
  

  

Abstract—The Convolutional Neural Network (CNN) is a 

class of deep artificial neural network and has recently gained 

special attention after demonstrating breakthrough accuracies 

in various classification tasks. CNNs have shown remarkable 

performance in machine vision tasks such as image 

classification, natural language processing and speech 

recognition. There is evidence that the depth of a CNN plays an 

important role in performance of CNNs. However, we 

investigated the feasibility of improving the performance of 

shallow networks via fusion of the features computed by a 

homogenous and heterogeneous set of pre-trained networks. 

We also explored a recently developed framework called the 

Generative Adversarial Network (GAN), in which we 

simultaneously train two models, a Generator and a 

Discriminator. The Generator attempts to produce data that 

mirrors the probability distribution of the “true” dataset. The 

Discriminator is trained to distinguish between the true dataset 

and the counterfeit data produced by the Generator. Our work 

involves the application of a GAN for generation and fine 

tuning of synthetic data to be used to train a deep CNN. 

Specifically, we investigate the use of a synthetic data generator 

along with a GAN to create an unlimited quantity of labeled 

training data, without the need for hand-labeling images. We 

apply this technique to the detection and localization of various 

vehicles. We attempt to distinguish between military trucks and 

other types of vehicles. A successful outcome could lead to 

improvements in addressing security threats rapidly, and 

cost-effectively. We also investigate an alternative method for 

generating synthetic data, the Variational Auto-Encoder (VAE). 

Variational auto-encoders are trained to encode then decode 

input vectors and can also be useful for generating new training 

data. VAEs are capable of dimensionality reduction and 

synthesizing data. Finally, we evaluate our multiplicative fusion 

method compared to the fusion methods that we investigated 

previously. 

 
Index Terms—DCNN, GAN, VAE, synthetic data, data 

augmentation, machine learning. 

  

I. INTRODUCTION 

Recent advancements in the capabilities of machine 

learning have led to its widespread adoption across areas such 

as predictive analysis, natural language processing, image 

classification, and object detection [1]. With the development 

of substantially more powerful graphics processing units, 

neural networks can be trained faster to solve increasingly 

complex problems [2]. Despite the increased adoption of 

machine learning applications, practical applications of 
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algorithms are still rudimentary. Neural networks currently 

require exceptionally large sets of pre-labeled data, as well as 

exponentially large amounts of computational power to 

achieve the performance required of the growing industry [3]. 

Generally, these networks are limited in their scope to 

individual tasks, making them less versatile than a human 

learner. In order to compensate for the scarcity of viable data 

sets, techniques such as resizing, rotating or flipping images, 

adjusting the lighting and contrast, the addition of noise, and 

perspective transformations are employed to supplement 

existing data sets [4]-[6]. By accounting for a wider variation 

in the test set, these methods can improve the accuracy and 

versatility of DCNNs [7]. However, despite improving the 

classification accuracy in training and testing environments, 

these methods are limited in their practical applications. Deep 

convolutional neural networks are discriminative networks, 

which attempt to match features to labels. When given a data 

sample, the network categorizes the input based on the 

features of the data sample.  

Another technique used to supplement existing data sets is 

the generation of synthetic data to train machine learning 

models [8]. Generative machine learning models, as opposed 

to discriminative, essentially do the opposite. When given a 

label, generative algorithms attempt to produce a sample with 

the features that are associated with that label. By applying 

these algorithms to a comprehensive simulation of real-world 

conditions, synthetic data can be systematically generated. 

This training data is labeled automatically instead of the 

arduous task of manually labeling individual images [9]-[12]. 

As with augmentation techniques, synthetic data can perform 

well while training and testing; however, due to oversights in 

the creation of the DCNN and real-world outliers, they can 

encounter problems in practical applications [13]-[15]. One 

solution to this issue is the use of another type of neural 

network which uses a generative architecture to train a 

learning model that can generate new samples for a given 

label [16], [17]. Two prevalent types of generative networks 

are Generative Adversarial Networks [18] (GANs) and 

Variational Autoencoders (VAEs). GANs employ the use of 

two neural networks, a generator which attempts to create 

synthetic realistic samples and a discriminator which 

attempts to differentiate between real and synthetic data. The 

generator network receives random numbers which are 

converted into an image. These generated images are then 

supplied to the discriminator network along with real images 

from the data set. The discriminator then returns a probability 

for each image of the likelihood of being real.   By training 

these two networks against each other in tandem, each 

network helps to improve the other, with the generator being 

able to create realistic samples based on features gathered 

from real data, while the discriminator adapts to identifying 

progressively more realistic samples [19]-[22]. Upon 
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completion of the training of the neural networks, the 

generator network can produce new synthetic samples that 

can be used to augment a smaller data set. By implementing a 

GAN, a data set that is too sparse to properly train a DCNN 

can be augmented with any number of pre-labeled synthetic 

images to accurately train it. VAEs, another method of 

generating synthetic images, are comprised of a machine 

learning model that receives and decompresses encoded data. 

When training a VAE, the raw signal features of input images 

are compressed and reduced to a lower dimensional latent 

space. Once compressed, the latent space is then sampled and 

decompressed into new samples [23]-[28]. By utilizing these 

generative architectures, synthetic data can be produced 

based on real-world data in order to supplement data sets. 

This paper is organized as follows: Section II presents an 

overview of the concepts and technical background for 

synthetic data, Generative Adversarial Networks, Variational 

Autoencoders, and the image datasets. Section III provides 

the empirical framework for our analysis and underlying 

methodology which includes the modeling and training of 

both a GAN and VAE to train a DCNN. In Section IV, our 

results are displayed and discussed, including the accuracy of 

both methods. Each method is analyzed and compared 

against the other to determine the optimal technique. Section 

V focuses on the significance of our techniques for the 

creation of image sets as well as applications and areas of 

future research. 

 

II. TECHNICAL BACKGROUND 

A. Deep Convolutional Neural Networks 

Deep Convolutional Neural Networks (DCNNs) are 

learning models which are able to learn the aspects of their 

input in order to classify them into labels [1], [3]. They take 

advantage of a feed-forward architecture in which several 

layers are stacked onto each other, with the output of one 

layer being connected to the input of the next. The 

convolutional layer consists of filters which convolve over 

the entire input, computing an activation map which contains 

the output of each convolution. As the network progresses, 

the filters that activate when a feature is detected will be 

learned. Each convolutional layer contains a set of filters, 

each of which produce their own activation map which are 

stacked. The pooling layers are responsible for 

downsampling the size of the representation in order to 

reduce the number of parameters and prevent overfitting. The 

pooling layer also is used to map the location of features in an 

image relative to other features [29]. The pooling layer is 

typically used after a convolutional layer.  The fully 

connected layer of a network is used for the actual 

classification in the network, the input of which is all the 

activation mappings of the previous layer which contain the 

features of the input. The network is first initialized with all 

of its weights and filters as random values. The network then 

takes an image dataset and performs a forward propagation 

step in which the probabilities for each class are computed. A 

summation of the error at the output layer over all the classes 

is then calculated. A backpropagation step is utilized with 

respect to the determined weights of the network in order to 

update the filter values and weights using gradient descent. 

The filter matrix and connection weights are adjusted, with 

the weights being updated in proportion to their error. This 

process optimizes the parameters of the network in order to 

classify images from the training set. In the 2012 ILSVRC, a 

DCNN known as AlexNet was submitted, which won the 

competition with an error of only 15.3%, which was over 

10.8% lower than the runner up. AlexNet is utilized in this 

study for classification with the layers shown in Fig. 1a [30]. 

Another network architecture utilized are VGG16 and 

VGG19. Both were designed by the Visual Geometry Group 

and use a deeper layer architecture than AlexNet. The main 

difference between the two are the number of hidden layers, 

16 and 19 respectively, shown in Fig. 1b. By adding more 

layers, the networks can extract more features from the input 

dataset at the cost of increased computational intensity and 

training time. Generally, these networks can provide higher 

classification accuracy than AlexNet. 

 

 
Fig. 1a. Topology of AlexNet. 

 

 
Fig. 1b. Topology of VGG19. 
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B. Data Augmentation 

 

 
 

 
Fig. 2. Pickup truck images that have been sharpened, rotated, recolored, and 

blurred. 
 

Many datasets do not contain the necessary amount nor 

variety of images to effectively train a model. One possible 

solution to this problem is through data augmentation 

techniques in which transformations are performed on the 

labeled images, such as rotating, translating, or flipping 

samples. Images can also be scaled inward or outward. In 

scaling an image outward, the resulting image will be larger 

than the original and is subsequently sampled with the size 

being equal to the original image. The original image can also 

be subsampled and resized to the original image size, 

allowing features to be emphasized.  Translating the image 

vertically or horizontally ensures that the neural network is 

not trained to only look for objects in a single area of the 

image. Other adjustments such as contrast color shifting, and 

brightness can also be done, with an overall process shown in 

Algorithm 1. In doing this, the dataset can be artificially 

enlarged to better train the model. A well-designed CNN 

model is translationally invariant to an image so that objects 

can be recognized from different positions, angles, and 

lightings as shown in Fig. 2. Augmenting the dataset by 

performing transformations on the images allows the model 

to be trained with varying orientations that weren’t originally 

available [31]. Real-world scenarios will often involve 

images in a dataset being captured under limited conditions 

that don’t properly include objects of interest at all possible 

perspectives. This is accounted for by training the neural 

network with synthetically modified data. This modified data 

helps prevent the neural network from being over-fitted and 

from learning high frequency features that are not necessarily 

useful. High frequency features can also be distorted by 

applying Gaussian noise throughout the image. Because this 

can also distort low frequency features which might be of use, 

finding a proper balance of noise to apply to enhance the 

learning capabilities of the network is necessary. Adding salt 

and pepper noise is similar to the effect produced by 

Gaussian noise but to a lesser extent of distortion. Since real 

world data can exist in a variety of conditions that cannot be 

properly accounted for through simple transformations, more 

advanced augmentation techniques can be applied in order to 

simulate a multitude of conditions. 

C. Synthetic Data 

One of the most cumbersome aspects of gathering a 

suitable dataset is the manual capturing and labeling of data. 

Through the use of synthetic data, this issue can be largely 

mitigated by creating data that is automatically labeled [11]. 

This allows models to be trained to a high accuracy without 

the need to manually capture and label data. Often when 

using real-world datasets, it’s impossible to capture them 

under ideal circumstances. In the case of outliers, which 

involve physical sensors being used in uncommon 

environments or capturing chance events, artificial scenarios 

can be designed in order to run simulations. Despite the 

benefits of using synthetic data, it still must be used in 

conjunction with real-world data for the validation purposes 

of ensuring the data accurately represents desired real-world 

scenarios. By supplementing real-world data with synthetic 

data, a generalized model can be created and calibrated with a 

smaller set of real-world data 

D. Generative Adversarial Networks 

 
 

 
Fig. 3. GAN generated vehicles. 

 

Introduced in 2014 by Goodfellow, et al. [18], Generative 

Adversarial Networks utilize generative models, which, 

given a label, attempt to create new samples.  Normally 

discriminative network models attempt to map a high 

dimensional input to a class. Generative models essentially 

perform the opposite where given a label they attempt to 

predict features. Whereas discriminative models map the 

relations between labels and features, generative models are 

concerned with the probability of a feature when provided a 

class and how these features are determined [32]. GANs are 

comprised of two neural networks working in tandem, a 
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generator and discriminator, summarized in Algorithm 2. The 

generator, maps a vector of pseudo-random input data to an 

image, shown in Fig. 3. The discriminator on the other hand 

is a binomial classifier which attempts to discriminate 

between real and artificially created images [33], [34].  

The images produced by the generator are passed to the 

discriminator along with real images from the dataset. The 

discriminator then returns a probability of whether each 

image is real or fake.  In doing this, a feedback loop is created 

in which the discriminator is use d to improve the capabilities 

of the generator to produce images closer to the naturally 

occurring images, and the discriminator is trained to 

differentiate between increasingly realistic synthetic images. 

 

 

 
Fig. 4. Architecture of the auto encoder. 

 

 
Fig. 5. VAE generated vehicle images, sampled from the latent space. 

 

E. Variational Autoencoders 

Autoencoders encode input data by reducing the 

dimensionality of images in order to lessen the effects of any 

noise present. Autoencoders are implemented using two 

neural networks, an encoder and a decoder, outlined in 

Algorithm 3. Autoencoders are specific to the data to which 

they are trained, as they are trained to attempt to copy input to 

its output. Due to the compression involved, the output of 

autoencoders will contain loss and will be degraded 

compared to its input [35]. The components of an 

autoencoder are an encoding function, decoding function, 

and a loss function between the information loss of the 

compressed representation and the decompressed 

representation, shown in Fig. 4. Using Stochastic Gradient 

Descent, the encoding and input into two parameters in a 

latent space. From the latent normal distribution, similar 

points that are meant to represent the data are randomly 

sampled. The decoder then maps the points in latent space to 

reconstruct the input data, shown from the synthetic data 

generated in Fig. 5. Two loss functions are used in order to 

train the parameters of the model. A reconstruction loss 

which are used to make the decoded sample match the initial 

input as well as a KL divergence between the prior 

distribution and the learned latent distribution, which 

normalizes the data [28].  

 

III. METHODOLOGY 

The general process followed is outlined in Fig. 6. 

Vehicles of several categories that would be suitable for 

training our models were handpicked to be added to our 

original image dataset. Namely, selecting images that were 

taken from similar perspectives, in order to assure unique 

features would be properly learned. After the images were 

collected, they were organized into their respective categories 

in order to be used to train a General Adversarial Network 

and Variational Autoencoder. First, the image set was resized 

to 227 by 227 in order to maintain consistency in resolutions 

and the aspect ratio needed to train the model. The resized 

images are then split based on their labels and used to train 

the autoencoder, using root mean-squared error as the loss 

function to validate the reconstructed images with the 

original set. The images are used as input for the encoder 

network, in which they are deconstructed into a compressed 

representation. The encoded representations of the images are 

then passed through the decoder network, in which the latent 

space is sampled and reconstructed back to their original 

sizes. After being fully trained, the latent space of the model 

can be randomly sampled in order to create an arbitrary 

number of images which are used to augment the original 

dataset. The Generative Adversarial Network used in this 

study is NVIDIA’s StyleGAN, which is a TensorFlow based 

GAN that is able to separate and learn high-level features of 

images. The images are first resized to a power of two, 256 by 

256, the closest resolution to the resolutions used by VGG 

and AlexNet. Next, data augmentation techniques such as 

rotation or recolor mapping are performed on each of the 

images in the dataset in order to increase the size of the 

training set. The images are then formatted to TFRecords, 

which serializes them into a binary format. Models are then 

trained for each type of vehicle, with the first model being 

trained initially using completely random noise. Subsequent 

models are trained using snapshots of previous models, 

which improves the learning rate by utilizing transfer 

learning.  After both the VAE and GAN are trained, they are 

used to create three datasets in addition to the original, one 

with GAN generated images, one with images sampled from 

the VAE, and one with both. Each of the datasets are resized 

to be used as input for the three DCNNs, AlexNet, VGG16, 

and VGG19. The image sets are split into 60% training data 

and 40% test data to be used for validation. Feature vectors of 

each network are extracted from their respective FC7 layers. 

The extracted feature vectors are then heterogeneously fused 

in order to create a fused feature vector. The fused vector then 

has dimensionality reduction techniques such as PCA and 

t-SNE to create a representation that retains the most 
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significant features. The reduced feature vector is then 

validated against the test set, along with the individual 

networks’ features using a Support Vector Machine. Each 

SVMs’ classification accuracy is then determined for the four 

datasets.  

 

 
 

 
Fig. 6. Methodology. 

 

IV. RESULTS 

Trials were performed on two overarching datasets, one 

containing the three categories for which synthetic images 

were generated and another containing ten categories, 

including categories that synthetic data was not generated for, 

in order to see the effect of the synthetic data on untouched 

labels. The accuracy of the three individual networks are then 

compared to each of the four fusion methods, sum, min, max, 

and average. It should be noted that each of the test sets only 

have the original images to validate the classification 

accuracy of only real images and not synthetic. None of the 

original images in the test set were in the training set, 

ensuring that none of the networks were trained using images 

that would be used for validation. The results for each of the 

trials performed on the smaller dataset are shown in Tables 

1-4. Overall, performing heterogeneous DCNN fusion had 

more consistent high accuracy results for both the augmented 

and original datasets. The dataset that was augmented with 

only the VAE images appear to have better performance than 

the non-augmented dataset using heterogeneous DCNN 

fusion. From the data, on average the datasets containing 

GAN augmented images appear to have slightly worse 

performance overall, with the combined and GAN 

augmented only datasets having comparable performances, 

shown in Fig. 7. In regard to the non-augmented dataset, all 

methods of heterogeneously fusing the feature vectors of the 

networks outperformed all of the individual networks on their 

own. The best performing on average for both the individual 

neural networks as well as fusion methods were direct 

concatenation and the average of the features. The worst 

performing fusion method was finding the minimum, 

however even this method on average had a higher 

classification accuracy than the best performing individual 

network.  

 
TABLE I: ORIGINAL IMAGES, NO SYNTHETIC 

 AlexNet  VGG16  VGG19  Sum Max Min Avg 

1 0.73333 0.91667 0.8416 0.9666 0.9583 0.9083 0.9666 

2 0.9 0.91667 0.875 0.9833 0.95 0.925 0.9833 

3 0.88333 0.94167 0.9 0.9916 0.975 0.975 0.9916 

4 0.81667 0.94167 0.8416 .99 0.9416 0.8666 .99 

5 0.76667 0.94167 0.8416 0.9833 0.95 0.9 0.9833 

6 0.68333 0.94167 0.8166 0.9916 0.9333 0.8083 0.9916 

7 0.75833 0.86667 0.75 0.9666 0.9416 0.95 0.9666 

 
TABLE II: VAE AUGMENTED DATASET 

 AlexNet  VGG16  VGG19  Sum Max Min Avg 

1 0.78889 0.95278 0.93889 1 0.99722 0.88333 1 

2 0.86667 0.93333 0.86944 1 0.99722 0.98056 1 

3 0.86111 0.94444 0.89167 1 0.98056 0.94444 1 

4 0.87222 0.96111 0.9 1 0.99167 0.93889 1 

5 0.875 0.96111 0.89444 1 1 0.96944 1 

6 0.88333 0.96111 0.89444 1 0.98889 0.95833 1 

7 0.80278 0.94167 0.91944 1 0.99444 0.91389 1 

 

Training the networks with the VAE augmented dataset 

appears to have produced the best results, with both the 

individual networks and heterogeneous DCNN fusion 

methods having higher classification accuracies than the 

non-augmented dataset. As with the non-augmented dataset, 

sum and average had the best performance. Due to the 

computational intensity of both the feature extraction and 

training of the VAE, the VAE augmented dataset was the 

smallest of the augmented datasets. Because of the size of the 

dataset, the classification accuracy is likely abnormally high. 

By increasing the number of images in both the training and 

testing sets, a more accurate performance can be measured. 

The GAN augmented dataset had lower classification 

accuracy than the other sets, however it should be noted that 
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the fused features still had accuracies that were comparable to 

the individual AlexNet of the un-augmented dataset. The 

cause of the lower accuracy is likely due to overfitting of the 

networks during their training, causing it to be trained too 

closely to the training set, and thus have lower accuracy when 

presented with previously unseen images.  

 
TABLE III: GAN AUGMENTED DATASET 

 
 

TABLE IV: COMBINED DATASET  
AlexNet  VGG1

6  

VGG1

9  

Sum Max Min Avg 

1 0.7709 0.7576 0.7223 0.8203 0.8171 0.7545 0.8203 

2 0.7501 0.768 0.7516 0.8183 0.8183 0.8031 0.8183 

3 0.7522 0.7493 0.7254 0.8186 0.8146 0.8082 0.8186 

4 0.7182 0.721 0.6912 0.7441 0.816 0.6464 0.7441 

5 0.7432 0.7513 0.7602 0.8169 0.8166 0.7726 0.8169 

6 0.7815 0.7504 0.7110 0.8189 0.8194 0.7867 0.8189 

7 0.7547 0.703 0.7053 0.77 0.7924 0.7455 0.77 

 

The combined dataset also had worse performance than the 

VAE augmented dataset, again likely due to overfitting 

occurring during the training step. The combined dataset 

appears to have slightly higher accuracy than the GAN only 

augmented dataset, meaning that despite overfitting of the 

networks, adding the VAE images resulted in slightly higher 

performance. Averaging each of the trials found that the VAE 

augmented dataset had the highest performance, followed by 

the original non-augmented dataset, shown in Fig. 7. The 

combined and GAN only datasets had comparable results, 

however the combined dataset appears to have slightly better 

performance.  

 
TABLE V: ORIGINAL IMAGES, NO SYNTHETIC 

 AlexNet  VGG16  VGG19  Sum Max Min Avg 

1 0.7106 0.85 0.8455 0.9924 0.9636 0.903 0.9924 

2 0.6833 0.85909 0.8424 0.9894 0.9818 0.9121 0.9894 

3 0.6333 0.86667 0.8712 0.9894 0.9652 0.9364 0.9894 

4 0.6530 0.83182 0.8394 0.9727 0.9439 0.8879 0.9727 

5 0.6561 0.8697 0.8561 0.9955 0.9652 0.8849 0.9955 

6 0.6364 0.85152 0.8394 0.9924 0.9303 0.8955 0.9924 

7 0.6546 0.83485 0.8636 0.9909 0.9697 0.8803 0.9909 

 

In order to see the effect synthetic data would have on the 

classification accuracy of categories without any synthetic 

data in them, trials were performed on a dataset containing 

the three augmented categories as well as seven categories 

that have not had any data augmentation performed on them. 

Seven trials were performed on each of the datasets under the 

same conditions as the smaller set, with all test images 

removed from the training set in order to ensure none of the 

images are seen during testing. Overall, as with the smaller 

set, the VAE augmented dataset performed best on average, 

followed by the non-augmented set, however the difference is 

less than that of the smaller dataset, indicating the methods 

were about the same. The combined and GAN augmented 

datasets however, performed worse than with the smaller 

dataset, shown in Table V-Table VIII. Additionally, even 

with heterogeneous DCNN fusion, the datasets performed on 

average worse than the individual networks, shown in Fig. 8. 

A possible explanation for this is due to the model being 

verfitted, as the datasets with the GAN images contained 

more images, which would cause the model to learn the 

details of the training set too closely and as a result fails to 

accurately classify previously unseen images. As with the 

smaller dataset, performing any method of heterogeneous 

DCNN fusion results in a higher accuracy than any of the 

individual networks alone. Additionally, the classification 

accuracy of the individual networks was slightly worse with 

the dataset compared to the individual networks of the 

smaller dataset.  

 

 
Fig. 7. Average classification accuracy. 

 

 
Fig 8. Average classification accuracy. 

 

The VAE augmented dataset was found to have the same if  

 not slightly better performance than the non-augmented 

dataset. Additionally, although the accuracy of both sets was 

similar for the fused features, the VAE augmented dataset 

had higher classification accuracy using the individual 

networks, especially in the case of AlexNet. Augmenting the 

dataset with synthetically generated VAE images appears to 

have a beneficial effect even when classifying images that did 

not have any synthetic data generated.   

As with the smaller dataset, the GAN augmented dataset 

had worse performance than the VAE dataset, likely due to 

overfitting of the model. However, the sum, average, and 

max fusion methods appear to have had better performance 

than the individual AlexNet when compared to the 

non-augmented dataset.  

The combined dataset was found to have had better 

performance than the GAN only dataset, indicating that 
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despite the model being overfit, the inclusion of VAE images 

had a positive effect regarding classification.  

 
TABLE VI: VAE AUGMENTED DATASET 

 AlexNet  VGG16  VGG19  Sum Max Min Avg 

1 0.7691 0.812 0.8452 0.9893 0.9631 0.9167 0.9893 

2 0.7191 0.8536 0.8571 0.9952 0.9536 0.8452 0.9952 

3 0.7321 0.8417 0.8476 0.9952 0.962 0.9357 0.9952 

4 0.6905 0.8643 0.8488 0.9905 0.9583 0.8274 0.9905 

5 0.737 0.8964 0.8512 0.9941 0.9607 0.8929 0.9941 

6 0.6976 0.8655 0.8607 0.9917 0.9714 0.8691 0.9917 

7 0.7298 0.8441 0.8452 0.9905 0.9643 0.9107 0.9905 

  
TABLE VII: GAN AUGMENTED DATASET 

 AlexNet  VGG 

16  

VGG 

19  

Sum Max Min Avg 

1 0.7247 0.6531 0.5809 0.8278 0.7901 0.773 0.8278 

2 0.6189 0.6074 0.5383 0.7236 0.7545 0.7009 0.7236 

3 0.7176 0.6446 0.6017 0.8267 0.8207 0.8095 0.8267 

4 0.6903 0.6296 0.5249 0.7447 0.8144 0.6318 0.7447 

5 0.7307 0.6115 0.613 0.8261 0.8185 0.81001 0.8261 

6 0.5492 0.5599 0.5607 0.7449 0.7717 0.6985 0.7449 

7 0.6525 0.5705 0.5394 0.7362 0.7868 0.706 0.7362 

 
TABLE VIII: COMBINED DATASET  

AlexNet  VGG16  VGG19  Sum Max Min Avg 

1 0.7311 0.6305 0.6076 0.7843 0.8288 0.6923 0.7843 

2 0.6701 0.6691 0.6144 0.7718 0.8278 0.7236 0.7718 

3 0.6949 0.6199 0.6123 0.771 0.7911 0.7199 0.771 

4 0.6985 0.6079 0.6191 0.809 0.8299 0.7348 0.8088 

5 0.7374 0.6488 0.6186 0.8056 0.8158 0.746 0.8056 

6 0.6694 0.6509 0.6459 0.83 0.8082 0.758 0.8296 

7 0.7038 0.6860 0.6571 0.7978 0.8121 0.7512 0.7978 

 

V. CONCLUSIONS AND FUTURE WORK 

Based on the results, supplementing existing datasets with 

synthetically created images shows promise in increasing the 

classification accuracy of neural networks and support vector 

machines. The synthetic images created by the variational 

autoencoder appear to have had the best performance in the 

case of the smaller dataset, outperforming the original image 

set across all classification methods. In the case of the larger 

dataset, which only contained synthetic images for three 

categories, the VAE augmented dataset in most cases 

performed on par or better than the non-augmented set, 

especially in the case of the individual AlexNet. A possible 

explanation for the better performance is that the VAE was 

able to map the latent features of the images and could 

reconstruct a compressed approximation which was 

comprised of these features. By fine tuning the parameters of 

the VAE, it is reasonably possible that the classification 

accuracy can be further increased. A well-tuned VAE which 

can better compress the features into a lower dimensional 

space would create images which are less influenced by 

background noises or other factors which that would 

otherwise interfere with the training. Although the GAN and 

combined datasets usually had worse performance on 

average than the non-augmented dataset, it doesn’t 

necessarily mean that their use is impractical. A likely cause 

of the lowered performance is overfitting of the network. 

Because the GAN generated output which is meant to 

replicate its input, coupled with the fact that the number of 

GAN generated images outnumbered the number of VAE 

images in the dataset, meant that the network was trained too 

closely to its input and was unable to classify unseen images. 

Additionally, although the combined set on average had 

worse performance than the non-augmented set, there were 

cases in which performing heterogeneous fusion resulted in 

better performance accuracy of the GAN and combined sets 

than the individual networks.  

Our future work in this area will include further fine tuning 

both the parameters of the GAN and the VAE in order to 

create representations of images which contain better 

approximations of the features of their input, as well as in 

order to create entirely new images that would not cause the 

models to become overfit. 
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