
 

 

 Abstract—Over the last few years, UAV applications have 

grown immensely from delivery services to military use. Major 

goal of UAV applications is to be able to operate and 

implement various tasks without any human aid. To best of our 

knowledge, in the existing works for autonomous navigation 

for UAV’s, ideal environments (e.g., 2D) are considered instead 

of realistic or special hardware are used (e.g., nine range 

sensors) to navigate through an ideal environment. Therefore, 

in this thesis, we aim to overcome the limitations of the existing 

works by proposing a model for navigating a drone in an 

unknown environment without any human help or aid. The 

goal of this research is to navigate from location A to location B 

in unknown terrain without having any prior knowledge about 

the terrain using default drone sensors only. We present a 

model which is compatible with almost every off-the-shelf 

drone available in the market. Our methodology utilizes only 

standard drone sensors which are attached to almost every 

drone. These include a camera, GPS, IMU, magnetometer, and 

barometer. Our methodology uses 3D, POMDP, and 

continuous environment. It also takes into account 

environmental factors such as winds and rain. Our main 

contributions are: 1) We are using realistic environment model 

including factors like rain and wind. 2) We are only using 

onboard computing resources to run our model instead of some 

external server. 3) We were able to fly the achieve complete 

autonomous flight using only standard drone sensors. 

 

Index Terms—Unmanned arial vehicle, global positioning 

system, inertial measurement unit, partially observable 

Makarovian decision process. 

 

I. INTRODUCTION 

With the rapid advancements in the technology, the fields 

of robotics and mechatronics have drastically upgraded in 

terms of their role in the modern business and different 

industries. UAV also known as a drone is an aircraft that 

flies without any human pilot and are controlled remotely. 

For a quadcopter to perform in an indoor environment, it 

requires to operate with agility and efficient feedback 

without losing control. Stabilization is needed for an outdoor 

environment for a drone to operate against external forces. 

In short, for both situations, a stable flight is immensely 

important for a drone to function effectively. This can help a 

quadcopter to survive in extreme external factors e.g., heavy 

rain or wind as it will be able to prevent crashing. In order to 

use these applications for navigation and stabilization, 

UAVs and drones need to be supplied with a series of 

sensors e.g., depth cameras, accelerometer, gyroscope, 

magnetometer, etc. 
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Fig. 1. UAV applications (Market Growth). 

 

Apart from this, applications of drones can be observed in 

many fields such as accident reporting, infrastructure 

inspection, crop monitoring, etc. Fig. 1 is from a survey 

which presents the growth rate of different UAV 

applications, it can be seen that aerial surveying and 

mapping is growing at a higher rate (Murfin) [1]. 

Quadcopters are a more specific form of an aerial vehicle 

known as multicopter having an arbitrary number of rotors. 

Quadcopters are driven by four rotors. In the 1920s, when 

quadcopters were first introduced, they were unable to gain 

popularity due to challenges like having comparatively large 

size and weight, mechanical complexity, control 

management, and etc. [1], [2]. 

Data in large volumes are often spawned by drones and 

UAVs. These UAV applications will only be useful for the 

consumer if this data is managed efficiently and effectively 

without requiring extra efforts. Therefore, AI (Artificial 

Intelligence) seems to cover these challenges as nowadays 

every other company or industry is using AI techniques, 

machine learning or deep learning to process immense 

amount of data. There are many AI based tasks that deal 

with image recognition, UAVs are also required to perceive 

and understand the environment, detect and avoid collisions 

in order to achieve a smooth flight and motion planning is 

also another task which requires AI and machine learning to 

play an active part as shown in Fig. 2.  

Autonomous navigation in unknown terrain is an 

exponentially hard task due to unavailability of pre-

constructed maps or path planning. In this thesis, a deep RL 

based framework is developed for UAVs navigation in 

unknown large-scale complex environments. 

Specifically, first, an efficient policy based DQN is 

designed, which comprises of convolutional and fully 

connected layers to extract important features from images 

taken through depth vision camera. These features are then 
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combined with inputs taken directly from other sensors, e.g., 

IMU or magnetometer, etc. and are passed to a fully 

connected layer. This is followed by a policy-based Q-

learning approach to apprehend UAV navigation.  

 

 
Fig. 2. Role of AI in UAVs. 

 

II. RELATED WORK 

Relatively much work has been going on with respect to 

automatic UAV navigation with machine learning 

algorithms but less or no work has been done on unknown 

path travel by UAV. Su Yeon Choi and Dowan Cha in their 

paper “Unmanned aerial vehicles using machine learning for 

autonomous flight; state-of-the-art” has divided their 

research areas into three categories parameter tuning, 

adaptive control and real-time path planning [3]. 

Smolyanskiy, et al. "Toward low-flying autonomous 

MAV trail navigation using DNN for environmental 

awareness" proposes a micro air vehicle system to follow 

trails in an unstructured outdoor environment. Drawbacks 

are NVidia custom hardware chips (TX1+J120) are used and 

not fully autonomous (Human intervention required) [4]. 

For non-colliding paths for multi-agent UAV’s cooperative 

planners have been developed. It has inaccuracies. 

Geramifard et al. studies on the ICCA for combining 

cooperative planners and RL techniques as a framework [5]-

[9]. Zhang et al. [10] propose a CGLA, which is made for 

path planning on multiple UAV cooperation [11]. In CGLA, 

to balance between the economy of paths and collision 

avoidance, the parameters are trained. The individual weight 

matrix and cost matrix are proposed for an efficient path 

planning of both single and multiple UAVs [3]. Based on 

the geometric distance and risk information shared among 

UAVs, the individual weight matrix is calculated and 

adaptively updated. The optimal path from a starting point 

to a target point is calculated. The simulation results validate 

the effectiveness and feasibility of CGLA for safe 

navigation of multiple UAVs. However, it is required to 

utilize the coarse and fine grid to design a fast path planning 

algorithm in the proposed framework and apply the 

algorithm to an actual UAV [3]. 

There are results to avoid a collision for UAV using laser 

range finders or Kinect cameras. Vandapel et al. [12] avoid 

a collision in 3D space using lidars, and Bachrach et al [13], 

and Bry et al. [14] depict obstacle avoidance in an unknown 

room using scanning lidars for SLAM [12-[15]. Bachrach et 

al. use Microsoft Kinetic camera in an unknown room [15]. 

However, these research works are required to improve on 

problems of power supply, payload, UAVs cost, and the 

reliability of localization. As a result, Achtelik et al. [16], 

Wendel et al. [17], Fraundorfer et al. [18] created maps by a 

single camera, or stereo cameras [15], [16], [18]. Achtelik et 

al. [19] created sparse maps of the environment using a 

single, cheap camera [15]. Wendel et al. [9] created dense 

maps of the environment using a camera [8]. Fraundorfer et 

al. [18] demonstrated accurate depth estimation and 

localization using stereo cameras. However, even though the 

algorithms are reasonably fast to avoid a collision, they were 

still too computationally expensive for UAVs flight. 

Recently, many researchers have studied path planning and 

formation light techniques [20]-[23]. 

The environmental model defines the space in which 

drone navigates. In [22], the 2D environmental model is 

utilized. In [21], a simplified model in a 3D environment is 

used where the impact of drag forces on the drone is ignored. 

In [22], the 3D model is utilized for modeling. In our work, 

we have considered a complete 1D environment with 

consideration to all the environmental factors, which include 

winds, rain as well as drag effect created by these elements. 

Observational Space defines how the environment 

behaves when some action is performed. In the deterministic 

environment, if given a state, action pair next state can be 

guaranteed while in a stochastic environment, it’s not 

guaranteed that state, action pair will generate the same 

output every time. In [21], [22], observational space is set to 

deterministic while [4], [24], [25] have used stochastic 

model. We have also utilized the stochastic observational 

model for our environment as its closer depiction of real-

world scenarios. 

Observability refers to how much environmental state is 

available to UAV at any given point in time. In [4], [22], 

completely observable environment is utilized. In [4], [21], 

[25], assumed the partially observable environment is 

assumed where some part of the state is available at any 

given time instead of whole (which is in case of fully 

observable). We have taken environment observability to be 

partial.  

In [14], Model based RL along with random shooter 

model is deployed. In [22], [25], model free RL is used 

while in [4], [21], standard DNNs are exploited. In our work, 

we are utilizing model free RL. 

In [24], a separate module for image processing is used, 

but detailed explanations are not specified in the paper. In 

[21], [22], [25], no camera module is utilized at all. 

Therefore, there is no image processing module. In [4], a 

separate module for video processing is utilized. For this 

purpose, the YOLO module is utilized. In our work, we are 

not utilizing any separate module for video processing. The 

data is instead fed into the NN, which utilizes it for 

generating action probabilities. 

Ideally, a UAV should not rely on any other external help 

for its decision making. In [24], however, an external ROS 

server is used as a helping node. In [22], the extra onboard 

PID module is used. In [4], [21], [25], any helper modules 

are not required. In our work, we are not utilizing any 

external helper modules except the NN. 
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Drone type is essential as it plays a huge part in deciding 

the adaptability of research in real-world scenarios. Off the 

shelf, drones are the desired scenario as it increases the 

chances of adaptability to very high. In [21], [22], [24], off 

the shelf drones are used. In [4], [25], customized drones are 

used for the experiment. In our work, we are using off the 

shelf drone.  

In [24], an extra ROS server is used, which is deployed on 

a high-end machine. In [21], [22], no off-board resources are 

deployed in their work. In [4], TX-1 and AuVedia chips are 

placed on a drone for processing. In [25], an extra nine 

range sensors are deployed for the experiment. In our work, 

we have not utilized any off-board computing resource and 

have used only off the shelf drone. 

When a model is pushed into drone memory which is 

already trained on some existing dataset, then that model is 

called pre-trained model and process is called pre-training.  

In [22], [24], [25], they have not used any pre-training. In 

[21], 512 initial and 1024 branching trajectories are utilized 

for pre-training the model. In [4] IDSIA dataset is being 

utilized for pre-training. In our work, we have not utilized 

any pre-training. 

In [4], state action pairs from the previous 15 iterations 

are used as an input for the NN. In [22], the 3D 

environmental state is deployed as its primary data source. 

In [21], orientation, position, and velocity are exploited as 

input. In [4], cameras are used as input. In [25], gyroscope, 

GPS, and range sensors are deployed as input. In our work, 

we have utilized the camera, IMU, GPS, barometer, and 

magnetometer as input 

 

III. PROPOSED METHODOLOGY 

The baseline idea is to autonomously navigate a drone in 

an unknown environment, which means in whatever 

environment a drone is, it must be able to navigate 

effectively and efficiently. This is achieved by using policy 

based DQN, a deep learning technique. There are five major 

modules in our system named as Input, Output, System, 

Environment, and Reward. Input deals with the sensor 

generated values. The reward is calculated as an indicator of 

an action’s feedback. The more the action is performed 

accurately, the higher is the reward. Next, this reward is 

forwarded to the system, where our policy-based DQN 

model (described in next section) processes all the inputs 

and generates output in the form of the probability 

distribution of actions. The most favorable action is 

performed by the quadcopter; action feedback is recorded, 

passed to our DNN, and the cycle continues.  The 

environment here represents the terrain where our 

quadcopter is flying or navigating. Environment generates 

many parameters like sensor’s readings and some states on 

which the reward function is based. 

We propose a model for navigating a drone in an 

unknown environment without any human help or aid. The 

goal is to navigate from location A to location B in unknown 

terrain without having any prior knowledge about the terrain 

using default drone sensors only. This work aims to address 

the limitations of existing research works by taking into 

account the following parameters as primary contributions 

of this work are following. A continuous domain is being 

considered rather than a discrete one. The simulation 

environment is 3D. 3D navigation is enabled, i.e., the 

quadcopter can navigate across all three-axis x, y, and z. 

High model accuracy (High success rate, low stray, and 

failure rate). The model is completely autonomous. 

Performance evaluation is done on multiple environment 

datasets.  

 

 
Fig. 3. Proposed system design. 

 

In this work, we are using DQN to predict the policy 

directly instead of Q-value. The advantage of using policy-

based approach is it can work for continuous domains. Fig. 

3 is the complete system design covering all the inputs, 

methods, and outputs. The elements of DQN are explained 

in Table I. An agent is an entity which decides and takes 

certain actions. State refers to the internal state of our DNN, 

e.g., learning weights. An action is a decision made by the 

agent to make quadcopter do some movement, e.g., moving 

up or down. The reward is a measure of how good an agent 

is performing. 

 
TABLE I: KEY RL ELEMENTS 

Key RL Terms Explanation Examples 

Agent Decision-making entity 

that takes action 

DQN 

State NN internal weights Camera, GPS 

Action A decision made by the 
agent to take any of the 

actions mentioned above 

Quadcopter moving 
left or right 

Reward How good agent is 
performing 

Distance from goal 

 

IV. EXPERIMETAL SETUP 

To experiment with deep learning, RL, and computer 

vision algorithms for UAVs, we have used AirSim as a 

simulation tool. AirSim enables us to use different APIs to 

retrieve images, control the vehicle, etc. Table II presents 

the components and their details for the simulator.  AirSim 

is used as a platform for simulations. It provides different 

APIs to enable communication with vehicles in the 

simulation environment.  Some example APIs are also given 

in Table II. 

These APIs can be deployed on a computer on the vehicle 
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with which you aim to interact, in our case, its quadcopter as 

these APIs are also accessible as an independent cross-

platform library. Code written in the simulator can later be 

executed on the real UAVs. Table III presents the system 

specifications. We used python 3.6 as a programming 

language, Tesorflow version 1.13, Cuda version 10.0, 

cudann version 7.4.2.   

 
TABLE II: DETAILS OF THE SIMULATION ENVIRONMENT 

Components Name Details 

Simulation 
tool/Platform 

AirSim Open-source 
simulator for UAVs, 

cars and more 

AirSim APIs simGetImage,  
reset,  

confirm connection, 

simGetObjectPose, 

simGetCollisionInfo 

To retrieve images, 
get state, control the 

vehicle and for many 

other tasks 

Vendor Microsoft  

Sensors Camera, GPS 
IMU,  

magnetometer, 

barometer 

AirSim currently 
supports these 

sensors data 

 
TABLE III: SYSTEM SPECIFICATIONS 

Components Versions 

Operation System Linux (x64) 

Python 3.6 

Tensorflow 1.13 

Cuda 10.0 

CudaNN 7.4.2 

 

V. RESULTS 

The drone is initially spawned in a random location on the 

map, and the final destination is set to a predefined location 

(usually midpoint in the map). The goal of the drone is to fly 

from its random initial position to the final destination 

without any collisions.  

The speed and altitude of the UAV range between 0 

to10m/s and 5 to 200m respectively. The episode length (i.e., 

time step) can be up to 200. The network parameters are 

learned by using Adam Optimizer with a learning rate of 10-

3. The discount factor γ for the experiments is varied in the 

range of 0.91 to 0.99. 

 

 
Fig. 4. Reward function (500 Iterations). 

 

The graph shown in Fig. presents a trend of reward 

function values when we run the program for 500 epochs. It 

can be observed that the network was learning very slowly. 

This is a known behavior as the network is experimenting 

with different outputs to check which strategy works. After 

a few hundred iterations, it starts to learn about some 

successful strategies, and reward gradually starts to build up. 

The only measurable factor that can quantify that the 

DQN algorithm is working properly is a reward. In our 

scenario, the reward function comprises of the combination 

of hubber loss and distance from the destination. 

The graph shown in Fig. 2 shows a trend of reward 

function values when we run the program for 1000 epochs. 

After a few small tweaks and an increasing number of 

iterations to 1000, we can observe that the reward is maxing 

out. The reward was capped at 200. As the iterations 

increase, the reward values show a rapid increase, 

respectively. 

 

 
Fig. 5.  Reward function (1000 Iterations).  

 

In any navigation, the most important part is a realistic 

and complete environmental model. It’s a baseline for 

interaction as a strong environmental model would result in 

strong results. In [21], [22], complete environments are used. 

In [22], a 2D environment is used, which in itself reduces 

the complexity model. It also removes a lot of complication 

from the problem statement. In [21], the 3D model is used, 

but a very simplified model is assumed. All the drag forces 

that act on the drone and make navigation a difficult task are 

ignored. In [24], [4], [25], completely realistic environment 

is utilized. In our work, we are also utilizing a completely 

realistic environment taking into account all the factors that 

make the environment more stochastic. 

Model free RL is not the golden standard for navigation 

tasks. Its performance is best among all the available 

methods. In [23], [24], model based RL is utilized. In [4], 

simple DNNs are deployed. In [5], [21], [22] Deep model 

free RL is used.  

It’s very important that what kind of hardware is utilized 

for the navigation as it has a direct impact on its adaptability 

if someone is getting very good results but is utilizing very 

specific hardware, then its less useful as compared to one 

which has relatively less impressive results but is using 

commodity hardware. [21], [22], [24] are using commodity 

hardware, so their work is extensible. In [4], very specific 

Nvidia TX1, AuVedia 120, and three cameras are utilized. 

In [25], an extra nine range sensors were attached to their 

UAV. In our work, we are using off the shelf drone with all 

the standard sensors. This makes our work more relevant for 

implementation by industry. 

This refers to the ability to learn from its mistakes as its 

flies instead of training model explicitly. In [21], [22], [24], 

[25], deep RL is utilized; therefore, the ability to have a 

model that learns on the fly exists. In [4], DNN is used; 

therefore, they lack this ability. We are also utilizing 

learning on the fly ability as we are also using model free 

RL. 

Onboard processing is an important benchmark in drone 

navigation. Nowadays, it’s necessary that the drone should 

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

759



 

 

have all the processing onboard to guarantee complete 

autonomy.  

 
TABLE IV: PERFORMANCE EVALUATION SUMMARY 

 
 

This parameter defines whether the authors were able to 

fly drone autonomously for more than 5 mins. In [4], they 

were able to achieve 6 seconds flight from 3 minutes of data. 

If they tweaked with the training data, their results 

deteriorated. In [22], results were presented for the 2D 

environment. Therefore, the work was only good enough for 

the testbed. For an outdoor, real-world 3D environment 

where drag forces effect, the model couldn’t perform well. 

In [21], drone stabilization was achieved but not the 

navigation. Their work shows that the drone can hover for 

more than 5 minutes but cannot navigate through the 

environment. Another issue in this work [21] was a 

simplified model assumption which makes even hovering 

unstable in a real-world environment. 

In [24], an extra ROS server is deployed. In [21], [22], 

[25], only using onboard processing power is exploited. In 

[4], extra chips beside the traditional hardware are utilized. 

TX-1 and Auvedia-120 chips are being used. In our work, 

we are also not utilizing any off-board processing. 

All of these factors are summarized in Table IV. We have 

concluded from the above considerations that most of the 

works only cover a few of the above considerations. This 

makes our work stand out from rest as no one has covered 

all these factors in their research (till date) along with our 

state-of-the-art results to the best of our knowledge. The 

work that was closest to our implementation is presented in 

[25], but it also misses a few key aspects (e.g., customized 

hardware, extra sensors, etc.). We were also able to achieve 

state-of-the-art success rate in our work. In our research 

work, we have taken into account all these factors and have 

completed autonomous navigation.   

 

VI.   CONCLUSION 

We have summarized the critical factors that are 

important in drone navigation scenario. We have concluded 

from the above considerations that most of the works only 

cover a few of the above considerations. This makes our 

work stand out from rest as no one has covered all these 

factors in their research (till date) along with our state-of-

the-art results to the best of our knowledge. The work that 

was closest to our implementation is presented in [5], but it 

also misses a few key aspects (e.g., customized hardware, 

extra sensors, etc.). We were also able to achieve state-of-

the-art success rate in our work. In our research work, we 

have taken into account all these factors and have completed 

autonomous navigation. 
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