
  

  

Abstract—In this paper, the Clonal Selection Algorithm (CSA) 

is implemented to determine the optimal architecture of a 

convolutional neural network (CNN) for the classification of 

handwritten character digits. The efficacy of CNN in image 

recognition is one of the central motives why the world has 

woken up to the effectiveness of deep learning. During training, 

an optimal CNN architecture can extract complex features from 

the data that is being trained; however, the ideal architecture of 

a CNN for a specific problem cannot be determined by some 

standard procedure.  In practice, CNN architectures are 

generally designed using human expertise and domain 

knowledge. By using CSA, optimal architecture of CNN can be 

determined autonomously through evolution of 

hyperparameters of the architecture for a given dataset. In this 

work, proposed methodology is tested on EMNIST dataset 

which is an enhanced version of MNIST dataset. The results 

have proven that the CSA based tuning is capable of generating 

optimal CNN architectures. Through this proposed technique, 

the best architecture of CNN for a given problem can be self-

determined without any human intervention.   

 
Index Terms—Convolutional neural network, clonal selection 

algorithm, EMNIST dataset. 

 

I. INTRODUCTION 

Machine learning is an application of artificial intelligence 

that deals with the study of algorithms that can learn from 

data. It enables systems to learn from historical data without 

being explicitly programmed. It is an exciting area of research 

that can drive the future of technology [1]. Machine learning 

has become an active area of research for the last two decades. 

Famous applications of machine learning include speech 

recognition, image recognition, self-driving cars and medical 

diagnosis, etc. These different applications of machine 

learning are impacting human lives in a positive manner.  

Machine learning algorithms generally consist of two 

phases: training and prediction. In training phase, goal of any 

machine learning model is to learn those parameters of the 

model which best describes the overall training dataset. In 

prediction phase, learned model is used to make predictions. 

These predictions can then be used for many different real-

world applications [2]. Machine learning algorithms can be 

categorized into two broad categories depending upon the 

nature of available dataset: supervised and unsupervised. 

Supervised algorithms are those, which

 

require 

corresponding output labels in addition to input data for 

training, whereas unsupervised algorithms only require input

 

data

 

for training. 
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Neural networks are a set of Machine learning algorithms, 

which model complex relationships in data using a multilayer 

representation.

 

A neural network

 

is made up of number of 

individual units which are called neurons.

 

These neurons are 

arranged in multiple layers which are connected to each other 

through these

 

neurons. Neurons

 

of one layer are

 

connected to 

neurons

 

of another layer through weighted edges.

 

Weights

 

of 

these edges are learned during training phase using training 

dataset. Data is passed from input layer to output layer of the 

network through these neurons. Neurons in each layer 

perform simple mathematical operations using learned 

weights

 

and transmits the information to all the other neurons 

connected to it

 

[3],

 

[4]. 

  

Increase in computational power has increased the interest 

of researchers

 

in deep neural networks, where

 

the structure of 

network become more

 

complex by adding more layers into 

the network. These deep neural networks are capable of 

solving wide range of problems adequately that could not be 

solved before such as Image classification

 

[5]-[7].

 

A special class of deep

 

neural networks

 

is the 

convolutional neural networks, which are usually

 

referred to 

as CNNs or ConvNets. CNNs are a special kind

 

of artificial 

neural networks, which have a grid-like architecture and 

proposed in a paper by Yann LeCun in 1998 [8]. He used 

CNNs to classify

 

handwritten digits and was able to achieve 

it through his first CNN which was

 

called LeNet-5. For image 

classification, CNN is the state-of-art

 

technique due to its 

grid-like architecture

 

and used by several big players like 

Facebook, Google

 

and Amazon etc. for various applications 

related to image classification.

 

CNNs use a mathematical 

process called convolution, which is a special type of linear 

transformation. Unlike conventional neural networks, CNNs 

use convolution operation

 

to obtain an intermediate output 

(feature). This intermediate output is then provided as

 

input 

to the next layer.

 

In a CNN architecture, this is done in at least 

one of its layers.

 

A typical CNN architecture comprises

 

of 

layers of different types, such as

 

convolution, pooling and 

fully connected. In order to design such CNN architecture, 

users have to make various design decisions. The

 

architecture 

of CNN needs to determine

 

the types and number of layers, 

ordering of these layers, and hyperparameters of each layer. 

Hyperparameters of each layer include filter size for the 

convolution layers, activation type for each layer, pool size, 

and filter size for pooling layers. The vast number of 

architectures that can be generated based on these selections 

makes it

 

difficult for an exhaustive manual search. While 

there has been some work going on automated

 

discovery

 

of 
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best neural network architectures, new CNN architectures are 

still primarily proposed by researchers based on their 

problem’s domain knowledge and intuition obtained from 

experimentation [9]. 

Lately, there have been notable research attempts to 

implement bio-inspired computing algorithms to evolve one 

or more aspects of convolutional neural networks (CNNs). 

The majority of the trial involving the evolution of CNN has 

centered on the network weights and network architecture. 

Clonal selection algorithm (CSA), which takes inspiration 

from human immune system, is a bio-inspired optimization 

technique, which has been recognized in machine learning to 

tackle the optimal solutions for several complex optimization 

problems in various areas. 

In this paper, the Clonal Selection Algorithm (CSA) is 

implemented to automate the process of CNN’s architecture 

selection. CSA is inspired by natural biological systems, and 

makes use of genetic operators such as selection, cloning, and 

mutation to find globally optimal solutions. The goal of the 

CSA algorithm is to discover the CNN architecture that best 

describes a given dataset without human intervention.  

In the proposed CSA algorithm, the initial set of 

hyperparameters chosen for a CNN architecture is referred to 

as a foreign body known as an antigen. In order to fight the 

antigen, human immune system generates several antibodies.    

Similarly, several antibodies are generated to fight the 

antigen in CSA algorithm. The affinity score of each antibody 

is computed, and clones are generated for each antibody. The 

antibody with the best affinity serves as the antigen for the 

second generation and the process is repeated until the best 

antibody is found. The best antibody depends upon the 

problem being solved. For a classification problem like 

handwritten character digits classification, the best antibody 

represents the set of hyperparameters that gives the maximum 

classification accuracy. 

The paper is organized as follows. In Section II, the 

EMNIST dataset, which is used to evaluate the CNN 

architecture is introduced. In Section III, the architecture and 

the operations of a CNN are discussed. CSA is explained in 

section IV. Section V explains the implementation of 

proposed method to generate CNN architectures using CSA. 

Section VI discusses the results obtained. Section VII 

presents conclusion of the work. 

 

II. EMNIST DATASET 

The EMNIST is enhanced MNIST dataset that is the "Hello 

World" of pattern recognition in machine learning and deep 

learning. The “NIST” stands for National Institute of 

Standards and Technology, the institute that originally 

gathered this dataset and the “M” stands for "modified" [10]. 

Ease-of-use, accessibility and moderate size of MNIST 

dataset contributed to its widespread adoption.  

The EMNIST dataset comprises of set of handwritten 

digits, lowercase and uppercase letters derived from NIST 

Special Database 19 [11]. It has a set of handwritten digits 

(0–9), (a-z) and (A-Z) being converted from 128 × 128 into 

28 ×  28 pixel pictures that directly matches the MNIST 

dataset as shown below in Fig. 1.  

 

 
Fig. 1. Diagram of the conversion process used to convert the NIST dataset [11]. 

 

Fig. 1(a) shows the input image stored in a 128 × 128 

pixels binary image. Fig. 1(b) represents Gaussian filter 

applied to the image to smoothen the edges. Fig. 1(c) the 

region around the actual digits extracted. In Fig. 1(d) digits 

placed in the center of a square image. Finally, the image is 

reshaped into 28 × 28 pixels using bi-cubic interpolation. 

The EMNIST dataset is provided in six different splits. A 

brief outline of the dataset is given below: 

• EMNIST ByClass: 62 unbalanced classes with a total of 

814,255 characters. 

• EMNIST ByMerge: 47 unbalanced classes with a total of 

814,255 characters. 

• EMNIST Balanced: 47 balanced classes with a total of 

131,600 characters.  

• EMNIST Letters: 26 balanced classes with a total of 

145,600 characters. 

• EMNIST Digits: 10 balanced classes with a total of 

280,000 characters. 

• EMNIST MNIST: 10 balanced classes with a total of 

70,000 characters. 

In this research, we used the EMNIST Digits as our data.  

A. EMNIST Digits Dataset 

The EMNIST Digits dataset provides balanced 

handwritten digit datasets directly compatible with the 

original MNIST dataset. 

A short summary of the dataset is provided below: 

• Train data: 240,000 characters. 

• Test data: 40,000 characters. 

• Total data: 280,000 characters. 

• Classes: 10 balanced (0-9). 

B. EMNIST Digits Dataset Preprocessing 

The shape of the training dataset is (240k, 28, 28); 240k 

represents the number of images in the training dataset and 

(28, 28) represents the size of the image: 28 × 28 pixels. To 

be able to use the dataset in Keras API to work with the 

Convolution2D layers, we reshaped 3-dimensional arrays to 

4-dimensional arrays (240k, 28, 28, 1), the last number is 1, 

which signifies that the images are greyscale. Same reshape 

process applies to the testing data as well.  In addition, it is a 

good idea to normalize the input data to the range 0 and 1by 

dividing each pixel value to the maximum of 255. Finally, the 

output variable is an integer from 0 to 9. This is a multi-class 
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classification problem. As such, it is reliable practice to use 

the one-hot encoding of the class values, transforming the 

vector of class integers into a binary matrix. 

 

III. CONVOLUTIONAL NEURAL NETWORK 

A CNN is a deep learning model that takes its inspiration 

from the human visual cortex model. CNNs are one of the 

most influential innovations in the computer vision field. 

They have outperformed conventional computer vision 

techniques and have delivered state-of-the-art results. Some 

real time applications of CNN are Image classification, face 

recognition, object detection, self-driving cars etc. [12], [13]. 

The founding father of Convolutional Neural Network is the 

well-known computer scientist working in Facebook Yann 

LeCun who was the first to use it to solve the handwritten 

digits problem using the MNIST Dataset [14]. CNNs are 

inspired by the biological visual cortex. The visual cortex 

contains small areas of cells that are sensitive to specific 

regions in the visual field. Hubel and Wiesel expanded this 

idea through successful experimentation in 1962 [15]. 

In this experiment, they pointed out that there are some 

individual neurons in the brain that fire only when they 

encounter a particular orientation like horizontal or vertical 

edges. In other words, some neurons are activated only when 

exposed to vertical edges and some when exposed to 

horizontal edges. Both Hubl and Wiesel discovered that all 

these neurons were arranged in a columnar fashion, due to 

which they were able to generate visual perception. The idea 

of specialized neurons within the virtual system having 

specific tasks is the inspiration behind CNNs. 

A. CNN Architecture 

For image classification, the main task is to take image as 

an input and infer an output class (a person, house, etc.) or a 

probability of certain class. Humans develop the recognition 

skill naturally and is one of the first learnt talent. However, 

these skills of pattern recognition and learning from 

experience are challenging for a computer.  Computer sees an 

image as a matrix of pixel values. Based on the inputs, the 

computer should be capable of classifying the images 

provided to it and learn the unique features that make a person 

a person or that make a house a house [16]. 

Let us consider an image of size 32×32×3 (width, height, 

channels). In order to train an image classifier for images of 

this size, a fully connected neural network will require to 

learn 32×32×3 = 3072 weights for first hidden layer. For 

larger image size, the fully connected neural network will 

require more weights to learn. For example, for an image of 

size 340×340×3, number of weights for first hidden layer 

would be 346800, which will be computationally expensive. 

In addition, a fully connected neural network will have very 

large number of neurons for an image classification setup and 

hence these significant numbers of parameters can lead to 

overfitting. 

CNN manages images differently, but still follows the 

general concept of a neural network. The basic building block 

of CNN is still a neuron with weights and biases and 

activation functions. There are several layers in CNN such as 

convolution, pooling and fully connected etc. Every neuron 

in a CNN receives the inputs, performs a simple mathematical 

operation and pass on the result to the next layer. 

B.  Layers in CNN 

Each layer in a CNN architecture does a unique operation; 

however, there can be several layers of convolution and 

pooling layers. 

1) Input layer 

In CNN, input layer always consists of three-dimensional 

images (e.g. 300×300×3). 

2) Convolutional layer 

Convolution layer is designed to extract patterns (features) 

from the image. In the Convolution layer, element-wise 

multiplications between a region of the input image and a 

weight array called, a filter (kernel) is computed. The filter 

will slide across the whole image repeating the same dot 

product calculation. The output of convolution layer results 

in a feature map.  

A filter is small spatially along the width and height but its 

depth is the same as that of the input image. For an image of 

depth 3, filter size of 3×3×3 is chosen to convolve with this 

image.  

The process is repeated after sliding the filter across the 

image with a stride size and the output is a two- dimensional 

array, which is called a feature map. Three parameters namely 

number of filters; filter size, padding and stride control, 

determine the size of this feature map. These parameters need 

to be specified before performing the convolution. 

Stride controls how the filter convolves across the image. 

When the stride is one, the filter moves across in single step, 

when stride is 2, filter moves across using two steps. The 

higher the stride, the less is the dimensions of the output 

feature map. 

Zero padding means filling the image around the corners 

with zero when filter is around the edges of the image. Based 

on the above parameters, the dimensions of the output of the 

Convolution layer is given by equations (1) and (2): 

 

Output Feature Width =
2𝑃+ 𝑊− 𝐹

𝑆
+ 1                  (1) 

 

Output Feature Height =
2𝑃+ 𝐻− 𝐹

𝑆
+ 1                 (2) 

 
where F represents the Filter size, S represents the stride W 

represents the width and H represents the height of the image 

and P represents the number of zero padding around an image. 

The number of channels of the feature map output is the same 

as the number of filters used through the convolution 

operation. 

For example, for input image of size 9×9, W=9, H=9, Filter 

size F of 3×3, stride S equal to 1, and number of filters equal 

to 1 and padding P equal to zero, the output feature size is 

Feature Map Size = 1 + (9 -3 +2×0) /1 =7. 

Therefore, the output image will be 7×7. 

3) Nonlinear layer (activation function) 

The output of the feature Map is presented to nonlinear 

activation function ReLU. There are several types of 

nonlinear functions such as sigmoid, tanh, and ReLU. ReLU 

stands for Rectified Linear Unit is the choice for CNN 

because of its computational effectiveness and good 
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performance in terms of accuracy. ReLU’s output is given in 

equation (3). 

 

ReLU = Max (0, input)                                      (3) 
 

ReLU activation function is applied per pixel and all 

negative values in feature map are replaced by zero. 

4) Pooling layer 

Pooling layer is also known as down sampling layer, which 

takes large images as its input and shrink them down while 

retaining most important information in those images. There 

are three types of pooling that are commonly used namely 

average, L2-norm and maxpool. Maxpool is the most widely 

used nonlinear function. Maxpool layer applies a filter of size 

𝑛 × 𝑛 on image and takes the maximum value from the filter 

at each step. The stride with which filter steps across the input 

image is the same as that of filter size. Number of parameters 

(weights) can be reduced through the process of pooling, 

hence computation cost can be reduced, and overfitting can 

be avoided.  

5) Fully connected layer 

The output of the final pooling layer is provided to the fully 

connected network. A Fully Connected layer (FCL) is a 

regular artificial neural network layer, which is the last layer 

of CNN architecture. Activation function used by FCL in its 

output layer is softmax, which generates an output in range of 

0 and 1. The generated output of softmax activation function 

gives the probability of any input belonging to a particular 

class i.e. categorical probability distribution. It calculates the 

probabilities of each target and normalize it with probabilities 

of all possible target classes. The softmax function is shown 

in Equation (4), where z represents the vector of the inputs 

presented to the output layer and j= {1, 2, 3,.. K} represents 

the output class. 
 

𝜎(𝑧)𝑗 =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

                                         (4) 

 

6) CNN Training using backpropagation 

As discussed earlier, in a CNN architecture, convolutional 

and pooling layers extract features like curves and edges from 

the input image, whereas FCL acts as a classifier at the end, 

which generates the probabilities for different classes. This is 

a forward propagation step. In training step, all parameters of 

a CNN are initialized randomly and it is trained using a 

backpropagation algorithm. Backpropagation algorithm 

keeps on adjusting the parameters (weights) of FCL in CNN 

until it converges and obtain a high classification accuracy. 

This classification accuracy can then be used as fitness value 

while tuning CNN architecture using CSA. The next section 

explains how CSA is applied to determine the architecture of 

a CNN for the EMNIST dataset. This section also describes 

the inner operations of the proposed algorithm. 

 

IV. CLONAL SELECTION ALGORITHM 

The inspiration of natural biological systems is frequently 

used as a source to solve engineering problems in different 

domains [18]-[20]. CSA has enormous potential in various 

engineering applications. In recent past, researchers have 

proposed several different artificial immune models inspired 

by biological immune system to find global optima for 

various real-world applications. 

CSA is inspired by biological immune system, one of the 

most complex biological systems. Basic building blocks of 

biological immune system are known as lymphoid organs 

[21]. These lymphoid organs are made up of lymphocytes 

which are a type of white blood cells having receptors to 

identify pathogens. There are two major types of lymphocytes, 

which are B-lymphocytes and T-lymphocytes. These B and T 

lymphocytes are also known as B and T cells respectively.  

Both these cells can identify certain molecular patterns found 

on pathogens and reproduce themselves through process of 

cloning to fight these organisms. Blood cells that generate 

and maturate in bone marrow and act as immune cells within 

bone marrow are called B-cells. Whereas, the cells which are 

produced in the bone marrow but migrated to thymus and 

maturate there are called T-cells. In thymus, T-cells become 

immune-capable and learn to differentiate among invasive 

cells and cells of organism [22]. 

The human body’s immune system can identify foreign 

cells that invade the human body, which can be harmful and 

can cause infections or diseases. These foreign cells are 

known as Antigens. Immune system of human body learns 

how to cancel the effects of antigens by first understanding 

and then opposing the behavior pattern of antigen. Cells that 

are produced by human immune system to fight antigens are 

called antibodies. Affinity is a degree of recognition between 

antigen and antibody. The higher the affinity, the better the 

recognition, and vice-versa. CSA uses affinity to select the 

best antibodies. The best antibodies are cloned [23]. To 

introduce diversity mutation operation is applied on 

antibodies with an intent to improve their affinity so that they 

can destroy the antigen. The antibody with best affinity is 

picked and becomes the antigen for the next iteration. 

Antibodies are created in response to the new antigen, the best 

few are cloned and mutated, and again the best antibody is 

picked as antigen for the next iteration of the algorithm. The 

process is repeated for a fixed number of iterations or until 

the criterion for problem is achieved. The final antibody is the 

solution and provides the structure of CNN in terms of 

hyperparameters.  

 
TABLE I: HYPERPARAMETERS RANGE OF CNN 

Hyperparameter Range 

Number of Epoch 0-127 

Batch Size 0-256 

Number of convolution layers 0-8 

Number of filters at each convolution 

layer 

0-64 

 Filter size of each convolution layer 0-8 

Activation function used at each 

convolution layer 

ReLU, Tanh, linear, Sigmoid 

Maxpool layer after each convolution 

layer 

True, False 

Pool size of each maxpool layer 0-8 

Number of feed-forward hidden layers 0-8 

Number of feed-forward hidden 

neurons at each layer 

 

0-64 

Activation function used at each feed-

forward layer 

Tanh, ReLU, Sigmoid, 

Softmax  

Optimizer RMSprop, SGD, Adam, 

Adadelta  
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Before training a CNN, it is necessary to determine the 

optimal architecture of network for a given dataset. It is 

generally achieved through hyperparameter tuning. In this 

work, CSA is used to select best set of hyperparameters for 

CNN. Table I provides the ranges of hyperparameters 

associated with CNN architecture. 

 

 
Fig. 2. Flowchart describing steps of the CSA. 

 

TABLE II: MAPPING OF IMMUNE SYSTEM TERMINOLOGY TO 

CONVOLUTIONAL NEURAL NETWORK 

Immune System CNN Model 

Antigen Initial Solution (a set of hyperparameters) 

Antibody Candidate Solution 

Gene Hyperparameter 

Affinity Fitness value of each antibody to antigen 

Cloning Process of creating multiple copies of 

antibody 

Mutation Process of changing one or more Genes of 

Antibody 

Population Total number of Antibodies 

Generation Number of Iterations 

 

In order to develop a computational model for the CNN 

based on CSA, the terminologies of the immune system need 

to be mapped to the architecture of the CNN. Table II shows 

the mapping of CSA terminology to the CNN. Fig. 2 shows 

the workflow diagram of the CNN hyperparameters tuning 

for the EMNIST data classification using CSA. It consists of 

the following steps [24]. 

A. Antigen Initialization 

Antigen is s a toxin or foreign body that attacks the human 

body in the form of virus, bacteria, or fungus [25]. In the 

context of a convolutional neural network, an antigen is a 

potential solution that is represented as vector of all the 

hyperparameters that represent the architecture of CNN. The 

format of antibodies is the same as that of antigen. In each 

generation, antibodies that have higher fitness are selected. 

Here the fitness score refers to the image classification 

accuracy represented by the architecture of the CNN based on 

the hyperparameters described in the antibody or antigen. 

Firstly, a random antigen is created which represents the 

values of the hyperparameters of CNN. There are 12 genes in 

the antigen as the number of hyperparameters values, which 

need to be tuned using CSA. Each gene contains a 

hyperparameter value. Fig. 3 represents a random CNN 

architecture obtained from an antigen. The antigen is the 

ensemble of the value of hyperparameters, whose values lie 

in between the range as in Table I.  

B. Antibody Initialization 

In response to the initial antigen, several antibodies with 

the same format are created to fight the antigen. In this work, 

10 antibodies were generated in response to one antigen.  

C. Affinity Calculation 

The affinity of the generated antibodies is measured 

according to the objective function of the problem that is 

being optimized. The objective function used in this work for 

the convolutional neural network is the classification 

accuracy and that is represented as ratio of correct predictions 

made to the total number of samples as described in equation 

5. In equation 5,  n  represents the number of examples 

correctly classfied and 𝑁  represents total number of 

examples in training set. The higher the classification 

accuracy, higher the fitness of the antibody. In other words, 

the CSA attempts to find a set of hyperparameters that 

maximizes the classificcation accuracy. 

 

Classification Accuracy =
𝑛

𝑁
                                (5) 

D. Selection of Antibodies 

Four antibodies that have the highest fitness among the 10 

antibodies are selected. 

E. Clone the Antibodies 

In the cloning process, multiple copies of the antibodies are 

created. the number of clones is fixed to 10 and is the same 

for all the selected antibodies. Hence, for every iteration 10 

clones are generated for each of the 4 selected antibodies. 

F. Mutation 

In the mutation process,  antibodies are randomly altered 

to introduce diversity in the population. Mutation operation 

enables to achieve global optimization and hence helps to 

escape from local optimization. In immune system based 
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algorithms, mutation is performed on antibodies with an 

intent to enhance their ability to attack the foreign antigen 

better. There are two different types of mutation methods 

which are comonly used. First method is bit mutation, which 

replaces genes in antibody through fliping random bits in a 

binay array. Whereas second method is more complex, as it 

replaces genes in antibody with random values drawn from a 

Gaussian or Uniform distribution. In this work, the latter type 

is implemented. 

 

G. Stopping Criteria  

The algorithm stops running when the termination 

condition defined by the user is reached. In this work, 

termination condition is based on the classification accuracy 

of the algorithm. The algorithm is terminated if the desired 

classification accuracy is achieved. The hyperparameters 

evolved by the CSA algorithm determine the optimal 

architecture of the CNN.  

 

 
Fig. 3: A sample antigen of CNN. 

 

V. EXPERIMENTAL SETUP AND RESULTS 

The CSA based CNN architecture tuner was implemented 

in Python 3.7 using a high-level neural networks API called  

Keras running on top of TensorFlow. The proposed 

method was tested on the EMNIST Digits dataset with 240k 

images as its training set and 40k images as its testing set. 

The experiment was carried out in a Dell desktop 

workstation powered by a processor-Intel(R) Core(TM) i7-

7800X CPU @ 3.50GHz and 32 GB DDR4 RAM with Nvidia 

Quadro P4000 GPU with 8 GB of GDDR5 memory. The 

approximate processing time for CSA to generate a 

successful CNN architecture was 3.63 hours. 

 

 
Fig. 4. Convergence curve for the hyperparameters tuning of CNN using 

clonal search algorithm. 

 

The task of CSA tuner is to generate a CNN architecture, 

which gives the best classification accuracy for a given 

dataset. Fig. 4 shows the convergence curve of CSA 

optimization. It can be observed that accuracy is increasing 

with every iteration. The CNN architecture optimized 

through CSA gives a classification accuracy of 99.49%. 

Table III provides the final tuned hyperparameters attained 

using CSA. 

 
TABLE III: FINAL HYPERPARAMETERS OF THE CNN ARCHITECTURE 

SELECTED BY CSA 

Hyperparameter Range 

Number of Epoch 26  

Batch Size 161 

Number of convolution layers 6 

Number of filters at each convolution layer 32 

The filter size of each convolution layer 7×7 

Activation functions used at each convolution layer Relu 

Maxpool layer after each convolution layer True 

Pool size of each maxpool layer 8×8 

Number of feed-forward hidden layers 2 

Number of feed-forward hidden neurons at each layer 6 

Activation function used at each feed-forward layer Softmax 

Optimizer Adam 

 

VI. CONCLUSION 

This paper developed a Clonal Selection Algorithm for 

evolving the optimal set of hyperparameters for CNN 

architecture that will best classify the images from EMNIST-

Digits dataset. The accuracy achieved by the proposed 

method is 99.49%. Our proposed method is also adaptable to 

every uniform dataset. It provides an alternative approach to 

manually determining the best architecture of CNN by trial 

and error and that can be very time consuming and may not 

be optimal. 
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