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Abstract—Vapnik’s quadratic programming (QP)-based 

support vector machine (SVM) is a state-of-the-art powerful 

classifier with high accuracy while being sparse. However, 

moving one step further in the direction of sparsity, Vapnik 

proposed another SVM using linear programming (LP) for the 

cost function. This machine, compared with the complex QP-

based one, is sparser but poses similar accuracy, which is 

essential to work on any large dataset. Nevertheless, further 

sparsity is optimum for computational savings as well as to work 

with very large and complicated datasets. In this paper, we 

accelerate the classification speed of Vapnik’s sparser LPSVM 

maintaining optimal complexity and accuracy by applying 

computational techniques generated from the “unity outward 

deviation (ζ)”—analysis of kernel computing vectors. 

Benchmarking shows that the proposed method reduces up to 

63% of the classification cost by Vapnik’s sparser LPSVM. In 

spite of this massive classification cost reduction, the proposed 

algorithm poses classification accuracy quite similar to the state-

of-the-art and most powerful machines, for example, Vapnik’s 

QPSVM or Vapnik’s LPSVM while being very simple to realize 

and applicable to any large dataset with high complexity.

Index Terms—Classifier, kernel, LP, QP, sparse, SVM.

I. INTRODUCTION

The main task in a classification problem is to model the 

best function representing a generalized relation between 

input patterns and their class labels using the input example 

patterns with their corresponding class labels. Although the 

number of kernel operating patterns and their selection to be 

used to construct a particular kernel-based stochastic 

classifier and maintain its complexity to design the decision 

boundary primarily depends on the size and topological 

randomness of the involved data, classification performance 

and required cost (kernel computation) may differ from 

machine to machine. In this regard, while support vector 

machine(SVM)–based classifiers lead the pattern 

classification field with top accuracy, one of its key 

interesting properties is that being sparse, the desired 

classifier can be designed in terms of only a subset of the 

training patterns, known as the support vectors (SVs). Hence, 

computational complexity and classification time for the 

nonlinear SVM classifier depend on the number of SVs. But 

although being sparser, Vapnik’s linear programming (LP)-
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of performance. As a result, this problem has increased 

research recently.

A. Related Works

Ref. [1] proposed a very sparse and powerful classifier 

with high accuracy by implementing sequential optimization 

using quadratic programming (QP) and LP and named this 

detector as second-order SVM. Although the classifier from 

their straight forward method is very efficient, effort is 

needed during training by implementing modified cross-

validation to obtain optimum values of two pairs of 

parameters for its two sub-stages. [2]-[4] proposed smart 

iterative algorithms for reduced SVMs with impressive 

results. However, while [3] reported a memory run out from 

[2], [4] in case of their implementations on large dataset, [3] 

has a considerable practical variation with heavy parameter 

selection from its defined approach. [5]-[8] modeled reduced 

SVMs (RSVMs) that demand less computational costs than 

the standard one for classifying a pattern. These RSVMs 

demand only a fraction of kernel operation to classify a 

pattern either by exploring a sparse subset of the whole SVs 

of the standard SVM [5] or by finding a novel small set of 

patterns to replace the whole SVs set [7], [8], which depends 

on complex optimization problems that are critical to 

initialization, step sizes, etc. Moreover, extra training effort 

is required to train the full SVM before approximation. [9] 

offered a locally linear SVM classifier while proposing a 

trade-off between the number of anchor points and the 

expressivity of the classifier to avoid over-fitting and speed 

problem. [10] designed a post-processing algorithm that 

compresses the learned SVM by further training on the SVs 

by adding few extra training parameters. [11] analyzed a 

problem of combining linear SVMs (LSVMs) to classify 

nonlinear data. [12] modeled a clustered SVM by weighted 

combination of LSVMs trained on the clustered subsets of the 

training set to separate the data locally. [13] proposed a 

method that finds SV patterns that are linearly dependent on 

feature space and throw all but one of them. However, it gets 

more difficult to get such linearly dependent patterns as the 

dimensions of data increase. On the other hand, another class 

of approach focuses on structured SVM-based pattern 

detection. A decision tree with linear SVMs is proposed in 

[14], while a hierarchy of linear SVMs is studied in [15] 

having a nonlinear SVM at the end. In [7], a chain of SVMs 

is optimized by parameter tuning. [16] used two reduced 

SVMs (RSVMs) in sequence with increasing complexity that 

offers heavy computational cost reduction compared with a 
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based SVM is computationally less costly by one order of 

magnitude, it still requires kernel evaluations, which is a very 

expensive task. This stimulates us to reduce further 

computational cost for classification without significant loss 

doi: 10.18178/ijmlc.2019.9.6.865



 

full SVM with very similar accuracy; they also handled 

asymmetric data successfully. In [17], a hierarchical tree 

structure using SVMs is developed that is optimized by using 

a reduction scheme proposed in [7] and threshold selection 

and operates on application specific pattern-space 

partitioning. [18] analyzed numerical strategies for optimal 

cascade and implemented different heuristics on synthetic 

data using binary SVM at each stage. 

B. Motivation 

The standard SVM algorithm does not focus on the error 

rate of the discriminator directly; rather, it focuses on error 

performance indirectly through cost-function penalty and 

constraints. Therefore, the penalty parameter plays a very 

crucial role in the algorithm, especially in finding the best 

trade-off between generalization and over-fitting. However, 

as there is no exact closed-form expression for this data-

dependent regularizer, one has to find it along with the other 

data-dependent kernel parameter using cross-validation 

method, which may not give the best values of parameters. 

Hence, a bit computational manipulation afterward on the 

first-step solution might be useful. On top of that, it is also 

observed that to increase a very tiny amount of accuracy on 

complex dataset, the SVM increases comparatively a large 

number of SVs (clarified in Fig. 1). Thus, saving a large 

amount of computation (hence, increasing classification 

speed by discarding the least significant SVs and thus 

reducing discriminator complexity) by compromising (if it is 

needed, in the worst case) with a very tiny amount of accuracy 

might be a good trade-off. Moreover, accelerating the 

classification process is continuously desired that stipulates 

us to work on discarding as many SVs as possible. However, 

discarding any SV without considering its contribution will 

affect seriously in the decision making process. On the other 

hand, in many practical applications, some obtained training 

data are often affected by noise that is placed far away from 

the related main cluster (termed as “outliers”), whereas the 

class-decision boundary from SVM depends on the SVs. But 

often for the complex datasets, the SVs set contain outliers 

that may increase the non-smoothness of the decision 

boundary. Hence, a scheme that reduces the number of SVs 

after considering the outlier contribution or infliction on the 

decision function is advantageous in the following directions: 

• Reducing the classification cost by requiring less kernel 

evaluation 

• Smoothing the decision boundary that helps to reduce 

over-fitting 

In this direction, we model the approximation of an SVM 

solution for classification problem by reducing the SV set size. 

The reduction is achieved by discarding as many insignificant 

SV patterns as possible based on the analysis from the 

corresponding coefficient values. Experimental results show 

that the proposed algorithm reduces the classification cost 

significantly and poses classification accuracy similar to the 

standard SVM. 

The rest of the paper is organized as follows: Section II 

presents the related bases, whereas Section III explains the 

proposed algorithm with proper analysis. In Section IV, the 

experiment results are shown, and concluding discussion with 

future work is presented in Section V. 

II. RELATED BASICS 

SVM is a state-of-the-art machine learning tool for 
supervised classification. Being very powerful, hence least 
erroneous in spite of sparsity, it has become popular. At first, 
it was introduced using QP, termed here as QPSVM. 
However, while L1 norm is usually more intending to sparser 
solution compared with L2 norm [19], Vapnik proposed 
another SVM using LP in the cost function, termed here as 
VLPSVM. In this section, discussion on SVM with its two 
main variants (QPSVM and VLPSVM) are presented. Details 
of them are found in [20]. 

 

 
Fig. 1. Fluctuation on the number of SVs with training accuracy. The plots 

are divided by their corresponding maximum values to scale them between 
0 and 1. The fluctuation is well observed from variation in Kernel parameter, 

σ. 

 

A. QPSVM 

QPSVM is based on structural risk minimization principle 

in statistical learning theory using margin maximization 

between two classes, which consists in finding the separating 

hyperplane that is furthest from the closest object. Suppose 

that a binary classification problem with a set of training 

patterns {(𝑥𝑖 ,  𝑦𝑖)}𝑖=1
𝑁 ; 𝑥𝑖 ∈ 𝑹𝒅 and yi ∈ {−1, 1} is given. 

To separate these patterns into two classes proficiently, 

SVM finds a classifier basing on a decision function (for the 

input pattern x) having the form f(x) = w ·ϕ(x)+b, which leads 

to class(x) = sgn(f(x)), where K(xi, xj) = ϕ(xi)· ϕ(xj) is a kernel 

operation. The primal formulation of QPSVM is as follows: 


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where the slack variables ζi > 0 stand for the margin outward-

deviated patterns (which is the patterns that stay outward 

from their own class margins) as shown in Fig. 2 and C > 0 

is a regularizer of the classifier controlling the trade-off 

between two main intentions of the objective function in (1): 

One is to minimize the training-error depth, and another is to 

maximize the margin between two classes optimally. The 

primal problem in (1)–(3) is solved by introducing the 

Lagrangian function and after some mathematical procedure, 

the corresponding dual problem is as follows: 
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ζi ≥ 0; i = 1,2,…,N                             (6) 

 

with KKT condition 0)1))((( =+−+ iiii bxwy  . 

Problem in (4)–(6) is a QP problem as well, and the patterns 

having αi > 0 are SVs. The optimum values of SV coefficients 

α are used to find the variables w, b. 
 

 
Fig. 2. Illustration of Vapnik’s QP SVM using margin maximization concept. 

The triangles represent positive patterns, and the squares represent negative 

patterns. The black straight lines indicate the margin of both classes in a 
hypothetical higher dimensional feature space. Patterns that remain outward 

from their own class margins are known as margin outward-deviated patterns. 

The QP SVM tries to maximize the margin while maintaining minimum 
optimal training-error distances. The training output of QP SVM is the 

decision boundary represented by the red line. 
 

B. VLPSVM 

An LP model is offered by Vapnik to search for a 

separating hyperplane, which in fact formulates an indirect L1 

norm in the cost function leading to further sparsity with 

similar accuracy compared with QPSVM that uses the L2 

norm for such. Hence, this machine is similar to the QPSVM 

one but requires comparatively less computation to classify a 

pattern. If w be the weight vector of the hyperplane for 

VLPSVM, its decision function has the form f(x) = w· ϕ(x)+b 

that leads to class(x) = sgn(f(x)). The primal formulation of 

VLPSVM is as follows: 


==

+
N

i

i

N

i

i
b

C
11

,,
min 



                             (7) 

iij

N

j

jji bxxyyts  −+
=

1))()((..
1

                (8) 

λj ≥ 0; j = 1, 2,…, N                                (9) 

ζi ≥ 0; i = 1, 2,…, N                               (10) 

Here, the slack variables ζi > 0 stand for unity outward-

deviated patterns (that is the training patterns for which 

ClassLabel(xi) · f(xi) <1) and the ζs are optimization variables 

of the problem in (7)–(10), which are found with the other 

variable λs. To avoid mystification and clarify sharply, here, 

the training patterns (xj) of VLPSVM having coefficients λj > 

0 are termed as expansion vectors (EVs) that are similar to 

the SVs in QPSVM but are not same from both physical and 

topological point of view. These optimum value of λs are 

applied to find w = Σλj yj ϕ(xj). The number of EVs in 

VLPSVM is in general very much smaller with respect to the 

total training set size proving VLPSVM to be sparser. Our 

benchmarking and other reports [21] show that VLPSVM has 

similar performance as QPSVM while being more efficient 

with less kernel evaluation in classification phase showing 

VLPSVM to be empirically sound and more productive. 
 

III. PROPOSED METHOD WITH Ζ-ANALYSIS 

This section presents the basic idea before going to the 

proposed method with analysis. 

A. Basic Idea 

Sparseness of SVM heavily depends on data complexity, 

and in case of a very noisy dataset, a good generalized SVM 

is likely to get more outliers that are included into the SV set. 

Hence, the motivation is to throw the least contributing SVs 

from the SV set without hampering generalization capability. 

In SVM, the only error-related constraint in (2) and (8) can 

be rewritten as yif(xi) ≥ 1−ζi ⇒ ζi ≥ 1−yif(xi). Now, for any 
misclassified training pattern (xi), if yif(xi) =-εi where εi > 0, 
then ζi ≥ 1+ εi. Hence, for L misclassified training patterns, 

∑
i𝐿

𝑖=1 ≥ 𝐿 + ∑ ε𝑖
𝐿
𝑖=1 . Thus, suppressing ∑

i𝑖  by 

penalizing through regularizer will suppress 𝐿 + ∑ ε𝑖
𝐿
𝑖=1 , not 

just L, the number of total training-error. Suppressing 𝐿 +
∑ ε𝑖

𝐿
𝑖=1  could happen in the following three ways: 

i) Reducing L faster than ∑ ε𝑖
𝐿
𝑖=1 , which will reduce the 

training-error rate 

ii) Reducing L slower than ∑ ε𝑖
𝐿
𝑖=1 , which may bring 

undesired events on training performance 

iii) Reducing L and ∑ ε𝑖
𝐿
𝑖=1  with same rate and priority, 

which may not reduce the training-error rate as expected 

Therefore, throwing P (P ≤ L < N) outliers apparently 

reduces P training errors and also reduces P kernel 

evaluations in classification phase if these patterns are also 

members of the final discriminator. However, how this 

throwing will behave in classifying other patterns is a serious 

issue to consider. We find it by analyzing the contribution and 

confusion due to them on correctly classifying other patterns 

and call it ζ-analysis, which is described in the next parts. 

The discriminators both from QPSVM and VLPSVM can 

be rewritten in the following common form by using a 

common term “kernel computing vector (KCV)” for SV or 

EV or such other kernel operating patterns: 


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where z is any pattern and 𝐾(𝑥𝑙 , 𝑧) = )( lx . )(z = e−
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is the kernel, which is the source of main computational 
expenses, and all λl > 0 couple this in the accumulation of 
time in classification phase. Our main goal is to find a subset 
of xl patterns for which λl > 0 by throwing the patterns not 
having fruitful contribution in decision making for being 
outlier. This is what we mainly seek in our ζ-analysis 
discussed next. 

B. ζ-Analysis 
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1) Patterns’ position basing on ζ: As discussed earlier, an 

“outlier” is a pattern that stay outside of its own class 

boundary. Hence, a pattern is “inlier” if it stays inside its own 

class boundary. Thus, for any training pattern, xi with label yi

and the decision function value f(xi) is an inlier if 

0)())(sgn(1))(sgn( == iiiiii xfyxfyxfy and outlier 

if 0)())(sgn(1))(sgn( =−−= iiiiii xfyxfyxfy . Re-



 

writing the error constraints of SVM in (2) or in (8) in a single 

form using the slack variable ζ as yif(xi) ≥ 1 − ζi ⇒ ζi ≥ 1 − 

yif(xi), we get for outlier ζi > 1 and for inlier 0 ≤ ζ < 1 

considering the following two cases: (i) inlier with yif(xi) < 1 

⇒ 1 − yif(xi) > 0 ⇒ ζi > 0 and (ii) inlier with yif(xi) > 1 ⇒ 1 − 

yif(xi) < 0 ⇒ ζi = 0 as ζi is non-negative. 

From the discussion above, it is ensured that patterns 

having ζ > 1 stay in another class, not in their own classes. 

Now, we investigate their importance considering their roles 

in the final discriminator both in QPSVM and VLPSVM: 

 

a) Role in case of QPSVM: From its KKT condition 

0)1))((( =+−+ iiii bxwy  , for αi ≠ 0, 

iiiiii bxwybxwy  −=+=+−+ 1))((01))(( , which 

shows that for QPSVM, there are three types of KCVs 

(patterns having αi ≠ 0) basing on ζ-values: (i) ζ = 0, (ii) 0 < 

ζ ≤ 1, and (iii) ζ > 1. Using another KKT condition, it is found 

that for patterns having ζ > 0, have α = C = penalty parameter, 

which is the highest among α values. Hence, throwing ζ > 1 

patterns not only violates a KKT condition but also throws 

members of the decision function with highest coefficient 

values that may influence the decision making significantly. 

Moreover, throwing patterns with α = C may severely affect 

the constraint 0
1

= =

N

i ii y , which maintains the 

equilibrium of the SV patterns and coefficients oriented 

mechanical analogous system for the optimum margin-based 

final discriminator. Therefore, we do not throw any pattern of 

this machine. 

b) Role in the case of VLPSVM: Here, the optimal 

values of EV coefficients along with the slack variables ζ are 

extracted from the optimization problem solved through 

primal leading no KKT condition or other constraint-based 

restriction involving the coefficient of the KCVs. These give 

us a chance to work on this machine. Experience shows that 

in VLPSVM, patterns having ζ > 1 gets comparatively very 

small values for their corresponding coefficients λ in the final 

decision function, which also makes sense after focusing on 

the first part and the second part of its cost function
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. However, agonizingly, these 

coefficient values do not vanish completely, which lead the 

corresponding patterns to be members of the decision 

function where each of them demands kernel evaluation to 

classify pattern that may not have significant and desired 

influence for correct decision. This inspires us to reconsider 

whether they should be included in the final discriminator 

concerning computational cost and accuracy. For this, we 

analyze their contribution and confusion for correct 

classification as discussed below: 

3) Contribution and confusion due to ζ > 1 patterns in 

VLPSVM: These patterns, always staying inside the opposite 

class boundaries, give higher kernel values with respect to the 

patterns of opposite class leading to confusion and lower 

kernel values with respect to the patterns of their own classes 

leading to mild contribution in the final decision function. 

Although some inlier KCVs may also create confusion by 

attracting patterns from opposite classes, they are not 

considered here to discuss as they are under a proper system 

where this confusion is very weak. 

The decision function that classifies any arbitrary training 

pattern xa having label ya is 


+=
KCVsetl

allla bxxKyxf ),()(  . If 

we consider m,n: m ∪ n = {l},m ∩ n = {},ym = −yn, then xm, 

xn are KCVs. Now as λm, λn > 0 & K(xm,xa), K(xn,xa) > 0, if 
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xxKy , xa and xm are from opposite 

classes and xm pushes xa outward to xa’s opposite class, and if 
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xxKy , xa and xn are from the same 

class and xn attracts xa to xa’s own class. But among these 

KCVs, those having ζ > 1 stay inside the boundaries of 

opposite classes give higher kernel values with the patterns of 

opposite classes that misleads the decision function and less 

kernel values with patterns of own classes that weakly leads 

the decision function. Thus aiming at higher classification 

speed and accuracy, we decide to throw these ζ > 1 KCVs 

after justifying their depth of confusion (pushing any training 

pattern outward from the pattern’s own class) and 

contribution (attracting any training pattern toward the 

pattern’s own class) with respect to all training patterns using 

the following calculation: 

Contribution depth of a ζ > 1 KCV, xO with label yO on all 

training patterns,
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Algorithm 1: Proposed RLPSVM (reduced LPSVM) 

 
1: Input: A training set {(𝑥𝑖 ,  𝑦𝑖)}𝑖=1

𝑁  

2: Output: A discriminator fRLPSVM(·) 
3: Select the best (penalty parameter, kernel parameter) ≡ (C,σ). 

4: Run VLPSVM on the training set solving the following problem: 
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λj ≥ 0; j = 1,2,…,N

 

ζi ≥ 0; i = 1,2,…,N 

 
5: Extract KCVs with labels

 
{(𝑥𝑝,  𝑦𝑝)}𝑝=1

𝑀  and the bias b from the 

VLPSVM using λl > 0. 

6: Find {λp|ζp > 1} and throw the corresponding patterns from the KCV 
set to create a new reduced KCV (RKCV) set, {xp|ζp ≤ 1 and λp > 0}. 

7: Extract RKCVs with

 

labels {(𝑥𝑗 ,  𝑦𝑗)}𝑗=1
𝑅 . 

8: bbxyw RLPSVM

R

j jjjRLPSVM  =
;)(

1
  

9: Return fRLPSVM(·) = wRLPSVM · ϕ(·) + bRLPSVM 

 

Numerous experiments on benchmark datasets using the 

mathematical expressions above show that in almost all cases, 

the ζ > 1 KCVs offer more confusion than contribution that 

supports our approach to throw ζ > 1 KCVs from the final 

discriminator. Fig. 3 is an example of such contribution 

confusion plot. Algorithm 1 summarizes the steps involved in 
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2) Patterns’ role in the final discriminator having ζ > 1:



 

the proposed reduced LPSVM, whereas Fig. 4 shows the 

decision boundaries on benchmark Banana data for QPSVM, 

VLPSVM, and the proposed RLPSVM with corresponding 

number of KCVs. 

 

 

Fig. 3. Contribution and confusion plot of training patterns having ζ > 1 
from Titanic dataset. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Decision boundaries of (a) QPSVM, (b) VLPSVM, and (c) proposed 

RLPSVM on benchmark Banana data with corresponding number of KCVs. 

 

IV. EXPERIMENTAL SET-UP AND RESULTS 

This section presents the efficiency of the proposed 

reduced LPSVM algorithm by comparing its experimental 

results with the results obtained by QPSVM and VLPSVM. 

The results are presented in two aspects, such as the 

performance and the classification cost of the algorithms. To 

evaluate the performance of the methods, nine benchmark 

datasets, namely, Banana, Breast cancer, Diabetes, Flare-

solar, Heart, Thyroid, Titanic, Twonorm, and Waveform, 

publicly available in [22] are used. All of these data have 100 

realizations of training and test set. All the experiments are 

done using Gaussian kernel. The results are obtained using 

separate fivefold cross-validation scheme for each method. A 

varied range of }2,...,2,2,2{ 12202−C  and 

}2,...,2,2,2{ 6202−  are used in cross-validation, and the 

best C and the best σ are extracted for each method. The 

average number of KCVs and test error rate of QPSVM, 

VLPSVM, and the proposed method are presented in Table I. 

It shows that the proposed RLPSVM offers similar accuracy 

with a significant reduction in the number of KCVs compared 

with QPSVM and VLPSVM with mean number of KCVs 

35.06, which is 16% of QPSVM and 68% of VLPSVM. 
 

 
Number of KCVs (the patterns that build the machine by using kernel executions) needed by our proposed machine RLPSVM and two state-of-the-art 

machines QPSVM and VLPSVM with the test error rates due to these machines on different datasets of benchmark data [22]. It can be seen that, in the case 

of all nine datasets, RLPSVM needs much smaller number of kernel executions compared with the QPSVM, which is sparse. RLPSVM demands as little as 

3% of QPSVM while classifying the Diabetes data and on an average 16% considering all nine datasets. However, despite this heavy classification cost 

reduction, classification accuracy of RLPSVM is very similar to the complex and powerful QPSVM posing only 0.39% less in case of Diabetes dataset and 

amazingly 0.17% more on an average considering all nine datasets. Moreover, It can be observed that, in the case of all nine datasets, the proposed RLPSVM 

requires much smaller or equal (in its worst case) to the number of kernel executions compared with the VLPSVM. RLPSVM demands as little as 37% kernel 

executions of VLPSVM in the case of predicting the Heart dataset and on an average 68% considering all nine datasets. Nevertheless, despite this heavy 

classification cost reduction, its accuracy is very similar to the powerful VLPSVM posing interestingly 1.93% more in the case of Heart dataset and only 

0.03% less on average considering all datasets. Notably, regarding prediction accuracy, RLPSVM outperforms other two machines separately on four of these 

datasets. 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we realize a very fast classifier with high 

accuracy by further sparsifying Vapnik’s LP SVM, which is 

already sparser. The proposed classifier requires kernel 

computation as small as up to 3% of the sparse QP SVM and 

37% of the sparser LP SVM but in average 16% of the QP 

SVM and 68% the LP SVM though posing very similar 

classification accuracy while being straight forward 

demanding least effort to train. One plausible explanation for 
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TABLE I: BENCHMARKING NUMBER OF KCVS AND TEST ERROR RATE USING DIFFERENT MACHINES



 

its exceptional performance could be that the “ζ-analysis” 

with contribution and confusion gives two folded benefits: (i) 

An indirect filtering is designed by taking only those patterns 

(in the final discriminator) that are useful for classification 

with high accuracy. (ii) We further sparsify an already sparser 

classifier by enabling much smaller number of KCVs in the 

final decision function by throwing misleading KCVs (that 

have undesired influence on the final discriminator), which 

helps both in accelerating the classification process and 

focusing on high accuracy with reducing the risk of over-

fitting simultaneously. 

Our further manipulation after the solution from VLPSVM 

fills the very minor gaps that remain from SVM method, 

which are the following: 

i) It does not emphasize on the accuracy of the classifier 

directly, instead it focuses on the error-depth 

minimization. (ii) It is difficult and not so certain to get 

the best values of the continuous-valued regularization 

parameters through cross-validation, which may lead to 

offering more patterns to be candidate for KCVs that 

increases both computational cost and the probability for 

over-fitting. 

ii) SVM problem is based on a full set of training patterns 

that also include the heavy outlier that is highly deviated 

and contaminated by noise. Inclusion of such a single 

pattern may bring a dramatic change in the solution. 

iii) Often, a number of SVs may vary heavily for very similar 

accuracy from the classifier. This could be an indirect 

effect from the outliers. 

Finally, while an efficient and accurate classifier like the 

proposed reduced LPSVM is very much essential, some 

future manipulations can be considered with it like to 

analytically find the number of ζ > 1 patterns to throw and 

the reduction rate of kernel computation relating classifier’s 

performance. 
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