to Winit; 

33:    reset the makes and breaks of satcl; 

34:   end if 
35: end while 

 

IV. EXPERIMENTAL EVALUATION AND ANALYSIS 

The general approach to this research is to examine the 

effect of weights in the search space. Therefore, we have 

performed a thorough assessment of the weight’s behaviors 

during the research process. In order to carry out the 

assessment, we have selected a wide range of problems that 

were obtained from the SAT competition benchmarks1 and 

the SATLIB DIMACS benchmarks2. The experimental work 

environment was as follows: Algorithms were applied to the 

selected problems, on the Linux operating systems, on a 

machine with a memory of 8 GB and an I5 CPU (2.5 GHz). 

Each algorithm performed 100 runs, on each problem, and 

each run was given 500 seconds. The computational mean 

was calculated when the solution was reached, as well as the 

percentage of solutions found for all the runs. 

 

 
Fig. 4. Weight resets distribution, jnh. 

 

We have included two tables of results. The first table, 

(Table I), shows the results of the algorithms performance on 

selected problems from DIMACS benchmarks set. The 

second table shows the results of the algorithms when applied 

to the SAT competition 2017 problem sets, (Table II). In both 

tables, we note that the algorithm that employs the weight 

reset strategy (mulLWD+WR) performed significantly better 

in all problem sets. For instance, in Table I, mulLWD+WR 

performed 10 times better than mulLWD+ in most problems. 

Moreover, mulLWD+WR best performance was on large and 

hard prob- lems. Where on small and easy problems, 

mulLWD+WR performed twice better. In Table II, 

mulLWD+WR performed significantly better on All the f lat 

 
 
1 (http”//www.satcompetition.org/ ) 

problems and interestingly could solve the 

uniform-random-k5 and uniform-random-k7 where the 

mulLWD+ was timed out without reaching any solution. 
 

 
Fig. 5. Neighbors to clauses weight distribution, jnh. 

 

 
Fig. 6. Weight reset distribution, f800. 

 

 
Fig 7. Neighbors to clauses weight distribution, f800. 

 

For more illustration, we have included the Fig. 4 and Fig. 

6 of the jnh and the f800 weight distribution respectively, that 

illustrate the relationship between the clauses, the number of 

neighboring clauses for each clause and how much weight. A 

clause gained during the search process until reaching a 

solution. We can clearly conclude that, clauses that have 

many clauses in their neighborhood were more weighted, and 

clauses which are linked with a fewer number of clauses were 

less weighted. This is logical since the smaller the number of 

clauses within a neighborhood, the harder the movement of 

weights among the clauses. Fig. 5 and Fig. 7 illustrate the 

 
2 http”// http://www.cs.ubc.ca/ hoos/SATLIB/benchm.html/ ) 

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

877



  

relations between the number of clauses in the neighborhood 

of each clause, and the number of weight resets for each 

clause, for the jnh and f800 respectively. 

 
TABLE I: COMPARISON RESULTS OF MULLWD AND MULLWD+ WEIGHT 

RESET PERFORMANCE, ON DIMACS BENCHMARKS 

problems 
MulLWD+ MulLWD+WR 

time %sol time %sol 

bw_large.d 59.2 100 5.7 100 

4blocks 180.18 100 47.3 100 
aim-50-1_6-no-1 42.7 23 43.7 75 

aim-200-6_0-yes1-4 0.06 100 0.03 100 

ais12 26.9 100 7.57 100 
bw_large.a 0.39 100 7 100 

f1600-har 92.7 23 75.2 88 

logistics.d 1.96 100 0.5 100 

medium 0.05 100 0.02 100 

uf400-hard 25.8 100 8.53 100 

f800-har 119.1 99 48 100 

bw_large.c 201.1 100 13.6 100 

bw_large.a 0.6 100 0.08 100 

huge 0.64 100 0.13 100 

f800-har 76.3 98 46.03 100 

4blocksb 270.4 100 41.6 100 

BMS_k3_n100_m4_0 1.8 100 0.5 100 

BMS_k3_n100_m4_499 28.5 100 5.71 100 

e0ddr2-10-by-5-1 13.93 100 7.64 100 

ewddr2-10-by-5-8 73.9 100 7.35 100 

flat100-1 1.9 100 0.08 100 

flat100-100 0.3 100 0.04 100 

g125.18 8.96 100 0.13 100 

g250.15 2.2 100 0.95 100 

ii8a1 0.2 100 0.03 100 

ii32e5 3.41 100 0.23 100 

RTI_k3_n100_m4_499 0.3 100 0.05 100 

 
TABLE II: COMPARISON RESULTS OF MULLWD AND MULLWD+ WEIGHT 

RESET PERFORMANCE, ON THE SAT COMPETITION BENCHMARKS 

problems MulLWD+ MulLWD+WR 

time %sol time %sol 

fla-barthel-400-4 0.07 100 0.01 100 

fla-barthel-420-2 0.07 100 0.03 100 

fla-barthel-420-3 0.09 100 0.01 100 

fla-barthel-420-4 0.03 100 0.01 100 

fla-barthel-440-3 0.05 100 0.02 100 

fla-barthel-520-2 0.04 100 0.01 100 

fla-qhid-400-5 0.06 100 0.01 100 

fla-qhid-420-2 0.03 100 0.006 100 

fla-qhid-420-4 2.16 100 0.03 100 

fla-qhid-480-2 0.06 100 0.006 100 

fla-qhid-500-5 0.06 100 0.01 100 

fla-qhid-540-4 0.06 100 0.006 100 

unif-k5-r21.117-v200 125.5 100 4.32 100 

unif-k7-r55.0-v50000 422.3 100 10.7 100 

unif-k7-r56.0-v50000 n/a n/a 12.6 100 

unif-k7-r87.79-v90 n/a n/a 11.6 100 

unif-k7-r87.79-v98 n/a n/a 108 100 

unif-k7-r87.79-v102 n/a n/a 100.7 100 

 

With the f800 Fig. 7, the number of weight resets was 

performed much more than the jnh problem, in the since that 

it was distributed among most of the clauses in the problem. 

However, the number of weight resets for each clause was 

much less, which is also expected as f800 have more clauses 

and a harder problem to solve. This outstanding performance 

of mulLWD+WR, stressed that the weight-reset strategy has 

a positive impact on the process of research in general. If we 

look more deeply at the effect of weight reset strategy, we 

find that there are a number of possible scenarios that can 

result in such performance. One of the most important and 

possible scenarios is related to each individual clause and its 

neighborhood. That is, if a clause c was unsatisfied, such that 

all its literals evaluate to false, flipping the value of a literal 

(from zero to one or vice versa) in c will change its status to 

satisfied. Now, if all the clauses of the neighborhood of 

clause c are satisfied, after satisfying clause c, clause c can 

never be unsatisfied unless at least one of the clauses in the 

neighborhood of clause c becomes unsatisfied. Therefore, a 

clause weight can be safely rested to the initial weight, 

without affecting the overall search process. In other words, 

the weight reset smooth the weights safely and prevent a 

satisfied clause c from holding the weight (especially if it is 

heavily weighted), while clause c neighboring clauses are all 

satisfied. 

 

V. CONCLUSION 

In this research, two scenarios were experimentally 

investigated. The motivation of the first scenario was because 

of the observation during the study of weights and their 

dynamic changes during the search process. As a result of 

investigating the weights changes, we have come to a 

conclusion, which is supported by the experimental analysis 

that the weights in some areas of the search space may 

accumulate and hold the weights for long periods, without 

any positive impact on the overall performance of the search 

process. On the contrary, weights sometimes can be the cause 

of delaying the search process from reaching some optimal 

solutions to the problems under consideration.  

Therefore, and based on what was observed in the first 

scenario, we have built a strategy for the optimal handling of 

weights on clauses which no longer need the weights, known 

as weight reset strategy. This strategy is concerned with 

clauses are satisfied. Our new strategy, the weight reset, has 

been proven via our experiments to be very effective when 

applied for solving the SAT problems. 

ACKNOWLEDGMENT 

The authors would like to acknowledge the financial 

support of the Scientific Research Committee at Petra 

University, and all the Information Technology faculty 

members who contributed to this work. 

REFERENCES 

[1] S. A. Cook, “The complexity of theorem-proving procedures,” in Proc. 

the Third Annual ACM Symposium on Theory of Computing, New 

York, USA, 1971, pp. 151–158. 
[2] H. Hoos and T. Stulze, Stochastic Local Search, Cambridge, 

Massachusetts: Morgan Kaufmann, 2005. 
[3] Sat competition. [Online]. Available: http://www.satcompetition.org 

[4] B. Selman and H. Kautz, “Domain-independent extensions to gsat: 

Solving large structured satisfiability problems,” in Proc. 13th IJCAI, 
1993, pp. 290–295. 

[5] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird, “Solving 
large-scale constraint satisfaction and scheduling problems using a 

heuristic repair method” in Proc. the Eighth National Conference on 

Artificial Intelligence, 1990, vol. 1, pp. 17–24.  

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

878



  

[6] P. Morris, “The Breakout method for escaping from local minima,” in 

Proc. 11th AAAI, 1993, pp. 40–45. 
[7] A. Ishtaiwi, M. Juarez, and G. Issa, “Multi level weight distribution in 

dynamic local search for sat,” in Proc. 3rd International Conference on 
Information Technology, Control and Computer Engineering ITCCE 

17, 2017, pp. 79–86. 

[8] C. Luo, S. Cai, W. Wu, and K. Su, “Double configuration checking in 
stochastic local search for satisfiability,” in Proc. the Twenty-Eighth 

AAAI Conference on Artificial Intelligence, 2014, pp. 2703–2709.  
[9] C. Luo, S. Cai, K. Su, and W. Wu, “Clause states based configuration 

checking in local search for satisfiability,” IEEE Trans. Cybernetics, 

vol. 45, no. 5, pp. 1014–1027, 2015. 
[10] A. Belov, H. Diepold et al. (2014). Proceedings of Sat Competition 

2014: Solver and Benchmark Descriptions. [Online]. Available: 
http://dl.acm.org/citation.cfm?id=1865499.1865502 

[11] T. Balyo, M. J. H. Heule, and M. Jarvisalo. (2017). Proceedings of Sat 

Competition 2017: Solver and Benchmark Descriptions. [Online]. 
Available: http://hdl.handle.net/10138/224324 

[12] Z. Wu and B. Wah, “An efficient global-search strategy in discrete 
Lagrangian methods for solving hard satisfiability problems,” in Proc. 

17th AAAI, 2000, pp. 310–315. 

[13] F. Hutter, D. Tompkins, and H. Hoos, “Scaling and probabilistic 
smoothing: Efficient dynamic local search for SAT,” in Proc. 8th CP, 

2002, pp. 233–248. 
[14] J. Thornton, D. N. Pham, S. Bain, and V. Ferreira Jr., “Additive versus 

multiplicative clause weighting for SAT,” in Proc.19th AAAI, 2004, pp. 

191–196. 
[15] A. Ishtaiwi, J. Thornton, A. Sattar, and D. N. Pham, “Neighbourhood 

clause weight redistribution in local search for SAT,” in Proc. 11th CP, 
2005, pp. 772–776. 

 

 
Abdelraouf Ishtaiwi received the M.S degree in 2001 

and Ph.D. degree in 2008 both in information and 
communication technology from Griffith University, 

Brisbane, Australia. Currently, he is an assistant 

professor at the University of Petra, Faculty of 
Information Technology in Amman, Jordan. His 

interests are in artificial intelligence, distributed 
systems and handling big data. 

 
 

Ghassan F. Issa received his BS degree in electrical 

engineering from University of Toledo in 1983, and 
the BS in computer engineering from Trine 

University, Indiana in 1984. Also Prof. Ghassan Issa 

received his M.S and PhD in computer science from 

Old Dominion University, Norfolk Virginia in 1987 

and 1992. Currently, he is a professor at University of 
Petra, the Faculty of Information Technology in 

Amman, Jordan. His interests are in artificial intelligence. 
 

 

Wa'el Hadi is an associate professor in computer 
information systems at the Department of CIS, 

University of Petra. In research, his current interests 
include data warehousing, data mining, and knowledge 

management. Dr. Hadi received his PhD degree in 

computer information systems from the Arab Academy 
for Banking and Financial Sciences, Amman, Jordan. 

Dr. Hadi has published more than 50 articles in refereed 
journal as well as national and international conference proceedings. 

 

 
Nawaf Ali graduated from J.B. Speed School of 

Engineering, University of Louisville, Kentucky, USA. 
He holds a Ph.D. in computer engineering and 

computer science. He worked in the Faculty of 

Information Technology, ISRA University and 
University of Petra, Jordan. Currently he is working in 

the Computer Engineering Department at American 
University of the Middle East, Kuwait. His research 

interest focuses on authorship identification, machine learning, data mining 

and recently in IoT and robotics applications. 
 

 
 

 

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

879


