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Abstract—Image classification is one of the predominant 

tasks in computer vision. So far, there are many approaches in 

image classification, and the most typical methods are 

Convolutional Neural Networks (CNN), BOF-based algorithms, 

etc. Most of these methods have a good performance, but there 

are still some limitations. Capsule Network (CapsNet) is the 

most advanced algorithm, which realizes the operation based on 

active vector and dynamic routing, and can overcome 

limitations of the original algorithm. This paper attempts to 

apply CapsNet into image classification as well as another two 

efficient classification methods, which are CNN and Fully 

Convolutional Network (FCN). We use two datasets: MNIST 

and CIFAR-10 to train our model and tested the networks. 

Finally, compare and evaluate their performances in aspects of 

time cost, loss, accuracy and the number of parameters. 

Index Terms—Capsule network, convolutional neural 

networks, full convolutional neural network, image 

classification.

I. INTRODUCTION

Image Classification (IC) is one of the most basic tasks in 

the dominant Computer Vision (CV) and those IC-based 

algorithms have been widely used in our life such as 

Hyperspectral Image classification, Optical Character 

Recognition, etc. Nowadays, Machine Learning (ML) based 

algorithms showed their great ability in the dominant 

performance of IC [1]. With the continuous development of 

machine learning, image classification steps into a brand-new 

era, arising many novel ML-based IC algorithms, such as 

k-Nearest Neighbor, Support Vector Machine, Convolutional 

Neural Network (CNN) [2] and so on. It’s important to 

compare and evaluate these IC algorithms to find out their 

advantages and disadvantages. 

In recent years, the standard solution to image 

classification has always been CNN which its performance 

has been performed well and continuously optimized. 

Convolutional Neural Network is one of deep learning [3]. It 

works by extracting features from images by convolutional 

neural networks and recognizing objects through feature 

learning. As the number of layers of a neural network 

increases, the features that can be extracted are more complex, 
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and eventually, the convolutional neural network uses it to 

make judgments about the features learned. Nonetheless, if a 

standard multi-layer perceptron is used, which means all 

layers are fully connected, CNN will soon become having 

difficulty in calculating because the dimension of the image 

is too high. Moreover, CNN doesn't contain available space 

information. Besides, Traditional convolutional neural 

networks cannot be well identified for highly complex 

field-of-view images that contain a lot of overlap, mutual 

masking, and different backgrounds. Because of CNN's 

limitations, the classification results are not accurate enough.

Thus, Jonathan Longden [4] proposed the FCN neural 

network. FCN is a new method which only contains 

convolution layers and can classify each pixel of the image. 

The network is efficient, both asymptotically and absolutely, 

and precludes the need for the complications in other works. 

However, although FCN has improved accuracy, it does not 

take global context information into account, its 

segmentation is not instance-level, and is not efficient 

enough.

To address these issues, S. Sabour, N. Frosst and G. E. 

Hinton proposed the Capsule network in 2017 [5]. Geoffrey 

Hinton proposed “routing-by-agreement” to reduce the loss 

of interlayer transfer by transferring the underlying features 

to a matching high level. Their experiments showed that a 

discriminatively trained, multi-layer capsule system achieves 

state-of-the-art performance on MNIST and is considerably 

better than a convolutional net at recognizing highly 

overlapping digits. 

So far, CapsNet shows excellent performance in various 

types of tasks, such as target recognition, analysis and so on.

“Capsule network” has been recognized as the cornerstone of 

the next generation of deep learning, and the “successor” of 

CNN as well.

In this paper, we selected another two typical ML-based IC 

algorithms along with Capsule Network (CapsNet) [6]: CNN

and FCN. And we compared them by analyzing their 

accuracy, time cost, etc.

In the following paper, we will first briefly review the 

three algorithms in Section II, describe the experiment in 

Section III and analyze the results in Section IV.

II. RELATED WORK

A. Convolutional Neural Networks

CNN automatically extracts features on the image by 

building multiple layers of convolution layers [7], [8], 

resulting in a hierarchy of features. The front shallower 

convolution layer uses a smaller perceptive domain, which 

allows learning some local features of the image, and the 
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back deeper convolution layer uses a larger perceptive 

domain and can learn more abstract features (such as object 

size, location, and direction information).

Trained pixels end-to-end, convolution network has 

achieved good performance: not only the overall image 

classification has been improved, but also the local task with 

structured output has made progress. Thus, it has been widely 

used in the field of image classification and image detection. 

But CNN still has the following limitations:

1) If a standard multi-layer perceptron is used, which 

means all layers are fully connected, CNNs will soon 

become having difficulty in calculating because the 

dimensions of the image are too high. 

2) CNN doesn't contain available space information. If we 

use the pooling layer, the final efficiency may be very 

low. Since only the most active neurons [9] can be 

transmitted between each layer during the transfer of 

neurons, CNNs have a big loss of information in the

pooling layer, reducing the spatial resolution. Therefore, 

CNNs will not be able to distinguish differences in 

postures and other facets. One way to solve this problem 

is to over-train all possible angles, but it usually requires 

more time and computing resources.

3) Traditional convolutional neural networks cannot be 

well identified for highly complex field-of-view images 

that contain a lot of overlap, mutual masking, and 

different backgrounds.

Due to these limitations, its classification results are not 

accurate enough.

B. Fully Convolutional Neural Network

Ning et al. [10] defined a cone for the coarse multi-class 

segmentation of C.elegans with full convolution reasoning. 

Sliding Window Detection by Sermanet et al. [11], the 

Semantic Split by Pinello and Collobert [12], as well as 

image recovery by Eigen et al. [13], all made full convolution. 

Tompson et al. [14] are effectively used to learn the pose 

estimation of end-to-end part detectors and spatial models 

[15]. He et al. [16] abandoned the non-convolutional parts of 

the classification network to make feature extractors. They 

combine recommendations with spatial pyramid pools [17] to 

generate localized fixed-length features for classification. 

While this hybrid model is fast and effective, it cannot be 

learned from end-to-end.

To address the challenges and verify the improvement of 

CNN's accuracy, Jonathan Longden has proposed the FCN 

model. Fully Convolutional Networks (FCN) recovers the 

category of each pixel from the abstract features. Namely, the 

problem of semantic segmentation is solved by extending the 

classification from image-level to pixel level. FCN adopts the 

convolutional layer in place of the full connection layer of the

traditional convolutional network. Different from CNN, 

which uses a full connection layer to generate feature vectors 

of fixed length for classification after the convolution layer, 

FCN allows input images of any size. Meanwhile, to reduce 

the influence from the convolution and pooling process the 

size of the original image, a deconvolution layer is adopted in 

upsampling to recover its original size and spatial 

information as well as generating a prediction for each pixel. 

Finally, process classification on the characteristics of the 

sampling feature map. 

C. Capsule Network

A new algorithm based on CapsNet has recently been 

proposed, which provides feasible ideas for further 

refinement of the results. We believe that CapsNet has the 

potential to perform better by making some modifications to 

the hyper-parameters.

Data sets are the metrics for evaluating the performance of 

the capsule network and its ability to model object features 

from different perspectives. For CapsNet, several important 

data sets recently proposed are the Yale face database B, 

CIFAR-100 Data set (includes 60,000 images of 100 

everyday items (e.g. vehicles and animals)), The Belgium TS 

data set, etc. In these data sets, changes between images of 

the same class (lighting, posture, size, etc.) are the biggest 

challenges facing image classification tasks.

The capsule network works by storing all the extracted 

features [18] in the capsule in the form of vector. CapsNet 

replaces the scalar output feature detector from CNN with 

vector output and replaces the largest pooling with a 

protocol-by-protocol route, enabling replication of what has 

been learned across space. For example, when processing 

gesture information, the capsule network calculates the 

probability of an object's existence while encoding the spatial 

information and represents it in the form of a vector. The 

module length of the vector represents the probability, and its 

direction represents the attitude information.

The core of the capsule network [19] is inverse-rendering. 

The capsule network learns to predict and estimate 

parameters by comparing represented objects with the labels 

on the training data set. In the real-time traffic-condition 

monitoring pedestrians and vehicles have a great probability 

of appearance dynamically, which means the characteristics 

that we extract are mobile. However, this won't change the 

modal length of the vector in the capsule network, indicating 

the probability of the appearance won't be affected. This is 

also one of the outstanding advantages of capsule networks 

used in traffic images. Capsule networks provide the 

opportunity to take full advantage of inherent spatial 

relationships and simulate the ability to understand image 

changes.

For low-level capsules, location information [20] is 

“position-coded” by the active capsule. As the hierarchy is 

raised, more and more positional information is “rate-coded”

[21], [22] in the actual value component of the capsule output 

vector. All of these imply that as we move up the hierarchy, 

the dimensions of the capsule sits must increase. Anyway, 

Capsule networks allow us to take full advantage of inherent 

spatial relationships [23] and simulate the ability to 

understand image changes to better summarize what we 

perceive.

III. PROPOSED APPROACH

In this section, we described models based on CNN, FCN, 

and CapsNet separately in the experiment. 

A. The Algorithm Based on Convolutional Neural 

Network

CNN is a kind of machine learning algorithm that is more 

applied in the field of image recognition, which is consisted 

of three layers: convolution layer, pooling layer, full 
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connection layer. 

The activation function we choose was the ReLU function 

[24] and the Softmax function [25].  The ReLU function is 

nonlinear. When the input x is positive, its output (as shown 

in Fig. 1 is x itself. When x is negative or zero, its output is 

zero. That is,

0, 0
( )

, 0

x
relu x

x x


= 



                                 (1)

Fig. 1. Output via ReLU function.

  The reason we choose it as the activation function is the 

sparsity of the activation. Generally, we hope some neurons 

aren’t activated to make the activation sparse and efficient. 

Considering the ReLU function’s character (The output is 

zero when the input is negative.), there should be 50% 

neurons not activated, meaningless computation 

consumption. However, the gradient of the horizontal part of 

the ReLU function tends to be zero. Meaning the region 

activated by the ReLU function may not be adjusted.

In the analysis of images studied, the steps to apply CNN 

are as follows:

1) Multiply the input traffic scene image with the weight 

via the convolution layer to obtain the preliminary 

product. Here we choose the filter matrix. Let the step 

length equals to 1, and do padding on the original image, 

then we get the processed input vector x. 

2) Figure out the result of the activation function ReLU 

function. The output is:

max(0, )w x b+                              (2)

3) Enter the pooling layer for abstract dimensionality 

reduction and prevent over-fitting.

4) Logical Regression via MLP, then output the 

probability of getting the classification of the input 

image.

The CNN model we used is shown in Fig. 2.

Specifically, the network contains one input layer and a 

pair of convolution and max-pooling layers. Then follows a 

flatten layer and two fully connected layers. We use ReLU 

function as the activation function for all but the last layers. 

The Softmax function is adopted for the last layer to 

normalize the prediction result.

Softmax is a common activate function which can 

compress a K - dimension vector with any real number into 

another K - dimension real vector. The form of this function 

is usually given as follows:

1

( )           for 1,..., .
j

k

z

j K
z

k

e
z j K

e
=

 = =



             (3)

Suppose each picture of the dataset is a patch of x  x k

(28 28  1 for MNIST and 32 32 3 for CIFAR-10), here’s 

how the input is processed in the network. The first 

convolution layer filters the input with 128 filters with a 

kernel whose size is 5  5. So, the extracted feature map has 

the size of x1  x1 128, where x1= x - 4. Then a max-pooling 

layer pools the feature map using a 3 3 kernel thus the 

pooled feature map is x2  x2 128, where x2 = x1 /2. The 

next convolution and pooling layers perform the same 

operation on the feature map but with different kernel sizes. 

Then a flatten layer flat the feature map and passes the output 

to two fully connected layers, where the last layer has ten 

neuro and each of the neuro’s output represents the 

probability that the input image belongs to the corresponding 

class.

Fig. 2. CNN model.

B. The Algorithm Based on Fully Convolutional Networks

Different from CNN, FCN classifies images at the pixel 

level. The FCN can accept input images of any scale at the 

convolutional connection layer, and use the deconvolutional 

layer to sample the feature map of the last convolutional layer 

and restore the size of the image.

The steps applied to our research questions are as follows:

1) Input the original image, full convolution to extract

feature (as shown in Fig. 3).

2) Change the filter size of the last fully connected layer to 

1 and change it to the convolution layer.

3) Via the deconvolution layer, sample the characteristic 

image (feature map) of the last convolution layer and 

restore the size of the image to preserve the spatial 

information in the original image (as shown in the Fig.

4).

4) Predict feature image pixel by pixel. That is, apply a 

fully connected layer to each pixel. To classify each

pixel, classification is obtained as a probability by 

performing a maximum numerical description of the 

position in each image one by one.

5) Deconvolution to enlarge and achieve ascending 
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sampling.

Fig. 3. Fully convolutional models –convolution.

Fig. 4. Fully Convolutional Models –Deconvolution

We notice that since the FCN can preserve the spatial 

information of the original image, it can better analyze the 

information in the traffic scene than CNN.

The shape of the FCN model is shown in Fig 5.

Fig. 5. FCN model.

The FCN model contains seven layers, the same as the 

CNN model but only contains convolution layers. The FCN 

model uses two convolution layers whose stride is two to 

replace the pooling layer in the CNN model. And the last 

layer is a convolution layer with ten kernels instead of the 

fully connected layer in the CNN model. The first six-layer 

used the ReLU function to non-linearize the output and the 

final layer uses Softmax function to normalize the output.

Here’s how the FCN model processes the input data. All 

the layers use filters with different size to extract features and 

pass the feature map to the next layer. The final layer uses ten 

filters to extract the prior feature and pass it to the Softmax 

activation function to output the final probability.

C. The Algorithm Based on CapsNet

In artificial neural networks, Scalar neuron（SN）first 

receives the input scalar × from other neurons and multiply it 

by the corresponding weight to figure out the scalar a. Finally, 

use a non-linear activation function to generate an output 

scale as the input scalar for the next neuron.

CapsNet replaces the scalar output feature detector from 

CNN with vector output. It also replaces the largest pool 

sam-flat line technology with a protocol-by-protocol route to 

achieve the cross-space learning of the reproduction. In this 

new CapsNet architecture, only the first layer of cap capsules, 

also known as primary capsules, include CNN layer groups. 

Traditional CNN ideas, higher-level capsules cover images 

of a wider area. However, information about the exact 

location of the entity in the area is the opposite of the standard 

CNN.

And in the capsule network, we use vector neurons (VN). 

Similar to the above process, first, process the original input 

vector u with the attitude matrix W to generate the final input 

vector U. Then Multiply U with the corresponding weight c 

and sum them up to get the vector s. Finally, s is converted 

into the final vector v by a nonlinear function. This enables 

the transition between the underlying and high-level features. 

If the position of the high-level feature being pushed out by 

different underlying features points roughly the same place, it 

is possible to determine that the object has a great probability 

of existence. 

The concrete steps (as shown in the Fig. 6) are as follows:

Fig. 6. CapsNet algorithm.

1) Initialize all probability and parameters, let all b equals 

to zero to make c distributed evenly. Via Softmax 

function to normalize.

2) Convert the input data via the attitude matrix.

3) Use dynamic routing to input weights. According to the 

formula ijc 
|j iU ，adjust these two parameters to make 

decisions about the mapping between levels constantly, 

where ijc represents the weight and the sum is equal to 

1;

4) Weighted summation, similar to normal neurons 

corresponding steps to get the average position of the 

features of the object in the image. Softmax function's 

output is non-negative and its sum is 1, where c is a set 

of probability variables, js is the approximate center of 

the underlying feature output.

5) Using the nonlinear activation function Squash function, 

s is united and converted into the final vector v, the 

modular length of v is the final output.

The definition of the Squash function is as follows:

2

1

j j

j

jj

s s
v

ss
= 

+

.                     (4)



  

  

 

    

 

 

  

 

  

 

 

 

 

 

  

  

 

 

 

 

  

 

 
 

 

  

 

    

 

  

  

    

 

  

 

 

 

 

 

 

 

 

 

   

     

  

 

 
 

 

 
 

 

 

 

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

844

This function compresses the length to range from 0 to 1 

and keep the direction unchanged. That is, the squash 

function ensures that the direction of the vector remains the 

same and the length is compressed. This is also in line with 

the fact that the corresponding vector module length of the 

capsule network mentioned at the beginning of this paper 

represents the probability of the existence of the feature.

6) Use 
|u j i jv to update parameter 

ijb according to:  

|+ij ij j i jb b u v                                (5)

7) The loss function of CapsNet can be figured out by 

Margin Loss which is usually used in SVM [26]:

( )
2

max 0,c c cL T m v+= −                          (6)

          ( ) ( )
2

1 max 0,c cT v m −+ − −     

Inspired by the CNN architecture of Le-Net-5 References

[27], [28], since the capsule is suitable for characterization of 

advanced instances, but the extraction of the underlying 

features is not ideal. Hence, we chose CNN to extract

lower-level features. The advantage of having CNN is that it 

requires a much lower number of trained parameters than a 

multi-layer feed neural network that supports shared weights 

and partially connected layers to build the first layer of a

neural network from image input to low-level features. This 

step uses 256 99 filters with steps of 1 to get the output of 

2020256 and gets a local feature detection of the original 

image pixels. The second layer is then built from the 

lower-level feature to the primary capsule used to store the 

low-level feature vector by using 8 convolution operations 

with 99256 filters with the steps of 2; from the 

construction of a network from the primary capsule to the 

corresponding network used to store higher levels of feature 

vectors, which are fully connected (FC) in the form of vectors 

and vectors; finally we output the probability of object 

appearance.

Fig. 7. CapsNet model.

It is worth noting that because Capsule can identify 

multiple objects at the same time, the sum of the probabilities 

of the final output is not equal to 1.

Compare to the CNN and FCN model, the CapsNet 

contains a shallower network with only four layers. The first 

layer is a convolution layer and follows the primary layer. 

Then follows a digit layer and an auxiliary layer to replace 

each capsule with its length. The steps are shown in Fig. 7.

IV. EXPERIMENT AND ANALYSIS

We evaluated CNN comparing with CapsNet, FCN 

algorithms in aspects of training time, training loss and 

accuracy on MNIST (as shown in Fig. 8) and CIFAR (as 

shown in Fig. 9). The hardware we use an NVIDIA RTX 

2080Ti with 11GiB memory and dual Intel Xeon E5-2678 v3 

with 64GiB memory Compare to the CNN and FCN model, 

the CapsNet.

The classification performance metrics used in this paper 

are as follows:

1) Time: The time consumption of the training process. 

Less time consumption means more efficient to train the 

model. Less is better.

2) Loss: Representing how different the model’s prediction 

is from the true label. In CNN and FCN model we use 

cross-entropy loss function and in CapsNet model we 

use margin loss function. Less is better.

3) Accuracy: The ratio of the number of category pixels 

that are correctly classified to the total number of 

categories. We use overall accuracy in the experiment. 

Higher is better.

A. Data Sets

This paper utilizes MNIST(Fig. 8) and CIFAR-10(Fig. 9)

as data sets.

Fig. 8. Example images from MNIST.

Fig. 9. Example images from CIFAR-10.

MNIST is a database of the handwritten digit, which is 

composed of four parts: the training set images, training set 

labels, test set images, test set labels. To be specific, the 

training set has 60000 examples in total while the test set has 

10,000 examples. Chris Burges and Corinna Cortes originally 

selected the digit images in the MNIST set by using 

bounding-box normalization and centering and exerted them 

on the experiment. Later, Yann LeCun updated the version. 

Via computing the center of mass of the pixels and translating 

the image, the images in MNIST were centered in a 2828 

image.

Another dataset is CIFAR-10 purposed by Alex 

Krizhevsky, Vinod Nair and Geoffrey Hinton. CIFAR-10 

consists of ten different classes, which each class contains 
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6,000 pieces of 3232 RGB images. The dataset is divided 

into five training batches and one test batch, each with 10,000

images. To be specific, the training set has 50,000 examples 

in total while the test set has 10,000 examples. The training 

batch contains the remaining images in a random order, but 

some training batches may contain more images from one 

category than the other. As for the test batch, it contains 

exactly 1,000 randomly selected images from each category. 

Generally speaking, the sum of the five training sets contains 

exactly 5,000 images from each class. These classes are 

completely exclusive. “Cars” are cars, SUVs, and things like 

that. “Truck” only includes big trucks. There is no overlap 

between cars and trucks.

B. Training

When training, we trained the CNN and FCN model with 

both MNIST and CIFAR-10 datasets and trained each for 50 

epochs. For the 70000 pictures in the MNIST dataset, we 

used 60000 pictures to train the model and 10000 pictures to 

test the model. For the 60000 pictures in the CIFAR-10 

datasets, we use 50000 pictures to train the model and 10000 

pictures to test the model.

C. Results and Analysis

The training results are shown in Table I and Table II while 

the model's loss and accuracy are showed in Fig. 10.

Fig.(a), (c). CNN_MNIST, FCN_MNIST

Fig. (b), (d). CNN_CIFAR, FCN_CIFAR

Fig. (e), (f). CAPS_MNIST, CAPS_CIFAR

Fig. 10. Models’ training results on MNIST and CIFAR-10.

First, let’s focus on the MNIST data set.

As shown in Table I, the CNN model consumes the least 

time in the training process, then the FCN model and the 

CapsNet model consumes almost 30 times more time than the 

other two. In terms of accuracy, all three models are 99% 

more accurate but FCN is a little higher. As is shown in the 

parameter column, the FCN model uses the least parameters 

and the CapsNet model uses the most. The CapsNet model 

trained over 8.2 million parameters which are far more than 

the other two, and this explains why it takes so much time to 

train itself.

Intuitively view from the experimental results, these 

algorithms' training loss (CNN, FCN, CapsNet) reduced to 

less than 0.7% and achieved a more ideal training result after 

adequate training.

TABLE I: COMPARATIVE PERFORMANCES TESTED ON MNIST

item time loss accuracy parameter

CNN 277.30 0.0663279 0.9928 3430730

FCN 328.30  0.024775 0.9945 74362

Caps 8453.70  0.0231 0.9952 8215568

For the CIFAR-10 dataset, shown in Table II, it’s obvious 

that none of the three models achieved very high accuracy. 

Both the losses of CNN and FCN are very high. However, 

although the CapsNet model’s loss achieved 0.0346, which is 

almost the same as when it was trained on the MNIST dataset, 

its accuracy is still very low, only 53.70%.

TABLE II: COMPARATIVE PERFORMANCES TESTED ON CIFAR-10

item time loss accuracy parameter

CNN 310.37  4.730176 0.4577 4420170

FCN 332.18 1.336495 0.5198 77850

Caps 3246.82 0.0346 0.5370 11749120

We visualized the training process and showed them in Fig. 

10 (a)-(f).

In Fig. 10 (a), (c) and (e), we can see that when trained on 

the MNIST dataset, all three models converged quickly when 

epoch < 4. After that point, the accuracy increased slowly and 

the loss almost stopped decreasing. For the CIFAR-10 data 

set, shown in fig b, d, and f, we can see they converge slower 

than training on the MNIST dataset and the accuracy of the 

test dataset almost stopped increasing when it reached 50%, 

indicating they might over-fitted. Thus, we did another 
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experiment in Section D whose result showed that our 

prediction is true.

This experimental data shows that the quality of the neural 

network is excellent and is an ideal method for processing 

image classification. The commonality of the three networks 

lies in the fact that they all emphasize the identification of the 

orientation, size and other attributes of their network 

structure and the generation of internal connections. Among 

them, CNN and FCN belong to the convolutional neural 

network, with characteristics of few parameters, fast training, 

high score, easy to migrate. It has great improvement 

compared with the traditional neural network method. The 

convolution layer is the key to achieve this ascension, which 

can be called the soul of the entire convolutional neural 

network.

As we mentioned above, CNN has lost a lot of information 

in the pooling layer. Thus, it is impossible to recognize the 

orientation of objects. To enhance the accuracy of 

image-feature-extraction, we constructed data sets which 

expanded the scale of our origin data set by downsizing and 

rotating. Many of these pictures were essentially the same, 

whereas CNN could not identify them. This is the 

predominant factor to the output.

Due to its full convolution network without a full 

connection layer (FC), FCN is based on CNN and is capable 

of dealing with different sizes of input. The deconvolutional 

layer permits the increase of the data's scale which 

contributes to a more accurate result. The skip structure of 

different depth layer results is combined to ensure robustness 

and accuracy of the output. Via the combination of three 

factors mentioned above, FCN compensates for the defects 

which exist in CNN's pooling layer. Meanwhile, since the 

images of the test set we selected and the images of the

training set are approximately the same in scale, the 

performance of FCN won't be affected greatly. Hence, FCN 

performs better than CNN.

Higher recognition accuracy was also obtained on CapsNet. 

The dataset we created was carefully designed to make it be a 

pure shape recognition task, which means an object can be 

recognized from different perspectives. From this perspective, 

CapsNet beat the state-of-the-art CNN on the dataset.

The most significant factor contributing to the 

improvement is the addition of dynamic-routing.

A lower-level capsule tends to send its output to 

higher-level capsules whose activity vectors have a big scalar 

product with the prediction coming from the lower-level 

capsule. It is because of dynamic-routing that CaspNet can 

reflect the characteristics of layer abstraction and layer 

classification in the operation. Thus, its status in CapsNet is 

self-evident and needs no elaboration.

By researching the differences between the results of the 

two datasets, we can conclude that the three models can 

easily achieve high accuracy on a single-class dataset but a 

multi-class dataset, they perform not as well as we expected.

D. Training with CIFAR-100 for 300 Epochs

CIFAR-100 is similar to CIFAR-10, which is also 

consisted of ten different classes. The only distinction is that 

the ten classes of CIFAR-100 are divided into 20 

super-classes. Each image comes with a fine tag (the class it 

belongs to) and a rough tag (the superclass it belongs to).

As we mentioned in section C, all three models that trained 

with CIFAR-10 datasets aren’t accurate enough to 

distinguish the ten classes of objects. Thus, we chose 

CIFAR-100 to test their capability of multi-type image 

classification and trained each model with CIFAR-100

dataset for 300 epochs expecting they will be more accurate, 

and the results are shown in Table III and the model's loss and 

accuracy are shown in Fig. 11 and Fig. 12.

Fig. 11. CCN’s performance on CIFAR-100 for 300 epochs.

Fig. 12. FCN’s performance on CIFAR-100 for 300 epochs.

As Table III showed, all three models didn’t achieve high 

accuracy, indicating they over-fitted.

TABLE III: COMPARATIVE PERFORMANCES TESTED ON CIFAR-100 FOR 

300 EPOCHS

item time loss accuracy parameter

CNN 1883.79 8.120001 0.48 4420170

FCN 2019.01  1.371521 0.527 77850

Caps 19432.09  0.0353 0.5512 8215568
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V. CONCLUSION

In this paper, we evaluated the performances of the three 

efficient models on two datasets: MINST, CIFAR-10, which 

contain different types of objects. Via comparing the results, 

we found our models are good at single-class datasets but 

perform badly on multi-class datasets. 

In the experiment, we found that even with a small number 

of hyper-parameters, CapsNet can still classify images 

efficiently in the experiment. Our model needs to be adjusted 

to achieve better performance on multi-class datasets.

We also found that the CNN and FCN models’ 

performances are equivalent but the FCN model trains fewer 

parameters, which means it requires less memory 

consumption. CapsNet overcomes the limitations of losing 

large amounts of data information during the pooling phase 

of traditional CNNs, as well as realize higher resolution of 

image classification work. However, the model of CapsNet 

needs to train far more parameters and takes more time to 

train (around 10 times than the other two models). Generally 

speaking, the CNN and FCN model is better than the CapsNet 

model.

CapsNet is a brand-new method in image processing and 

its limitations are unavoidable in many practical applications. 

Although most of the complex scenario images are still done 

via CNN, it doesn't mean CapsNet will be useless in the 

future. This means, therefore, that more research, 

experiments, and tests are needed to unlock the full potential 

of this approach.
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