

Abstract—In this paper, the Clonal Selection Algorithm (CSA)

is implemented to determine the optimal architecture of a

convolutional neural network (CNN) for the classification of

handwritten character digits. The efficacy of CNN in image

recognition is one of the central motives why the world has

woken up to the effectiveness of deep learning. During training,

an optimal CNN architecture can extract complex features from

the data that is being trained; however, the ideal architecture of

a CNN for a specific problem cannot be determined by some

standard procedure. In practice, CNN architectures are

generally designed using human expertise and domain

knowledge. By using CSA, optimal architecture of CNN can be

determined autonomously through evolution of

hyperparameters of the architecture for a given dataset. In this

work, proposed methodology is tested on EMNIST dataset

which is an enhanced version of MNIST dataset. The results

have proven that the CSA based tuning is capable of generating

optimal CNN architectures. Through this proposed technique,

the best architecture of CNN for a given problem can be self-

determined without any human intervention.

Index Terms—Convolutional neural network, clonal selection

algorithm, EMNIST dataset.

I. INTRODUCTION

Machine learning is an application of artificial intelligence

that deals with the study of algorithms that can learn from

data. It enables systems to learn from historical data without

being explicitly programmed. It is an exciting area of research

that can drive the future of technology [1]. Machine learning

has become an active area of research for the last two decades.

Famous applications of machine learning include speech

recognition, image recognition, self-driving cars and medical

diagnosis, etc. These different applications of machine

learning are impacting human lives in a positive manner.

Machine learning algorithms generally consist of two

phases: training and prediction. In training phase, goal of any

machine learning model is to learn those parameters of the

model which best describes the overall training dataset. In

prediction phase, learned model is used to make predictions.

These predictions can then be used for many different real-

world applications [2]. Machine learning algorithms can be

categorized into two broad categories depending upon the

nature of available dataset: supervised and unsupervised.

Supervised algorithms are those, which

require

corresponding output labels in addition to input data for

training, whereas unsupervised algorithms only require input

data

for training.

Manuscript received May 27, 2019; revised October 11, 2019.

Neural networks are a set of Machine learning algorithms,

which model complex relationships in data using a multilayer

representation.

A neural network

is made up of number of

individual units which are called neurons.

These neurons are

arranged in multiple layers which are connected to each other

through these

neurons. Neurons

of one layer are

connected to

neurons

of another layer through weighted edges.

Weights

of

these edges are learned during training phase using training

dataset. Data is passed from input layer to output layer of the

network through these neurons. Neurons in each layer

perform simple mathematical operations using learned

weights

and transmits the information to all the other neurons

connected to it

[3],

[4].

Increase in computational power has increased the interest

of researchers

in deep neural networks, where

the structure of

network become more

complex by adding more layers into

the network. These deep neural networks are capable of

solving wide range of problems adequately that could not be

solved before such as Image classification

[5]-[7].

A special class of deep

neural networks

is the

convolutional neural networks, which are usually

referred to

as CNNs or ConvNets. CNNs are a special kind

of artificial

neural networks, which have a grid-like architecture and

proposed in a paper by Yann LeCun in 1998 [8]. He used

CNNs to classify

handwritten digits and was able to achieve

it through his first CNN which was

called LeNet-5. For image

classification, CNN is the state-of-art

technique due to its

grid-like architecture

and used by several big players like

Facebook, Google

and Amazon etc. for various applications

related to image classification.

CNNs use a mathematical

process called convolution, which is a special type of linear

transformation. Unlike conventional neural networks, CNNs

use convolution operation

to obtain an intermediate output

(feature). This intermediate output is then provided as

input

to the next layer.

In a CNN architecture, this is done in at least

one of its layers.

A typical CNN architecture comprises

of

layers of different types, such as

convolution, pooling and

fully connected. In order to design such CNN architecture,

users have to make various design decisions. The

architecture

of CNN needs to determine

the types and number of layers,

ordering of these layers, and hyperparameters of each layer.

Hyperparameters of each layer include filter size for the

convolution layers, activation type for each layer, pool size,

and filter size for pooling layers. The vast number of

architectures that can be generated based on these selections

makes it

difficult for an exhaustive manual search. While

there has been some work going on automated

discovery

of

The authors are with the EECS Department, the University of Toledo,

Toledo, OH 43606 USA (e-mail: ali.albataineh@utoledo.edu,
devinder.kaur@utoledo.edu).

Optimal Convolutional Neural Network Architecture

Design Using Clonal Selection Algorithm

Ali Al Bataineh and Devinder Kaur

doi: 10.18178/ijmlc.2019.9.6.874

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

788

mailto:ali.albataineh@utoledo.edu

best neural network architectures, new CNN architectures are

still primarily proposed by researchers based on their

problem’s domain knowledge and intuition obtained from

experimentation [9].

Lately, there have been notable research attempts to

implement bio-inspired computing algorithms to evolve one

or more aspects of convolutional neural networks (CNNs).

The majority of the trial involving the evolution of CNN has

centered on the network weights and network architecture.

Clonal selection algorithm (CSA), which takes inspiration

from human immune system, is a bio-inspired optimization

technique, which has been recognized in machine learning to

tackle the optimal solutions for several complex optimization

problems in various areas.

In this paper, the Clonal Selection Algorithm (CSA) is

implemented to automate the process of CNN’s architecture

selection. CSA is inspired by natural biological systems, and

makes use of genetic operators such as selection, cloning, and

mutation to find globally optimal solutions. The goal of the

CSA algorithm is to discover the CNN architecture that best

describes a given dataset without human intervention.

In the proposed CSA algorithm, the initial set of

hyperparameters chosen for a CNN architecture is referred to

as a foreign body known as an antigen. In order to fight the

antigen, human immune system generates several antibodies.

Similarly, several antibodies are generated to fight the

antigen in CSA algorithm. The affinity score of each antibody

is computed, and clones are generated for each antibody. The

antibody with the best affinity serves as the antigen for the

second generation and the process is repeated until the best

antibody is found. The best antibody depends upon the

problem being solved. For a classification problem like

handwritten character digits classification, the best antibody

represents the set of hyperparameters that gives the maximum

classification accuracy.

The paper is organized as follows. In Section II, the

EMNIST dataset, which is used to evaluate the CNN

architecture is introduced. In Section III, the architecture and

the operations of a CNN are discussed. CSA is explained in

section IV. Section V explains the implementation of

proposed method to generate CNN architectures using CSA.

Section VI discusses the results obtained. Section VII

presents conclusion of the work.

II. EMNIST DATASET

The EMNIST is enhanced MNIST dataset that is the "Hello

World" of pattern recognition in machine learning and deep

learning. The “NIST” stands for National Institute of

Standards and Technology, the institute that originally

gathered this dataset and the “M” stands for "modified" [10].

Ease-of-use, accessibility and moderate size of MNIST

dataset contributed to its widespread adoption.

The EMNIST dataset comprises of set of handwritten

digits, lowercase and uppercase letters derived from NIST

Special Database 19 [11]. It has a set of handwritten digits

(0–9), (a-z) and (A-Z) being converted from 128 × 128 into

28 × 28 pixel pictures that directly matches the MNIST

dataset as shown below in Fig. 1.

Fig. 1. Diagram of the conversion process used to convert the NIST dataset [11].

Fig. 1(a) shows the input image stored in a 128 × 128

pixels binary image. Fig. 1(b) represents Gaussian filter

applied to the image to smoothen the edges. Fig. 1(c) the

region around the actual digits extracted. In Fig. 1(d) digits

placed in the center of a square image. Finally, the image is

reshaped into 28 × 28 pixels using bi-cubic interpolation.

The EMNIST dataset is provided in six different splits. A

brief outline of the dataset is given below:

• EMNIST ByClass: 62 unbalanced classes with a total of

814,255 characters.

• EMNIST ByMerge: 47 unbalanced classes with a total of

814,255 characters.

• EMNIST Balanced: 47 balanced classes with a total of

131,600 characters.

• EMNIST Letters: 26 balanced classes with a total of

145,600 characters.

• EMNIST Digits: 10 balanced classes with a total of

280,000 characters.

• EMNIST MNIST: 10 balanced classes with a total of

70,000 characters.

In this research, we used the EMNIST Digits as our data.

A. EMNIST Digits Dataset

The EMNIST Digits dataset provides balanced

handwritten digit datasets directly compatible with the

original MNIST dataset.

A short summary of the dataset is provided below:

• Train data: 240,000 characters.

• Test data: 40,000 characters.

• Total data: 280,000 characters.

• Classes: 10 balanced (0-9).

B. EMNIST Digits Dataset Preprocessing

The shape of the training dataset is (240k, 28, 28); 240k

represents the number of images in the training dataset and

(28, 28) represents the size of the image: 28 × 28 pixels. To

be able to use the dataset in Keras API to work with the

Convolution2D layers, we reshaped 3-dimensional arrays to

4-dimensional arrays (240k, 28, 28, 1), the last number is 1,

which signifies that the images are greyscale. Same reshape

process applies to the testing data as well. In addition, it is a

good idea to normalize the input data to the range 0 and 1by

dividing each pixel value to the maximum of 255. Finally, the

output variable is an integer from 0 to 9. This is a multi-class

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

789

classification problem. As such, it is reliable practice to use

the one-hot encoding of the class values, transforming the

vector of class integers into a binary matrix.

III. CONVOLUTIONAL NEURAL NETWORK

A CNN is a deep learning model that takes its inspiration

from the human visual cortex model. CNNs are one of the

most influential innovations in the computer vision field.

They have outperformed conventional computer vision

techniques and have delivered state-of-the-art results. Some

real time applications of CNN are Image classification, face

recognition, object detection, self-driving cars etc. [12], [13].

The founding father of Convolutional Neural Network is the

well-known computer scientist working in Facebook Yann

LeCun who was the first to use it to solve the handwritten

digits problem using the MNIST Dataset [14]. CNNs are

inspired by the biological visual cortex. The visual cortex

contains small areas of cells that are sensitive to specific

regions in the visual field. Hubel and Wiesel expanded this

idea through successful experimentation in 1962 [15].

In this experiment, they pointed out that there are some

individual neurons in the brain that fire only when they

encounter a particular orientation like horizontal or vertical

edges. In other words, some neurons are activated only when

exposed to vertical edges and some when exposed to

horizontal edges. Both Hubl and Wiesel discovered that all

these neurons were arranged in a columnar fashion, due to

which they were able to generate visual perception. The idea

of specialized neurons within the virtual system having

specific tasks is the inspiration behind CNNs.

A. CNN Architecture

For image classification, the main task is to take image as

an input and infer an output class (a person, house, etc.) or a

probability of certain class. Humans develop the recognition

skill naturally and is one of the first learnt talent. However,

these skills of pattern recognition and learning from

experience are challenging for a computer. Computer sees an

image as a matrix of pixel values. Based on the inputs, the

computer should be capable of classifying the images

provided to it and learn the unique features that make a person

a person or that make a house a house [16].

Let us consider an image of size 32×32×3 (width, height,

channels). In order to train an image classifier for images of

this size, a fully connected neural network will require to

learn 32×32×3 = 3072 weights for first hidden layer. For

larger image size, the fully connected neural network will

require more weights to learn. For example, for an image of

size 340×340×3, number of weights for first hidden layer

would be 346800, which will be computationally expensive.

In addition, a fully connected neural network will have very

large number of neurons for an image classification setup and

hence these significant numbers of parameters can lead to

overfitting.

CNN manages images differently, but still follows the

general concept of a neural network. The basic building block

of CNN is still a neuron with weights and biases and

activation functions. There are several layers in CNN such as

convolution, pooling and fully connected etc. Every neuron

in a CNN receives the inputs, performs a simple mathematical

operation and pass on the result to the next layer.

B. Layers in CNN

Each layer in a CNN architecture does a unique operation;

however, there can be several layers of convolution and

pooling layers.

1) Input layer

In CNN, input layer always consists of three-dimensional

images (e.g. 300×300×3).

2) Convolutional layer

Convolution layer is designed to extract patterns (features)

from the image. In the Convolution layer, element-wise

multiplications between a region of the input image and a

weight array called, a filter (kernel) is computed. The filter

will slide across the whole image repeating the same dot

product calculation. The output of convolution layer results

in a feature map.

A filter is small spatially along the width and height but its

depth is the same as that of the input image. For an image of

depth 3, filter size of 3×3×3 is chosen to convolve with this

image.

The process is repeated after sliding the filter across the

image with a stride size and the output is a two- dimensional

array, which is called a feature map. Three parameters namely

number of filters; filter size, padding and stride control,

determine the size of this feature map. These parameters need

to be specified before performing the convolution.

Stride controls how the filter convolves across the image.

When the stride is one, the filter moves across in single step,

when stride is 2, filter moves across using two steps. The

higher the stride, the less is the dimensions of the output

feature map.

Zero padding means filling the image around the corners

with zero when filter is around the edges of the image. Based

on the above parameters, the dimensions of the output of the

Convolution layer is given by equations (1) and (2):

Output Feature Width =
2𝑃+ 𝑊− 𝐹

𝑆
+ 1 (1)

Output Feature Height =
2𝑃+ 𝐻− 𝐹

𝑆
+ 1 (2)

where F represents the Filter size, S represents the stride W

represents the width and H represents the height of the image

and P represents the number of zero padding around an image.

The number of channels of the feature map output is the same

as the number of filters used through the convolution

operation.

For example, for input image of size 9×9, W=9, H=9, Filter

size F of 3×3, stride S equal to 1, and number of filters equal

to 1 and padding P equal to zero, the output feature size is

Feature Map Size = 1 + (9 -3 +2×0) /1 =7.

Therefore, the output image will be 7×7.

3) Nonlinear layer (activation function)

The output of the feature Map is presented to nonlinear

activation function ReLU. There are several types of

nonlinear functions such as sigmoid, tanh, and ReLU. ReLU

stands for Rectified Linear Unit is the choice for CNN

because of its computational effectiveness and good

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

790

performance in terms of accuracy. ReLU’s output is given in

equation (3).

ReLU = Max (0, input) (3)

ReLU activation function is applied per pixel and all

negative values in feature map are replaced by zero.

4) Pooling layer

Pooling layer is also known as down sampling layer, which

takes large images as its input and shrink them down while

retaining most important information in those images. There

are three types of pooling that are commonly used namely

average, L2-norm and maxpool. Maxpool is the most widely

used nonlinear function. Maxpool layer applies a filter of size

𝑛 × 𝑛 on image and takes the maximum value from the filter

at each step. The stride with which filter steps across the input

image is the same as that of filter size. Number of parameters

(weights) can be reduced through the process of pooling,

hence computation cost can be reduced, and overfitting can

be avoided.

5) Fully connected layer

The output of the final pooling layer is provided to the fully

connected network. A Fully Connected layer (FCL) is a

regular artificial neural network layer, which is the last layer

of CNN architecture. Activation function used by FCL in its

output layer is softmax, which generates an output in range of

0 and 1. The generated output of softmax activation function

gives the probability of any input belonging to a particular

class i.e. categorical probability distribution. It calculates the

probabilities of each target and normalize it with probabilities

of all possible target classes. The softmax function is shown

in Equation (4), where z represents the vector of the inputs

presented to the output layer and j= {1, 2, 3,.. K} represents

the output class.

𝜎(𝑧)𝑗 =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 (4)

6) CNN Training using backpropagation

As discussed earlier, in a CNN architecture, convolutional

and pooling layers extract features like curves and edges from

the input image, whereas FCL acts as a classifier at the end,

which generates the probabilities for different classes. This is

a forward propagation step. In training step, all parameters of

a CNN are initialized randomly and it is trained using a

backpropagation algorithm. Backpropagation algorithm

keeps on adjusting the parameters (weights) of FCL in CNN

until it converges and obtain a high classification accuracy.

This classification accuracy can then be used as fitness value

while tuning CNN architecture using CSA. The next section

explains how CSA is applied to determine the architecture of

a CNN for the EMNIST dataset. This section also describes

the inner operations of the proposed algorithm.

IV. CLONAL SELECTION ALGORITHM

The inspiration of natural biological systems is frequently

used as a source to solve engineering problems in different

domains [18]-[20]. CSA has enormous potential in various

engineering applications. In recent past, researchers have

proposed several different artificial immune models inspired

by biological immune system to find global optima for

various real-world applications.

CSA is inspired by biological immune system, one of the

most complex biological systems. Basic building blocks of

biological immune system are known as lymphoid organs

[21]. These lymphoid organs are made up of lymphocytes

which are a type of white blood cells having receptors to

identify pathogens. There are two major types of lymphocytes,

which are B-lymphocytes and T-lymphocytes. These B and T

lymphocytes are also known as B and T cells respectively.

Both these cells can identify certain molecular patterns found

on pathogens and reproduce themselves through process of

cloning to fight these organisms. Blood cells that generate

and maturate in bone marrow and act as immune cells within

bone marrow are called B-cells. Whereas, the cells which are

produced in the bone marrow but migrated to thymus and

maturate there are called T-cells. In thymus, T-cells become

immune-capable and learn to differentiate among invasive

cells and cells of organism [22].

The human body’s immune system can identify foreign

cells that invade the human body, which can be harmful and

can cause infections or diseases. These foreign cells are

known as Antigens. Immune system of human body learns

how to cancel the effects of antigens by first understanding

and then opposing the behavior pattern of antigen. Cells that

are produced by human immune system to fight antigens are

called antibodies. Affinity is a degree of recognition between

antigen and antibody. The higher the affinity, the better the

recognition, and vice-versa. CSA uses affinity to select the

best antibodies. The best antibodies are cloned [23]. To

introduce diversity mutation operation is applied on

antibodies with an intent to improve their affinity so that they

can destroy the antigen. The antibody with best affinity is

picked and becomes the antigen for the next iteration.

Antibodies are created in response to the new antigen, the best

few are cloned and mutated, and again the best antibody is

picked as antigen for the next iteration of the algorithm. The

process is repeated for a fixed number of iterations or until

the criterion for problem is achieved. The final antibody is the

solution and provides the structure of CNN in terms of

hyperparameters.

TABLE I: HYPERPARAMETERS RANGE OF CNN

Hyperparameter Range

Number of Epoch 0-127

Batch Size 0-256

Number of convolution layers 0-8

Number of filters at each convolution

layer

0-64

 Filter size of each convolution layer 0-8

Activation function used at each

convolution layer

ReLU, Tanh, linear, Sigmoid

Maxpool layer after each convolution

layer

True, False

Pool size of each maxpool layer 0-8

Number of feed-forward hidden layers 0-8

Number of feed-forward hidden

neurons at each layer

0-64

Activation function used at each feed-

forward layer

Tanh, ReLU, Sigmoid,

Softmax

Optimizer RMSprop, SGD, Adam,

Adadelta

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

791

Before training a CNN, it is necessary to determine the

optimal architecture of network for a given dataset. It is

generally achieved through hyperparameter tuning. In this

work, CSA is used to select best set of hyperparameters for

CNN. Table I provides the ranges of hyperparameters

associated with CNN architecture.

Fig. 2. Flowchart describing steps of the CSA.

TABLE II: MAPPING OF IMMUNE SYSTEM TERMINOLOGY TO

CONVOLUTIONAL NEURAL NETWORK

Immune System CNN Model

Antigen Initial Solution (a set of hyperparameters)

Antibody Candidate Solution

Gene Hyperparameter

Affinity Fitness value of each antibody to antigen

Cloning Process of creating multiple copies of

antibody

Mutation Process of changing one or more Genes of

Antibody

Population Total number of Antibodies

Generation Number of Iterations

In order to develop a computational model for the CNN

based on CSA, the terminologies of the immune system need

to be mapped to the architecture of the CNN. Table II shows

the mapping of CSA terminology to the CNN. Fig. 2 shows

the workflow diagram of the CNN hyperparameters tuning

for the EMNIST data classification using CSA. It consists of

the following steps [24].

A. Antigen Initialization

Antigen is s a toxin or foreign body that attacks the human

body in the form of virus, bacteria, or fungus [25]. In the

context of a convolutional neural network, an antigen is a

potential solution that is represented as vector of all the

hyperparameters that represent the architecture of CNN. The

format of antibodies is the same as that of antigen. In each

generation, antibodies that have higher fitness are selected.

Here the fitness score refers to the image classification

accuracy represented by the architecture of the CNN based on

the hyperparameters described in the antibody or antigen.

Firstly, a random antigen is created which represents the

values of the hyperparameters of CNN. There are 12 genes in

the antigen as the number of hyperparameters values, which

need to be tuned using CSA. Each gene contains a

hyperparameter value. Fig. 3 represents a random CNN

architecture obtained from an antigen. The antigen is the

ensemble of the value of hyperparameters, whose values lie

in between the range as in Table I.

B. Antibody Initialization

In response to the initial antigen, several antibodies with

the same format are created to fight the antigen. In this work,

10 antibodies were generated in response to one antigen.

C. Affinity Calculation

The affinity of the generated antibodies is measured

according to the objective function of the problem that is

being optimized. The objective function used in this work for

the convolutional neural network is the classification

accuracy and that is represented as ratio of correct predictions

made to the total number of samples as described in equation

5. In equation 5, n represents the number of examples

correctly classfied and 𝑁 represents total number of

examples in training set. The higher the classification

accuracy, higher the fitness of the antibody. In other words,

the CSA attempts to find a set of hyperparameters that

maximizes the classificcation accuracy.

Classification Accuracy =
𝑛

𝑁
 (5)

D. Selection of Antibodies

Four antibodies that have the highest fitness among the 10

antibodies are selected.

E. Clone the Antibodies

In the cloning process, multiple copies of the antibodies are

created. the number of clones is fixed to 10 and is the same

for all the selected antibodies. Hence, for every iteration 10

clones are generated for each of the 4 selected antibodies.

F. Mutation

In the mutation process, antibodies are randomly altered

to introduce diversity in the population. Mutation operation

enables to achieve global optimization and hence helps to

escape from local optimization. In immune system based

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

792

algorithms, mutation is performed on antibodies with an

intent to enhance their ability to attack the foreign antigen

better. There are two different types of mutation methods

which are comonly used. First method is bit mutation, which

replaces genes in antibody through fliping random bits in a

binay array. Whereas second method is more complex, as it

replaces genes in antibody with random values drawn from a

Gaussian or Uniform distribution. In this work, the latter type

is implemented.

G. Stopping Criteria

The algorithm stops running when the termination

condition defined by the user is reached. In this work,

termination condition is based on the classification accuracy

of the algorithm. The algorithm is terminated if the desired

classification accuracy is achieved. The hyperparameters

evolved by the CSA algorithm determine the optimal

architecture of the CNN.

Fig. 3: A sample antigen of CNN.

V. EXPERIMENTAL SETUP AND RESULTS

The CSA based CNN architecture tuner was implemented

in Python 3.7 using a high-level neural networks API called

Keras running on top of TensorFlow. The proposed

method was tested on the EMNIST Digits dataset with 240k

images as its training set and 40k images as its testing set.

The experiment was carried out in a Dell desktop

workstation powered by a processor-Intel(R) Core(TM) i7-

7800X CPU @ 3.50GHz and 32 GB DDR4 RAM with Nvidia

Quadro P4000 GPU with 8 GB of GDDR5 memory. The

approximate processing time for CSA to generate a

successful CNN architecture was 3.63 hours.

Fig. 4. Convergence curve for the hyperparameters tuning of CNN using

clonal search algorithm.

The task of CSA tuner is to generate a CNN architecture,

which gives the best classification accuracy for a given

dataset. Fig. 4 shows the convergence curve of CSA

optimization. It can be observed that accuracy is increasing

with every iteration. The CNN architecture optimized

through CSA gives a classification accuracy of 99.49%.

Table III provides the final tuned hyperparameters attained

using CSA.

TABLE III: FINAL HYPERPARAMETERS OF THE CNN ARCHITECTURE

SELECTED BY CSA

Hyperparameter Range

Number of Epoch 26

Batch Size 161

Number of convolution layers 6

Number of filters at each convolution layer 32

The filter size of each convolution layer 7×7

Activation functions used at each convolution layer Relu

Maxpool layer after each convolution layer True

Pool size of each maxpool layer 8×8

Number of feed-forward hidden layers 2

Number of feed-forward hidden neurons at each layer 6

Activation function used at each feed-forward layer Softmax

Optimizer Adam

VI. CONCLUSION

This paper developed a Clonal Selection Algorithm for

evolving the optimal set of hyperparameters for CNN

architecture that will best classify the images from EMNIST-

Digits dataset. The accuracy achieved by the proposed

method is 99.49%. Our proposed method is also adaptable to

every uniform dataset. It provides an alternative approach to

manually determining the best architecture of CNN by trial

and error and that can be very time consuming and may not

be optimal.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Author Devinder Kaur laid the framework of the problem

and defined the process of mapping the CSA algorithm to

tune the hyperparameters to develop optimal architecture of

CNN for accurate classification of EMINST dataset. Author

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

793

Ali implemented the code of the algorithm in python. Both

authors contributed to writing of the paper.

REFERENCES

[1] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine

learning,” Machine Learning, vol. 3, no. 2, pp. 95–99, 1988.

[2] A. A. Bataineh, “A comparative analysis of nonlinear machine learning
algorithms for breast cancer detection,” International Journal of

Machine Learning and Computing vol. 9, no. 3, pp. 248-254, 2019.

[3] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” The Bulletin of Mathematical

Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[4] J. J. Hopfield, “Artificial neural networks,” IEEE Circuits and Devices
Magazine, vol. 4, no. 5, pp. 3–10, 1988.

[5] B. M. Keneni, D. Kaur, A. Al Bataineh, V. K. Devabhaktuni, A. Y.

Javaid, J. D. Zaientz, and R. P. Marinier, “Evolving rule-based
explainable artificial intelligence for unmanned aerial vehicles,” IEEE

Access, vol. 7, pp. 17 001–17 016, 2019.

[6] A. Al Bataineh and D. Kaur, “A comparative study of different curve
fitting algorithms in artificial neural network using housing dataset,” in

Proc. NAECON 2018-IEEE National Aerospace and Electronics

Conference, 2018, pp. 174–178.
[7] A. Al Bataineh, D. Kaur, and A. Jarrah, “Enhancing the parallelization

of backpropagation neural network algorithm for implementation on

fpga platform,” in Proc. NAECON 2018-IEEE National Aerospace and
Electronics Conference, 2018, pp. 192–196.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[9] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network

architectures using reinforcement learning,” arXiv preprint arXiv:
1611.02167, 2016.

[10] P. J. Grother. (2016). NIST Special Database 19. NIST Handprinted

Forms and Characters Database. [Online]. Available:
https://www.nist.gov/publications/nist-special-database-19-nist-

handprinted-forms-and-characters-database

[11] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: An
extension of MNIST to handwritten letters,” arXiv preprint arXiv:

1702.05373, 2017.

[12] MathWorks, Introducing Deep Learning with MATLAB. [Online].

Available: https://www.mathworks.com/content/dam/mathworks/tag-

team/Objects/d/80879v00_Deep_Learning_ebook.pdf

[13] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” The Journal of

physiology, vol. 160, no. 1, pp. 106–154, 1962.

[14] A. Karpathy, “Cs231n convolutional neural networks for visual
recognition,” Neural Networks, vol. 1, 2016.

[15] K. Ujjwal, “An intuitive explanation of convolutional neural networks,”

The Data Science Blog, 2016.
[16] Y. L. Cun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon,

D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit
recognition: Applications of neural network chips and automatic

learning,” IEEE Communications Magazine, vol. 27, no. 11, pp. 41–46,

1989.
[17] A. Bhandare and D. Kaur, “Designing convolutional neural network

architecture using genetic algorithms,” in Proc. on the International

Conference on Artificial Intelligence, 2018, pp.150–156.
[18] Y. Atay and H. Kodaz, “Optimization of job shop scheduling problems

using modified clonal selection algorithm,” Turkish Journal of

Electrical Engineering & Computer Sciences, vol. 22, no. 6, pp. 1528–
1539, 2014.

[19] A. A. Bataineh, A. Jarrah, and D. Kaur, “High-speed FPGA-based of

the particle swarm optimization using HLS tool,” International Journal
of Advanced Computer Science and Applications (IJACSA), vol. 10, no.

5, 2019.

[20] A. Mairaj, A. A. Bataineh, D. Kaur, and A. Y. Javaid, “Identifying the
Optimal Solutions of Bohachevsky Test Function Using Swarming

Algorithms,” in Proc. 21st International Conference on Artificial

Intelligence, Las Vegas, USA, July 29-August 1, 2019.
[21] L. N. de Castro and F. J. V. Zuben, “Immune and neural network

models: Theoretical and empirical comparisons,” International Journal

of Computational Intelligence and Applications, vol. 1, no. 3, pp. 239–
257, 2001.

[22] I. Muthreja and D. Kaur, “A comparative analysis of immune system

inspired algorithms for traveling salesman problem,” in Proc. on the
International Conference on Artificial Intelligence, 2018, pp. 164–170.

[23] J. Brownlee, Clever Algorithms: Nature-Inspired Programming

Recipes, Jason Brownlee, 2011.
[24] A. A. Bataineh and D. Kaur, “Immuno-computing-based neural

learning for data classification,” International Journal of Advanced

Computer Science and Applications, vol. 10, no. 6, 2019.
[25] L. N. de Castro and F. J. Von Zuben, “Learning and optimization using

the clonal selection principle,” IEEE Transactions on Evolutionary

Computation, Special Issue on Artificial Immune Systems, vol. 5, pp

291-317, 2002.

Ali Al Bataineh received a B.S. degree in computer

engineering from Yarmouk University, Jordan, in

2010, and the M.S. degree in computer engineering
from the University of Bridgeport, Bridgeport, CT,

USA, in 2016. He is currently pursuing a Ph.D. degree

with the Department of Electrical Engineering and
Computer Science, The University of Toledo, Toledo,

OH, USA. His current research interests include the

areas of artificial intelligence, machine learning,
computer vision, metaheuristic optimization, fuzzy

logic, and FPGAs.

Devinder Kaur received the B.Sc. and M.Sc. degrees
(Hons.) in physics, majoring in electronics, from

Panjab University, in 1969 and 1970, respectively, the

M.Sc. degree in medical physics from the University
of Aberdeen, U.K., in 1976, under the Commonwealth

Scholarship Award, and the M.Sc. and Ph.D. degrees

in computer engineering from Wayne State University,
USA, in 1985 and 1989, respectively. She was a

scientist with the Central Scientific Instruments

Organization, a national laboratory, under the Ministry of Science and
Technology, Chandigarh, India, from 1971 to 1981. In 1989, she joined the

University of Toledo, as a faculty member, where she is currently a full

professor with the Department of EECS. She visited Nippon Institute of
Technology, Japan, as a fulbright senior specialist in 2003. She has published

over 100 papers in refereed journals and proceedings of the international

conferences. She has worked on projects funded by NSF, AFRL, Daimler
Chrysler, and ROMAN Engineering. Her research interests include

developing intelligent applications based on hybrid computational models

using biologically inspired computing and fuzzy systems. She received the
University Medal for obtaining the first rank. She was a recipient of the IIT

Delhi Fellowship from 1970 to 1971 and the Fulbright Senior Specialist

Award, in 2004.

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

794

https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/d/80879v00_Deep_Learning_ebook.pdf
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/d/80879v00_Deep_Learning_ebook.pdf

