

Abstract—The factors that influence fire insurance continue

to grow and head to the problem of big data. It is necessary to

develop a model to predict the loss cost due to fires by

examining the state-of-art models which are adaptable to the

big data. One of the models is deep learning, which is an

extension of the neural network. This model shows good

performances for unstructured data such as image and text. In

this paper, we examine the deep learning for loss cost prediction

in fire insurance whose training data is tabular or structured

data. We use one of the deep learning architectures called deep

neural network (DNN), which consists of two or more hidden

layers. Our simulation shows that DNN gives quite a similar

accuracy to the standard shallow learning of the neural network.

It means that deep learning does not improve the performance

of the standard shallow learning of neural network for the

structured or tabular data of loss cost prediction in fire

insurance.

Index Terms—Deep learning, deep neural network, tabular

data, structured data, fire insurance, loss cost prediction.

I. INTRODUCTION

Insurance is a service provided by an insurance company

to assure the risk of financial losses experienced by a person

or group who pay premiums based on an agreement [1]. One

of the insurance products is fire insurance, which is an

insurance product that covers loss or damage, which is

directly caused by fire. In fire insurance, the low frequency of

fires and the high severity requires the insurance company to

make modeling or analysis of predicted costs of losses due to

fire. This aims to identify the risks of policyholders and the

amount of insurance coverage that can be borne to replace

fire losses more accurately.

Moreover, many factors that cause fires is also challenging

for fire insurance companies. Doerr and Cristina stated that

climate change and global warming are predicted to increase

the frequency and severity of fires in several regions of the

world. These factors certainly have an impact on health,

community socio-economic activities, and infrastructure [2].

Besides, Kelly, Kleffner, Halek, & Nickerson, stated that the

level of population density, crime rate, unemployment rate,

age, education level, climate and weather conditions, and

demographics of a region can influence the frequency and

Manuscript received July 22, 2019; revised September 29, 2019. This
work was supported in part by This work was supported by the University of

Indonesia under grant PIT9 2019.

The authors are with Universitas Indonesia, Indonesia (Corresponding
author: Dian maharani; e-mail: dian.maharani71@sci.ui.ac.id,

hendri@sci.ui.ac.id, ysatria@sci.ui.ac.id).

severity of fires [3]. Moreover, Ye, Wang, Guo, & Li, also

state that materials that cause fire, topography, and human

activities can influence the frequency and severity of fires [4].

These factors are very diverse and constantly changing. In

this case, the amount of data continues to grow and change

that brings to the problem of big data.

Big data is a collection of data that has the characteristics

of high volume, high velocity, and a wide variety [5]. In

addition, L'Heureux, Grolinger, Elyamany, & Capretz also

explain that there are several challenges in analyzing big data,

including the volume of data (many, size, and scale of data),

variety data (structure of data variables, data types, and data

interpretation), data velocity (data speed), and data veracity

[6]. The challenge of analyzing big data is certainly also a

problem for fire insurance companies. On the other hand, it is

very important for fire insurance companies to predict the

loss cost due to fire for insurance policies. Therefore, it is

necessary to develop a model to predict the loss cost due to

fires by examining the state-of-art models which are

adaptable to the big data.

 Deep learning is a state-of-art model in machine learning

for prediction. Deep learning is an extension of the standard

neural network in term of the number of hidden layers. These

hidden layers aim to incorporate the feature selection process

into the model. Some hidden layer architectures have been

proposed and show better performance for unstructured data.

For example, a convolution neural network is a deep learning

model which is popular for image data [7]. This model also

has applied for other unstructured data types such as textual

data and shows a promising performance [8]. Moreover, the

online learning of the neural network makes the deep learning

adaptable for big data.

In this paper, we examine the deep learning for loss cost

prediction in fire insurance whose training data is a tabular

data or structured data. We use one of the deep learning

architectures called deep neural network (DNN), which

consists of two or more hidden layers. This DNN architecture

has some parameters and hence called hyperparameter to be

optimized. Firstly, we tune the hyperparameter to show the

sensitivity of the hyperparameter to the performance of DNN.

Therefore, we get the best setting for the hyperparameters.

Next, we compare the performance of DNN with that of the

standard shallow learning of neural network in term of

accuracy. Our simulation shows that DNN gives quite a

similar accuracy to the standard shallow learning of the

neural network. It means that deep learning does not improve

the performance of the standard shallow learning of neural

network for the structured or tabular data of loss cost

prediction in fire insurance.

The rest of the paper is organized as follows: In Section II,

the reviews of related works are presented. Section III

Performance of Deep Neural Network for Tabular Data

A Case Study of Loss Cost Prediction in Fire Insurance

Dian Maharani, Hendri Murfi, and Yudi Satria

doi: 10.18178/ijmlc.2019.9.6.866

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

734

—

mailto:dian.maharani71@sci.ui.ac.id
mailto:hendri@sci.ui.ac.id

describes the research method. Section IV describes the

simulation. In Section V, we discuss the implementation

program, results, and discussion of the simulations. Finally,

we give a conclusion in Section VI.

DNN is the development of the NN model. In this case,

there is more than one hidden layer on the DNN model.

Besides, the DNN model is a new model that combines the

feature selection process as part of the model. DNN is a very

flexible model with a very large number of parameters. This

is because of the many hidden layers and neurons in each

layer [9]. DNN, as a deep learning model, has an important

role in analyzing big data problems. This is because the

ability to manage the problem of the data is labeled or not

labeled with a very large volume [10]. Moreover, Zhang,

Yang, Chen, & Li, also stated that deep learning can handle

large data problems, heterogeneous data, real-time data, and

can provide good accuracy for processing data with many

features [11].

In its application, the DNN model has been widely used in

pattern recognition problems for unstructured data such as

sound, images, computer vision, and robotics [12]. The use of

DNN on structured data, especially problems related to

insurance is still rare. One of the DNN studies was conducted

by Kuo to predict loss reserves for property insurance and

accidents and compare them with stochastic models. The

results showed that the DNN model was more accurate than

the stochastic model [13]. Moreover, Saputro, Murfi, and

Nurrohmah applied the DNN model for classification

problem in automobile insurance. The results showed that the

accuracy of DNN is slightly better than the standard neural

networks in term of normalized-gini [14].

Several studies on the application of the DNN model above

did not test the DNN model for analyzing a big data problem

related to the prediction of the loss cost due to fire in the

insurance sector. Therefore, in this study, we focus on

examining DNN for loss cost prediction due to fires in the

insurance sector whose training data is a big tabular or

structured and comparing the performance of DNN with

standard shallow learning of neural network in term of the

accuracy.

III. RESEARCH METHOD

In this study, the DNN and NN models were used to

predict the loss cost due to fire in the insurance sector.

A. Deep Neural Network (DNN)

Deep Neural Network (DNN) is one of the deep learning

models that are part of artificial intelligence inspired by the

workings of the human brain. The purpose of this DNN

model is to analyze and solve problems as humans do base on

their thinking. The DNN model is the development of the NN

model, where the selection of features in the DNN model is

part of the model and is not run separately. Also, DNN

architecture consists of more than one hidden layer. The

number of hidden layers defines the depth of the DNN

architecture [15]. Mathematically the data flow and learning

algorithm of the DNN model is developed from the NN

model.

According to Bishop, data processed by the NN model is

run with the following algorithm [16];

The data enter to neurons 𝑧𝑗:

𝑎𝑗 = ∑ 𝑤𝑗𝑖
(1)

𝑥𝑖 +𝐷
𝑖=1 𝑤𝑗𝑜

(1)
 𝑗 = 1 … 𝑀 (1)

The data output from neurons 𝑧𝑗:

𝑧𝑗 = ℎ(𝑎𝑗) (2)

The data enter to neurons 𝑦𝑘:

𝑎𝑘 = ∑ 𝑤𝑘𝑗
(1)

𝑧𝑗 +𝐷
𝑖=1 𝑤𝑘𝑜

(2)
 𝑗 = 1 … 𝑀 (3)

The data output from neurons 𝑦𝑘 :

𝑦𝑘 = 𝑙(𝑎𝑘) (4)

General form:

𝑦𝑘(𝑥) = 𝑙 (∑ 𝑤𝑘𝑗
(2)

ℎ (∑ 𝑤𝑗𝑖
(1)

 𝑥𝑖 +𝐷
𝑖=1 𝑤𝑗𝑜

(1)
)

.
+𝑀

𝑗=1 𝑤𝑘𝑜
(2)

) (5)

𝑦𝑘(𝑥) = 𝑙 (∑ 𝑤𝑘𝑗
(2)

ℎ (∑ 𝑤𝑗𝑖
(1)

 𝑥𝑖
𝐷
𝑖=1)

.

𝑀
𝑗=1) (6)

𝑤𝑗𝑖
(1)

 and 𝑤𝑘𝑗
(2)

: weight parameters,

𝑤𝑗𝑜
(1)

 and 𝑤𝑘𝑜
(2)

 : bias parameters,

h(.),I(.): activation functions.

In the NN model, the most important problem of learning

this model is how to determine the parameters of weight and

bias so that the minimum error value is obtained. For example,

given training data (training) {𝑥𝑛 , 𝑡𝑛}, 𝑛 = 1, … , 𝑁, where
𝑡𝑛 ∈ {−1,1} then the number of errors for the training data

can be expressed as a sum of squared error (SSE)

𝐸(𝑊) = ∑ 𝐸𝑛(𝑊)

𝑁

𝑛=1

=
1

2
∑|𝑦𝑘(𝑥𝑛) − 𝑡𝑛|2

𝑁

𝑛=1

 (7)

In this case, the objective function of the NN model

defined by 𝐸(𝑊) above is a non-linear function where

∇𝐸(𝑊) = 0 is not closed. So, the method that can be used to

solve the optimization problem is an iterative method such as

Stochastic Gradient Descent (SGD), Adam, or Adagrad as a

variation of SGD.

In this case, the renewal of the weight value in the output

layer can be determined by the following formula;

𝑤𝑘𝑗

(2)(𝜏+1)
= 𝑤𝑘𝑗

(2)(𝜏)
− 𝜂𝛿𝑘𝑧𝑗 (8)

Whereas for renewal the weight of the hidden layer can be

determined by;

𝑤𝑗𝑖

(1)(𝜏+1)
= 𝑤𝑗𝑖

(1)(𝜏)
− 𝜂𝛿𝑗𝑥𝑖 (9)

where, η is the learning rate parameter, which is a positive

scalar that determines the size of the learning stages used to

reach the local minimum.

In this study, the input layer DNN architecture is suitable

with 350 dimensions. This is because of 350 features

affecting the extent of the cost of losses caused by fire. The

DNN model architecture used in this study adopts DNN

architecture introduced by Korzinkin et al., where the DNN

model consists of four hidden layers with each neuron

2000,1500,1000,500 and one output neuron. Also, a dropout

rate (0.2) layer is applied to each layer dense interlude [17].

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

735

II. RELATED WORK

The Adagrad optimizer method is also used in this study. The

activation function that is used in the hidden layer is 'PReLu'

and the linear activation function is used in the output layer.

The linear activation function is used in the output layer

because the problem in this study is a regression.

Furthermore, the hyperparameters used in the Korzinkin et al.

study will be re-optimized to obtain a higher level of

accuracy in predicting the cost of losses in fire insurance.

DNN architecture is illustrated in Fig. 1.

Fig. 1. Architecture Deep Neural Network (DNN) model.

While the standard shallow learning of the NN model

initialization architecture that will be optimized in this study

is the NN model, which consists of one input layer, one

hidden layer, and one output layer. In this case, many neurons

in the hidden layer are 100. The activation function that is

used in the hidden layer is 'ReLu'. While the linear activation

function is used in the output layer. The linear activation

function is used in the output layer because the problem in

this study is a regression. The method of the optimizer that

will be used is Adam. Also, L2 Regularization, dropout rate,

and batch normalization will be applied to the hidden layer to

overcome overfitting. Furthermore, the NN model will be

optimized to get the best NN model in predicting the cost of

losses in fire insurance. NN architecture is illustrated in Fig.

2.

Fig. 2. Architecture Neural Network (NN) model.

B. Network Optimization

In the building the DNN and NN models, it is very

important to optimize some parameters that used. This is

done to reduce prediction errors from the model. These

parameters will be described as follows.

1) Activation functions. The activation function is used in
DNN and NN models, including linear functions, sigmoid
functions, softmax functions, tanh functions, PReLu, and
ReLu functions [16]. The activation function is a function
that making the layer active and mapping neurons from
the input layer to neurons in the output layer.

regularization is a technique to reduce errors in general
but not reduce training errors during algorithm learning.
In the problem of linear regression, the learning criteria
can be modified with "weight decay". In this case, a sum
consisting of the average squared error in the training and
the criterion 𝐸(𝑊) representing the weight that has the
norm 𝐿2 smaller squares can be minimized [15]. Let
𝐸(𝑊)be defined as follows;

𝐸(𝑊) =
1

2
∑ |𝑦𝑘(𝑥𝑛) − 𝑡𝑛|2𝑁

𝑛=1 + 𝛼‖𝑤‖2 (10)

where α is a previously selected value to control the
learning process to use relatively small weights.

3) Batch-Normalization. Batch normalization or

batch-normalization is a technique to normalize the

results of the activation process of the weight renewal

value in the hidden layers of the NN and DNN models.

This batch-normalization technique standardizes the

output values of the calculation process of the activation

function to mean, and the unit standard deviation is close

to zero. In this case, the batch-normalization technique is

carried out to increase the accuracy and speed of the

model training process. Also, according to Bjorck, Gomes,

Selman, & Weinberger, some of the benefits of applying

batch-normalization techniques are the convergent

learning process and the generalization of the results of

the models for the better. In its application, for a layer in

the NN and DNN models with d-dimensions of input 𝑥 =

 (𝑥(1) … 𝑥(𝑑)), each dimension will be normalized by the

following formula [18].

�̂�(𝑘) =
𝑥(𝑘)−𝐸 [𝑥(𝑘)]

√𝑉𝑎𝑟 [𝑥(𝑘)]

 (11)

where expectation and variance values are calculated

based on training data.

4) Dropout. Based on Hinton, et al., dropout is a technique

to overcome the occurrence of overfitting and become

one of the strategies to combine exponentially many

different neural network architectures efficiently. The

dropout technique was carried out by removing noisy

neurons randomly during the training model. One of the

advantages of the dropout technique is that the dropout

can improve the performance of the NN model for image

recognition, sound, and document classification problems

[19].

In the simplest case, each unit is maintained with the same

probability and depends on another unit. Abdallah et al.,)

recommends a dropout rate between 20%-50% [20]. On the

other hand, Hinton et al. recommend optimizing dropout

rates in the range of 20%-80% [19].

In this research, we tune the hyperparameter to show the

sensitivity of the hyperparameter to the performance of the

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

736

2) Regularization weight (L2). Based on Goodfellow, et al.,

model. In this case, the process of tunning hyperparameter is

carried out such as the number of neuron units used,

activation function, percentage dropout rate, α parameter or

penalty value of regularization, learning rate for each NN

model optimizer method and DNN is carried out in the

following order:

1) Initialization of the Architecture of the NN and DNN

models

2) Optimizing the NN and DNN model neurons, the best

number of the neuron is applied at the next optimization

stage.

3) Optimizing the NN and DNN model dropout rate

parameters, the best dropout rate is applied at the next

optimization stage.

4) Optimizing the parameter α or the penalty value of the

regularization of weights in the NN and DNN models,

the best α value is applied at the next optimization stage.

5) Optimizing the activation function of the NN and DNN

models, the best activation function is used for the

optimization of the next stage.

6) Optimizing the learning rate for each optimizer method

used in the NN and DNN models.

IV. SIMULATION

In this study, the simulations for pre-processing data,

processing, learning process, and final simulations for

evaluation of the models was carried out. In each simulation

also carried out several processes that explained below.

A. Pre-processing Data

The data used in this study is secondary data on a liberty

mutual insurance company. The data in this study has a data

capacity of 1.46 GB consisting of 452061 samples and 300

different variables (features). In general, these variables are

features of insurance policy policies, weather, crime rates,

and geo-demography. The data used consists of categorical

data and numerical data. In this case, the data feature is

expressed as var1-var17, which represents the policy variable,

crimevar1-crimevar9 represents the crime rate variable,

geodemvar1-geodemvar37 as a geo-demography variable,

and weathervar1-weathervar236 is a weather variable.

Based on the analysis of the data, it is also known that there

are incomplete data (missing value). In this case, the policy

feature contains missing data, with a percentage of 61.19%.

In the crime feature, there is a missing value with a

percentage of 25%. Geodemographic features include

incomplete data (missing value) 44.50%. Weather feature

there are incomplete data (missing value) of 24.71% of all of

the weather features available. In this study, three steps of

data processing were carried out.

1) Handle missing value. Based on the data distribution, it is

known that there are many data, "Not a Number (NaN)"

on the data features that loss cost due to fire. Missing

values are imputed with the data mode in the

corresponding column so that complete data is obtained.

In this case, the mode method was chosen to overcome

incomplete data because the data in this study consisted of

categorical and numerical variables. In the categorical

variable, there are data with ordinal and nominal variable

types. Therefore, so that the data used remains

representative and does not change the meaning of the

data, the mode method is used.

pre-processing data is standardizing data. Based on

Jayalaksmi, T., & Santhakumaran, the process of

standardizing input data in the NN model is very

important to prepare the appropriate data during the

training model process. This has effects on the speed of

the model training process because each feature is on the

same scale the calculation of standardized research data

with Z-scores [22].

4) Splitting data. The third step of pre-processing data is

splitting data. It has become the training and testing data,

with a proportion of 80%: 20%. In this case, the training

data is separated into two separate data sets. Around 80%

of the training data is used for model selection (model

selection), and 20% is used as test validation data. This

test validation data used to estimate generalizations

during or after training in evaluating the performance of

DNN models and NN.

B. Processing Data

Processing data in this study used the NN and DNN

models. In this case, simulations for the DNN and NN models

use the package of Keras. The stages of learning include

compiling, training, and evaluating the DNN and NN models

whose architecture and initialization parameters have been

explained in the research method section. In the model

evaluation process, the function used is the Mean Square

Error (MSE), with calculations:

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑐𝑖 − �̂�𝑖)

2𝑛
𝑖=1 (12)

where, 𝑐𝑖 = true values ; 𝑐�̂� = predict values

In this study, the MSE function used because the problem

to be solved is a regression problem.

V. IMPLEMENTATION PROGRAM, RESULTS, AND DISCUSSION

In this study, several processes of DNN and NN

optimization was carried out. The first step is the process of

tunning the hyperparameter to show the sensitivity of the

hyperparameter to the performance of the model and get the

optimal DNN; the second step is the process of tunning the

hyperparameter to show the sensitivity of the hyperparameter

to the performance of the model and get the optimal NN. The

last step is comparing the DNN and NN model based on the

lost value of models to predict loss cost in fire insurance.

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

737

2) Handle categorical data. In this study, there are data with

categorical variables. While data processing with DNN

and NN models can be done if the data used is numerical.

That way, the first pre-processing stage of the data, the

categorical variables in the data are converted into an

integer.

Based on Potdar, the NN model that uses the one-hot

encoding technique to cope with categorical data has an

accuracy of 90%. Therefore, the one-hot encoding technique

was used in this study [21]. In this study, the one-hot

encoding technique caused an increase in the observation

feature column from 300 to 350.

3) Data standardization. In this study, the second step of

A. Implementation Program, Result, and Discussion about

Optimization DNN Model

In the learning process of the DNN model, optimization of

several hyper-parameters models was carried out to obtain

the optimal DNN model. Hyper-parameters optimized

include the number of neurons, the percentage dropout rate

used, the penalty (α) parameter in the regularization

technique of weight, the activation function, and the

parameter learning rate (η) optimizer method used in the

DNN model. Implementation DNN optimization program

and the accuracy of the DNN model as a result of optimizing

the hyper-parameters of the DNN model are explained below.

1) The accuracy of the DNN model as a result of neuron

optimization

The accuracy of the DNN model as a result of the neuron

optimization of the DNN model can be seen in the diagram in

Fig. 3.

Fig. 3. Accuracy of the DNN model of neuron optimization results.

Based on Fig. 3, it can be seen DNN architecture with type

II neurons gives the smallest MSE value. Also, the more

neurons used, the more parameters used in the DNN model

and the longer the computing time of the DNN model.

2) The accuracy of the DNN model as a result of dropout

rate optimization

The accuracy of the DNN model as a result of the dropout

rate optimization of the DNN model can be seen in the

diagram in Fig. 4.

Fig. 4. Accuracy of the DNN model of dropout rate optimization results.

Based on Fig. 4, it can be seen DNN architecture by

applying the dropout rate (0.2) on each hidden layer produces

the smallest MSE value. Also, there is no problem of

overfitting or underfitting on the DNN model for each

percentage of the optimized dropout rate.

3) The accuracy of the DNN model as a result of the

penalty (α) parameter of regularization weight

optimization

In the implementation, to obtain the optimal DNN model,

the parameter penalty (α) of the regularization technique is

optimized in the range 10−3 to 103 . The accuracy of the

DNN model as a result of the parameter penalty (α) of

Regularization Weight optimization of the DNN model can

be seen in the diagram in Fig. 5.

Fig. 5. Accuracy of the DNN model of parameter penalty (α) of

regularization weight optimization results.

Based on the diagram in Fig. 5, it can be concluded that the

penalty value 𝛼 = 10−2 gives the smallest MSE value for

the DNN model while the penalty value 𝛼 = 10−3 gives the

largest MSE value for the DNN model.

4) The accuracy of the DNN model as a result of the

activation function optimization

The accuracy (MSE) of the DNN model as a result of the

optimization of the activation function can be seen in Fig. 6.

Fig. 6. Accuracy of the DNN of optimization activation function results.

Based on Fig. 6, it can be seen DNN architecture with the

PReLU activation function produces the smallest MSE value

when compared to other activation functions. Also, the DNN

model experiences overfitting when using the softmax

activation function. Therefore, the process of optimizing the

DNN model will then apply the PReLU activation function.

5) The accuracy (MSE) of the DNN model in the learning

rate η Parameter optimization process in the DNN Method

optimizers

In this study, the learning rate parameter in the optimizer

method used in the DNN model was optimized to obtain the

optimal model. Some of the optimizer methods include SGD,

Adagrad, and Adam methods. After learning rate

optimization, the best optimizer method to optimize the DNN

model is so that the MSE value is the smallest, namely the

Adam method with the learning rate 10−5. The results of the

implementation of Adam's learning rate optimization

program can be seen in Fig. 7.

Based on Fig. 7, it can be seen the learning rate value for

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

738

Adam gives the smallest MSE value for the DNN model,

which is 10−5 . Besides that, the greater the learning rate

value of Adam method results in the greater the MSE

variance value of the DNN model.

Fig. 7. Accuracy of the DNN model of results of the implementation of

Adam's learning rate optimization program.

B. Implementation, Result, and Discussion about

Optimization NN Model

In this study, in addition to optimizing several

hyper-parameters DNN model, hyper-parameter NN model

optimization was also carried out. Several stages in

optimizing the NN hyperparameter are carried out with the

same steps when optimizing hyperparameters DNN model.

The following is an explanation of each step of the NN model

hyper-parameter optimization.

1) The accuracy of the NN model as a result of neuron

optimization

The accuracy of the NN model as a result of the neuron

optimization of the NN model can be seen in the diagram in

Fig. 8.

Fig. 8. Accuracy of the NN model of neuron optimization results.

Based on Fig. 8, it can be seen NN architecture with type

IV neurons gives the smallest MSE value. Therefore, the

optimization of the next NN model will be used in the pattern

of type IV (250) neurons.

2) The accuracy of the NN model as a result of dropout

rate optimization

The accuracy of the NN model as a result of the dropout

rate optimization of the NN model can be seen in the diagram

in Fig. 9.

Based on the figure, it can be seen the NN architecture by

applying the dropout rate (0.5) on the hidden layer produces

the smallest MSE value. Therefore, the optimization of the

next NN model will apply a dropout rate (0.5) to its hidden

layer.

Fig. 9. Accuracy of the NN model of dropout rate optimization results.

3) The accuracy of the NN model as a result of parameter

penalty (α) of regularization weight optimization

In the implementation, to obtain the optimal NN model,

parameter penalty (α) of the regularization technique is

optimized in the range 10−3 to 103. The accuracy of the NN

model as a result of parameter penalty (α) of Regularization

weight optimization of the NN model can be seen in Fig. 10.

Fig. 10. Accuracy of the NN model of parameter penalty (α) of regularization

weight optimization results.

Based on the diagram in Fig. 10, it can be concluded that

the penalty value α = 103 gives the smallest MSE value for

the NN model. While the penalty value α=1 gives the largest

MSE value for the NN model. Therefore, the optimization of

the next NN model uses a penalty (α) for the regularization of

103.

4) The accuracy of the NN model as a result of the

activation function optimization

The accuracy (MSE) of the NN model as a result of the

optimization activation function can be seen in Fig. 11.

Fig 11. Accuracy of the NN model of activation function optimization

results.

0.0422117

0.0421960

0.0421977

0.0421821

0.0421956

0,0422048

1

2

3

4

5

6

Mean Square Error

T
yp

es
 o

f
th

e
n

u
m

b
er

 o
f

n
eu

ro
n

35

0

30

0

25

0

20

0.042203394

0.042204510

0.042193016

0.042182132

0.042213467

0,042194861

0,042197865

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Mean Square Error

D
ro

p
o

u
t

R
a

te

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

739

Based on Fig. 11, it can be seen the NN architecture with

the ReLU activation function produces the smallest MSE

value when compared to other activation functions.

Therefore, the process of optimizing the NN model will then

apply the ReLU activation function.

5) The accuracy (MSE) of the NN model in the learning

rate η parameter optimization process in the NN method

optimizers

In this study, the learning rate parameter in the optimizer

method used in the NN model was optimized to obtain the

optimal model. Some of the optimizer methods include SGD,

Adagrad, and Adam methods. After learning rate

optimization, the best optimizer method to optimize the NN

model is so that the MSE value is the smallest, namely the

SGD method with the learning rate 10−5. The results of the

implementation of the SDG's learning rate optimization

program can be seen in Fig. 12.

On the SGD method, the learning rate of 10−1 and

10−2 cannot know the value of the MSE. This is because the

learning rate used for SGD, in this case, skips local minima.

Also, by applying the learning rate 10−5 to the SGD method,

the NN learning process before the tenth iteration has

converged and stopped at the sixty-ninth iteration.

C. Optimal DNN Architecture

Based on the results, the optimal DNN is an architecture

consisting of one input layer, four hidden layers with many

neuron units 2250, 1750,1250, and 750, and one output layer.

The PReLU used as an activation function. Applying a

dropout rate (0.2) and a penalty regularization of 10−2 in

each hidden layer DNN model. Applying batch

normalization after the second hidden layer DNN model.

Using Adam (learning rate of 10−5) as optimizer methods.

From the results of the optimization hyperparameters of

the DNN model, there are several changes in

hyperparameters DNN optimal with the initial DNN

architecture. The differences hyperparameter DNN before

and after optimization include the number of neurons in the

hidden layer, and the method of optimizers used. The

accuracy of the DNN model before the optimization is

0.04217333666 ± 0.704457323e-15. After being optimized,

the level of accuracy of the optimal DNN architecture in

predicting the cost of losses in fire insurance is reviewed

based on its MSE value, which is equal to 0.04217331959 ±

0.63924424e-15. In this case, the results of the

implementation process are illustrated in Fig. 13.

Fig. 13. Graph of optimal DNN model.

Based on the graph in Fig. 13, it can be seen that the curve

generated from the learning process of the DNN model shows

that the value of loss (MSE) in the training data as well as the

validation test decrease to a stable point. In this case,

although the value of loss (MSE) of the training data is

smaller than one of the validation data, the gap between the

two-loss values is very small. This indicates that there are no

problems with underfitting or overfitting on the DNN model.

Also, in the sixth to 35th iteration, the DNN model has

converged, and the loss value on the testing data does not

decrease again so that by applying early- stopping the 35th

iteration of the learning process has stopped.

From the implementation of the DNN model, we can know

the numbers of parameters that used and which are not used

on the DNN model. The number of parameters used in the

first layer is obtained by multiplying the number of neuron

units used in the first hidden layer by the many data features

used and then summing with the number of neuron units. The

number of batch normalization parameters can be obtained

by multiplying many units of neurons in the hidden layer that

applies batch normalization with four parameters in batch

normalization (gamma weights, beta weights, moving mean,

moving variance). In this case, 7000 parameters were

obtained consisting of 3500 weighting parameters updated in

the backpropagation process, and 3500 weighting parameters

that were not updated during the backpropagation process.

While many parameters for the second, third, fourth hidden

layer, n = 2,3,4 and the output layer can be obtained with the

following formula:

Number of Parameter𝑠𝑛 = Neuron𝑛 × (Neuron(𝑛−1) + 1),

𝑛 = 2,3,4, &(output) (13)

D. Optimal NN Architecture

Based on the results, the optimal NN is an architecture

consisting of one input layer, one hidden layer with 250

neuron units, and one output layer. The ReLU is used as an

activation function; dropout rate is 0.5 and a penalty

regularization of 10−3in each hidden layer NN model. We

apply batch normalization after the hidden layer NN model.

SGD with a learning rate of 10−5) is as optimizer method.

From the results of the NN model architecture

hyperparameter optimization, there are several changes in

with the hyperparameters of initial NN architecture. The

hyperparameter differences include the number of neurons in

the hidden layer, the value of the penalty regularization

weight, and the method of optimizers used. The accuracy of

the NN model before the optimization is 0.0422116953948 ±

25.8386293113e-10. After being optimized, the level of

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

740

Fig. 12. Accuracy of the NN model as a results of the implementation of

SGD's learning rate optimization program.

accuracy of the NN architecture in predicting the cost of

losses in fire insurance is reviewed based on its MSE value,

which is equal to 0.0421733518359 ± 0.64079999e-15. In

this case, the results of the implementation process are

illustrated in Fig. 14.

Fig. 14. Graph of optimal NN model.

Based on the graph in Fig. 14, it can be seen that the curves

generated from the learning process of the NN model show

that in the first iteration, the value of loss (MSE) in the

training data is very high, then in the second iteration to 60,

the loss value (MSE) in the data training and test validation

data decreased to a stable point. In this case, even though the

loss (MSE) value in the training data is smaller than the test

validation data, but the gap between the two-loss values is

very small. This indicates that there are no problems with

underfitting or overfitting on the NN model. Also, in the sixth

to the 60th iteration, the NN model is convergent, and the loss

(MSE) value in the testing data does not decrease again so

that by applying early- stopping, in the 60th iteration the

learning process has stopped.

From the implementation of the NN model, we can know

the numbers of parameters that used and which are not used

in the NN model. The number of parameters used in the first

hidden layer is obtained by multiplying the number of neuron

units used in the first hidden layer by the many data features

used and then summing with the number of neuron units. The

number of batch normalization parameters can be obtained

by multiplying many units of neurons in the hidden layer that

applies batch normalization with four parameters in batch

normalization (gamma weights, beta weights, moving_mean,

moving_variance). In this case, 1000 parameters are obtained,

consisting of 500 weighting parameters that are updated in

the backpropagation process, and 500 weighting parameters

that are not updated during the backpropagation process

while many parameters for the output layer can be obtained

by formulas as in (13).

E. The Performance of DNN and NN Model

The last step in this research compared the architecture of

the DNN model and NN model. The simulation results are

presented in Table I.

TABLE I: THE PERFORMANCE OF DNN AND NN MODEL

Model Akurasi (MSE)
Running Time Program

Training Testing

DNN
0.04217331959 ±

0.63924424e-15
567.842 s 6.163 s

NN
0.04217335183 ±

 0. 64079999e-15
330.947 s 4.824 s

Based on Table I above, it can be seen the Deep Neural

Network (DNN) model is comparable to the Neural Network

(NN) model. Also, the running time program for the Neural

Network (NN) model is faster than the Deep Neural Network

(DNN) model.

VI. CONCLUSION

Based on the accuracy of the DNN and NN above, it can be

seen the DNN model that has been optimized is reviewed

based on its MSE value, which is equal to 0.04217331959 ±

0.63924424e-15. The accuracy of the NN model that has

been optimized is reviewed based on its MSE value of

0.04217335183 ± 0.64079999e-15. This shows that DNN

still gives similar accuracy to the standard shallow learning of

the neural network. It means that deep learning can be used to

solve big data problems, but does not improve the

performance of the standard shallow learning of neural

network for the structured or tabular data of loss cost

prediction in fire insurance.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

The first author is tasked with collecting data, analyzing

data, managing research data, and analyzing results until

conclusions are obtained. While the second and third author

directs, guides, and provides suggestions for each stage of

research. All authors had approved the final version.

ACKNOWLEDGMENT

This work was supported by the University of Indonesia

under grant PIT9 2019. Any opinions, findings, and

conclusions or recommendations are the authors' and do not

necessarily reflect those of the sponsor.

 REFERENCES

[1] J. F. Outreville, Theory and Practice of Insurance, First ed., Boston:

Springer, US., 1998.

[3] M. Kelly, A. Kleffner, M. Halek, and D. Nickerson, “The role of

insurance in reducing the frequency and severity of fire losses,” The

University of Fraser Valey: Center for Public Safety and Criminal
Justice Research, ch. 2, pp. 22-40, 2017.

[4] T. Ye, Y. Wang, Z. Guo, and Y. Li, “Factor contribution to fire

occurrence, size, & burn probability in a subtropical coniferous forest

in East China,” PLoS One, vol. 12, no. 2, pp. 1–18, 2017.

[5] M. Beyer and D. Laney, The Importance of ‘Bigdata’: A Definition,

Gartner Research: Stamford, CT, USA, Tech. Rep. G00235055, 2012.

[7] F. Chollet, Deep Learning with Python, United States of America:

Manning Publication, 2018.

[8] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R.
Wald, and E. Muharemagic, “Deep learning applications and

challenges in big data analytics,” Journal of Big Data, vol. 2, pp. 1–21,

2015.
[9] G. Hinton, L. Deng, D. Yu et al., “Deep neural networks for acoustic

modeling in speech recognition,” IEEE Signal Processing Magazine,

pp. 1–27, 2012.
[10] N. M. Elaraby and M. Elmogy, “Deep learning: Effective tool for big

data analytics,” Int. J. Comput. Sci. Eng., vol. 5, no. 5, pp. 254–262,

2016.

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

741

[2] S. H. Doerr and C. Santin, “Global trends in wildfire and its impacts:

Perceptions versus realities in a changing world,” Phil. Trans. R. Soc.

B., vol. 371, 2016.

[6] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz,

“Machine learning with big data: Challenges and approaches,” IEEE

Access, vol. 5, pp. 7776–7797, 2017.

[11] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A survey on deep learning

for big data,” Inf. Fusion, vol. 42, pp. 146–157, 2018.
[12] V. Sze, S. Member, Y. Chen, S. Member, and T. Yang, “Efficient

processing of deep neural networks: A tutorial and survey,”

Proceedings of the IEEE, vol. 105, pp. 2295–2329, 2017.
[13] K. Kuo, “Deep triangle: A deep learning approach to loss reserving,”

presented at Casualty Loss Reserve Seminar, 2018.

[14] A. R. Saputro, H. Murfi, and S. Nurrohmah, “Analysis of deep neural
networks for automobile insurance claim prediction,” Communications

in Computer and Information Science, vol. 1071, pp. 114–123, 2018.

[15] I. Goodfellow, I. B. Yoshua, and C. Aaron, Deep Learning, MIT Press,
2016.

[16] C. H. Bishop, Pattern Recognition and Machine Learning, Berkeley:

Springer, 2006.
[17] M. Korzinkin, A. Aliper, E. Putin et al., “Deep biomarkers of human

aging: Application of deep neural networks to biomarker development,”

Aging (Albany. NY)., vol. 8, no. 5, pp. 1021–1033, 2016.
[18] J. Bjorck, C. Gomes, B. Selman, and K. Q. Weinberger,

“Understanding batch normalization,” in Proc. 32nd Conference on

Neural Information Processing Systems, no. NeurIPS, 2018.
[19] G. Hinton, “Dropout: A simple way to prevent neural networks from

overfitting,” Journal of Machine Learning Research, vol. 15, pp.

1929–1958, 2014.

[20] Z. S. Abdallah, J. Kamruzzaman, and B. Srinivasan. Effect of

Hyper-Parameter Optimization on the Deep Learning Model Proposed

for Distributed Attack Detection in Internet of Things Environment.
[Online]. Available:

https://arxiv.org/ftp/arxiv/papers/1806/1806.07057.pdf

[21] K. Potdar, “A Comparative Study of Categorical Variable Encoding
Techniques for Neural Network Classifiers,” International Journal of

Computer Applications, pp. 10–13, 2017.

[22] T. Jayalakshmi and A. Santhakumaran, “Statistical Normalization and
Back Propagation for Classification,” International Journal of

Computer Theory and Engineering, vol. 3, no. 1, pp. 1–5, 2011.

Dian Maharani received her bachelor degree in

mathematics education from Universitas Lampung
majoring in 2011. She received the masters’ degree in

mathematics from Universitas Indonesia in 2019. Her

researches are applying machine learning and deep
learning.

Hendri Murfi received his bachelor degree in

mathematics from Universitas Indonesia, masters in
computer science from Universitas Indonesia, and Dr.

rer. nat. from TU Berlin, Germany. Currently, he is

serving as a lecturer and researcher at Data Science
Group at the Department of Mathematics, Universitas

Indonesia. His researches are machine learning with

applications in topic modeling, sentiment analysis,
recommender system, and insurance.

Yudi Satria received his bachelor degree in

mathematics from Universitas Indonesia, masters in

informatics from Institut Teknologi Bandung, and

doctor from Universitas Indonesia. Currently, he is

serving as a lecturer and researcher at Data Science

Group at the Department of Mathematics, Universitas
Indonesia. His researches are machine learning with

applications in image processing and text analysis.

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

742

