
  

  

Abstract—The Internet of Things (IoT in short) have been 

experienced tremendously fast development in the past decade 

whither in theory or practice. But one of the side effects of the 

IoT is that it can create an unprecedented amount of data. As 

the typical technology, the CEP (Complex Event Processing 

CEP in short) has plays an important role in the processing of 

dealing with IoT event flow. However, how to control the huge 

amount of data injected into the network and how to fast 

transform them to end user has met the challenge. In this paper, 

an CEP model is proposed for facilitating algorithm analysis 

and formal expression. Based on the CEP model a few 

algorithm for dealing with big data problem are discussed 

formally, including fast classification of event flow and the fast 

pushing of data report service. Two case studies of EPC IoT are 

practiced, and the experiment results show the feasibility of 

proposed algorithm which is based on CEP model. 

 
Index Terms—Internet of things, complex event processing, 

Algebra model, EPC network. 

 

I. INTRODUCTION 

The term Internet of Things was first coined by Kevin 

Ashton in 1999 in the context of supply chain management 

[1]. In the past decade the definition has been more inclusive 

covering wide range of applications and IoT has become an 

emerging information field. There are several application 

domains which having been impacted by the emerging IoT. 

Personal and Home IoT at the scale of an individual or home, 

Enterprise IoT at the scale of a community, Utility IoT at a 

national or regional scale and Mobile IoT which is usually 

spread across other domains mainly due to the nature of 

connectivity and scale [2]. IoT employs a layered architecture 

which is consisted of four layers [3]: (1) Sensing Layer is a 

connection between physical and cyber worlds, such as RFID 

read, sensor, monitoring camera, etc. (2) Network Layer is the 

media to convey the collected data to upper layers for further 

processing and higher-level abstraction. (3) Middleware 

Layer is a crucial part in IoT architecture. IoT middleware is 

an effective integration of several major functions including 

communications management, devices management, data 

processing, semantic reasoning. (4) Application Layer is 

established based on the three lower layers and provides 

domain-oriented IoT applications for end-users in various 

application domains. 
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One of the obviously properties of IoT is the creation of 

an unprecedented amount of data [2]. The massive amount of 

data flowing from the environment to the Internet is a side 

effect of the IoT. Surprisingly, how to control the huge 

amount of data injected into the network from the 

environment is a problem so far mostly neglected in the IoT 

research [4]. 

It is obviously that the IoT data flowing processing is a 

kind of big data problem. How to intelligently automate the 

process of colleting and aggregating context information on a 

large scale is a big challenge. The various challenges faced in 

big data management include scalability, unstructured data, 

accessibility, real time analytics, fault tolerance and many 

more [5]. The CEP is a feasible approach to solve the big data 

problem. It is a methodology and technique paradigm for 

collecting, aggregating and analyzing event flows of 

information about things that happen (event). The goal of 

CEP is to identify meaningful events pattern and respond to 

event subscriber as quickly as possible. CEP relies on a 

number of techniques, including [6]: 

• Event-pattern detection 

• Event abstraction 

• Event filtering 

• Event aggregation and transformation 

• Modeling event hierarchies 

• Detecting relationships (such as causality, membership or 

timing) between events 

• Abstracting event-driven processes 

However, in large-scale IoT applications, the current CEP 

technology encounters the challenge of massive distributed 

data which cannot be handled by most of the current methods 

efficiently [7]. In this paper, we focus on the issue of event 

aggregating and transforming in IoT big event flows.  

The paper organized as follow. In Section II a group of 

definition about the basic conception of event and event 

operation will be illuminated formally, two key definitions 

are the Sequence and Invoke event operator which give a 

basic semantic model of event flows. We also define the CEP 

architecture and CEP model using the concept of event 

operation. Two implement techniques for dealing complex 

event with respect to IoT big event flows are discussed in the 

Section III. One is how to implement fast aggregating of 

complex events by Hadoop framework, another is fast 

pushing EPC data report service. Finally, in Section IV and 

Section V, we give related works and research conclusion. 

 

II. AN ALGEBRA MODEL OF CEP 

Commonly, the CEP model has been classified into three 

types [8]. 1)Graph-based CEP Model. Complex events are 

expressed in tree structure with its leaf nodes represent the 

primitive events. Once the corresponding event occurs, the 
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occurrence will be stored in the leaf node and pushed to its 

father node. 2)Automata-based CEP Model. Event is 

constructed into corresponding automata, set of states and 

transition functions in automata-based model. Complex event 

is successfully detected if the automata reaches an accept 

state according to the event history. 3)Petri-net-based CEP 

Model. Employ Petri_net as formal notation, the input place 

represents the primitive event and output place indicates the 

occurrence of complex event. 

In this section, we advise an algebra CEP model that use 

algebra notation to describe and deal with the event 

relationship and the event processing strategy. 

A. Eevent and Events Composition 

We initiate our discuss with basic event description. 

Definition 2.1 (Basic Event). An Event is 7-tuple: <ID; 

Domain; Alias; Type; Time; Stimulation; Location> where: 

1) ID is the identifier of an Event which differs from others.  

2) Domain is territory where we discuss the problem. 

3) Alias is an event name, for example an EPC. 

4) Type is a classification identifying one of various types 

of event. The Type relates with its domain, all types 

consist of a Type set.  

5) Time is the moment of an event occurs. 

6) Stimulation is an act of activities set those may 

stimulate an event. 

7) Location is place where an event is stimulated (or 

occurs). 

In the following part of this paper, we use Dom(U) to 

denote the universal set of Event, Dom(A) to denote a domain 

from Event A, and f(A) denote the item f of an Event A. For 

example, the item Type of Event A is expressed as Type(A). 

In this paper, Events are represented by uppercase letters (e.g. 

A; B; X; Y) and activities of Event are represented by 

lowercase letters (e.g. a; b; x; y). Activity x in a particular 

item f of a Event A is denoted as xf(A), e.g. xActivities(A). 

We also use Boolean values for activities: T when an activity 

is active and F when it is inactive. 

Definition 2.2 (Event unequal and equal). Let A and B be 

two Events in domain(A) and domain(B). Both A and B are 

unequal, denoted as AB, if anyone of the following five 

conditions are met: 

1) Different Domain, denote to Domain(A)Domain(B) 

2) Different Alias, denote to Alias(A)Alias(B) 

3) Different Type, denote to Type(A)Type(B) 

4) Different Stimulation, denote to Stimulation(A) 

Stimulation(B) 

5) Different Location, denote to Location(A) Location(B) 

Conversely, if all above five couple element of event are 

same, then say A equal B, denoted as A=B. 

It is reasonable that the Time is different of two equivalent 

events.  

Now we define Event composition operation. In essence, a 

composite is a combination of Event as the result of 

successively applying the connective operation. 

Definition 2.3 (Sequence). Let A=<IDA; DomainA; AliasA; 

TypeA; TimeA; StimulationA; LocationA>, B=<IDB; DomainB; 

AliasB; TypeB; TimeB; StimulationB; LocationB>. If the 

following 2-conditions are met: 

1) Time(A)<Time(B) 

2) Location(A)=Location(B) 

and construct a new event C that C=<IDAB; DomainA=B; 

AliasAB; TypeAB; TimeA; StimulationAB; LocationA=B>, 

meanwhile both IDAB and AliasAB present new ID and new 

Alias respectively with respect to original ID and Alias; The 

TypeAB and StimulationAB are new set composed by the 

corresponding element from Event A or Event B respectively. 

The TimeC is same with TimeA because Event A emerges 

before Event B, The LocationA=B can be coded by LocationA 

or LocationB. The new Event C is result of both A and B 

sequence composite, denoted C=AB. Conversely, say A 

latter than B. Especially, if A=B then C=A or C=B. 

The AB is an abstract of two sequence event which two 

physical entity worn sensor device are captured in same place. 

Theorem 2.1: the Sequence operation is associative, i.e. 

(AB)C=A (BC). 

Proof: Let A, B and C be three events, the following 

composition can be operated. 

(AB)C=(<IDAB; DomainA=B; AliasAB; TypeAB; 

TimeA; StimulationAB; LocationA=B>)C 

=IDABC;DomainA=B=C; AliasABC; TypeABC; TimeA; 

StimulationABC; LocationA=B=C>  

and A(BC)=<IDA; DomainA;AliasA; TypeA; TimeA; 

StimulationA; LocationA>(<IDBC; DomainB=C; AliasBC; 

TypeBC; TimeB;StimulationBC;LocationB=C>) 

=<IDABC; DomainA=B=C; AliasABC; TypeABC; TimeA; 

StimulationABC; LocationA=B=C> 

The (AB)C=A(BC) is met, therefore the theorem 

2.1 is true.  

Based on theorem 2.1 we can rewrite a (AB)C to 

ABC. this 3-events algebra expression can be expended 

into m events. 

Corollary 2.1 Let E1, E2, …, Em be m Events, the 

E1E2E3…Em is still an Event.  

Obviously, the corollary 2.1 is true. 

Now we define sequential event flow. 

Definition 2.4 (Sequence Flow). Let E1, E2, …, Em be m 

events, if E1E2E3…Em is still an event then say the 

sequence event of E1, E2, …, Em is a sequence flow.  

Definition 2.5 (Invoke). Let A=<IDA; DomainA; AliasA; 

TypeA; TimeA; StimulationA; LocationA>, B=<IDB; DomainB; 

AliasB; TypeB; TimeB; StimulationB; LocationB>. If the 

following 3-conditions are met: 

1) Domain(A)=Domain(B) 

2) Type(A)=Type(B) 

3) Time(A)<Time(B) 

and construct a new Event C that C=<IDA→B;DomainA=B; 

AliasA→B; TypeA=B; TimeA; StimulationAB; LocationAB>, 

meanwhile the IDA→B and AliasA→B present new ID and Alias 

respectively, The TypeA=B can be coded by TypeA or TypeB 

and StimulationAB={s| sStimulation(A) or Stimulation(B)} 

and LocationAB={p| pLocaion(A) or Location(B)}, the 

TimeC is same with TimeA because Event A emerges before 

Event B. The new Event C is result of Event A invoke B, 

denoted C=A→B.  

The A→B is an abstract of two sequence event which a 

physical entity worn sensor device is captured in different 

place of same domain. 

Theorem 2.2: the Invoke operation is associative, i.e. 

(A→B)→C=A→(B→C). 

Proof: it is similar with the theorem 2.1. 
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Corollary 2.2 Let E1, E2, …, Em be m Events, the 

E1→E2→E3→…→Em is still an Event.  

We name the < E1, E2, …, Em> is a invoke event flow. 

Definition 2.6 (Cause-Effect Flow). Let E1, E2, …, Em be 

m Events, if E1→E2→E3→…→Em is still an Event then 

speak of E1, E2, …, Em as cause-effect flow. 

Definition 2.7 (synchronization). Let A=<IDA; DomainA; 

AliasA; TypeA; TimeA; StimulationA; LocationA>, B=< IDB; 

DomainB; AliasB; TypeB; TimeB; StimulationB; LocationB>, if 

the following 5-conditions are met: 

1) Alias(A) Alias(B) 

2) Type(A)=Type(B) 

3) Time(A)=Time(B) 

4) Location(A)Location(B)  

5) (a, b)Negotiation, aStimulation(A) and 

bStimulation(B),  

and construct a new Event C=<IDAΘB; DomainA=B; AliasAΘB; 

TypeA=B; TimeA=B; StimulationAΘB; LocationAB>, 

meanwhile both IDAΘB and AliasAΘB present new ID and new 

Alias respectively with respect to original ID and Alias. The 

StimulationAΘB={(a, b)Negotiation, aStimulation(A) and 

bStimulation(B)}, LocationAB={p| pLocation(A) or 

Location(B)}. The new Event C is result of A synchronously 

collaborating B, denoted C=AΘB. 

The collaborative operator implies that two different events 

occur at exactly time on negotiation in different place. The 

Negotiation is set of internal activities, for example, (read, 

write) and (send, receive).  

A related event operation is parallel composition which the 

Negotiation is null.  

Definition 2.8 (asynchronization). Let A=<IDA; 

DomainA; AliasA; TypeA; TimeA; StimulationA; LocationA>, 

B= <IDB; DomainB; AliasB; TypeB; TimeB; StimulationB; 

LocationB>, if the following 5-conditions are met: 

1) Alias(A) Alias(B) 

2) Type(A)=Type(B) 

3) Time(A) Time(B) 

4) Location(A)Location(B)  

5) (a,b)Negotiation, aStimulation(A) and 

bStimulation(B) 

and construct a new Event C=<IDA||B; DomainA=B; AliasA||B; 

TypeA=B;TimeAB; Stimulation; LocationAB>, meanwhile 

both IDA||B and AliasA||B present new ID and new Alias 

respectively with respect to original ID and Alias; the 

TimeAB and LocationAB are new set constructed by the 

corresponding element from event A and event B respectively. 

The new Event C is result of Event A asynchronously 

collaborating Event B, denoted C=A|| B. 

Theorem 2.3: Both synchronous and asynchronous 

operation are associative individually, i.e. 

(AΘB)ΘC=AΘ(BΘC), (A||B)||C=A||(B||C).  

Proof: it is similar with the theorem 2.1. 

Theorem 2.4: Both synchronous and asynchronous 

operation are commutative individually, i.e. AΘB=BΘA, 

A||B=B||A).  

Proof: Based on the definition 2.7 and 2.8 the theorem 2.4 

is true. 

Corollary 2.3 Let E1, E2, …, Em be m Events, the both 

E1ΘE2ΘE3Θ…ΘEm and E1||E2||E3||…||Em are still an Event 

individually.  

Theorem 2.5: The asynchronous operation is contributive 

with respect to invoke operation. i.e.: (A→B)||C=A||C→B||C. 

Proof: We only need to prove the two sides of the equation 

(A→B)||C=A||C→B||C is established, i.e. satisfy the quality 

definition given in Definition 2.2. We only prove that the 

fourth of the five conditions is true. 

Let A=<IDA; DomainA; AliasA; TypeA; TimeA; 

StimulationA; LocationA>, B=<IDB; DomainB; AliasB; TypeB; 

TimeB; StimulationB; LocationB> and C=<IDc; Domainc; 

Aliasc; Typec; Timec; Stimulationc; Locationc> be three 

events in Dom(U).  

(A→B)||C=<IDA→B; DomainA=B; AliasA→B; TypeA=B; 

TimeA; StimulationAB; LocationAB>||C=<IDA→B||C; 

DomainA=B=C; AliasA=B||C; TypeA=B=C; TimeAC; 

Stimulation(AB)C; Location ABC> and 

A||C→B||C=< IDA||B; DomainA=B; AliasA||B; TypeA=C; 

TimeAC; StimulationAC; LocationAC>→B||C = <IDA||C→A||B; 

DomainA=C=B; AliasA||C→A||B; TypeA=C=B; TimeAC; 

Stimulation (AC)(BC); LocationABC>. 

See above two equation, the Simulation(AB)C= 

SimulationA||C or SimulationB||C and Stimulation(AC)(BC)   

=Stimulation(A||C) or Stimulation(B||C). Let IDA→B||C=IDA||C→A||B; 

AliasA→B||C=AliasA||C→A||B, hence (A→B)||C=A||C→B||C.  

It is feasible to let IDA→B||C same with IDA||C→A||B and 

AliasA→B||C same with AliasA||C→A||B because both of them are 

only a namely string. 

B. An Algebra Model of CEP 

Based on event composite operation we can define the 

CEP model. 

Definition 2.9 (CEP Architecture). Let U be a domain. A 

CEP architecture is defined as: 

1) An event itself is CEP architecture. 

2) The result of applying a finite number composite 

operation of events is CEP architecture.  

CEP architecture is denoted T=<E, O>, where E is set of 

events and O is a set of event operations.  

It is able to prove that the events with respect to all 

composite operators construct an algebraic system. 

Theorem 2.6 Let T=<E, O> be a CEP architecture, T is an 

algebraic system with respect to any event composite 

operation OPiO.  

Proof: This theorem follows the closure property of all 

composite operation.  

In order to facilitate big data analysis, it is necessary to 

define the CEP architecture. 

Definition 2.10 (Horizontal/Vertical CEP Model). Let U 

be a domain. A Vertical CEP model is defined as T=<E, O>, 

where the E=(A1, A2, … Am-1, Am) is a tuple of m sequence 

events flow, i.e. each Ak is sequence events flow, and O is a set 

of event operations. The Horizontal CEP Model is defined as 

T=<E, O>, where the E=(B1, B2, … Bm-1, Bm) is a tuple of m 

cause-effect events flow, i.e. each Bk is cause-effect events 

flow, and O is a set of event operations.  

The CEP architecture has the Hierarchical properties. i.e. 

architecture is constructed by compositing events. 

Theorem 2.7: Let E1=(A1, A2, A3…, Am) be a Vertical CEP 

model, make an asynchronization composite E1||E1=((A1|| 

Aj1),…,(Am||Ajm), (Ai1||A1), …, (Aim||Am)) = (Ai1|| Aj1, Ai2|| 

Aj2, …, Aik||Ajk). Let the (Aik||Ajk)= (Ai1||Aj1, Ai2|| Aj2,…, 
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Aik||Ajk), then both Aik and Ajk must be couple of negotiated 

events. 

Proof: consider the E1||E1=(A1||E1),…,(Am||E1), 

(E1||A1),…,(E1||Am)). Since only the couple of negotiated 

events to be cared, other events can be cancelled such that 

E1||E1=((A1||Aj1),…,(Am||Ajm),(Ai1||A1),…, (Ain||Am), 

(Aik||Ajk), where (Aik,Ajk) are couples of negotiated events. 

Again, all those negotiated event couples have already are 

expressed in (Aik||Ajk) therefore we can cancel out those 

remained expression so that the theorem 2.7 hold.  

Corollary 2.4：If the couple of negotiated events (Aik||Ajk) 

in theorem 2.7 are cause-effect event flow, i.e. 

E1=(A1,A2,A3…,Am) be a Horizontal CEP model, make an  

asynchronization composite E1||E1=((A1||Aj1)→…→ (Am||Ajm) 

→(Ai1||A1)→…→(Aim||Am))=(Ai1||Aj1→ Ai2||Aj2→…→ Aik|| 

Ajk), let (Aik||Ajk)= (Ai1||Aj1→ Ai2||Aj2→…→Aik||Ajk), then 

both Aik and Ajk must be couple of negotiated events.  

The theorem 2.7 and corollary 2.4 can help us to deduce a 

useful events pattern. The designer of CEP system can set 

negotiation conditions with respect to domain knowledge or 

user need. For example, all the events of cause-effect events 

flow are in transaction event which must hold the atomicity 

of the transactional event. The following algorithm show how 

to classify for big data flow based on theorem 2.7. 

Algorithm 2.1 Classifying events of big data flow 

Input: A vertical CEP model E=(A1, A2, A3,…,Am) 

Output: Aik||Ajk where (Aik, Ajk) is couple of negotiated 

events. 

begin 

for each Ai(A1, A2, A3, …, Am)do // (A1, A2, 

A3,…,Am)is data structure of E 

for each Aj(A1, A2, A3, …, Am )do 

if 

(Stimulation(Aik),Stimulation(Ajk))Negotiati

on then 

Bk[i,j]= Aik||Ajk; //create upper level 

asynchronous event flow. 

Sum=Sum+1; // count the number 

of negotiated events 

end 

end 

end. 

In order to improve event aggregation and transformation, 

it is the intents of this paper, an algorithm for pushing event 

report is proposed. 

Algorithm 2.2: Pushing event report 

Input: Created cause-effect flow E=(Ai1, Ai2, Ai3,…, Aim) 

and a statistic report of events flow. 

Output: Aik||Ajk where (Aik, Ajk) is couple of negotiated 

events 

begin 

for each Aik do 

IPik=edit(Aik) //parse the Aik to get IP and 

interface of upper node of CEP model.. 

for each IPik do 

push(IPik, Aik,report(Aik); 

end 

end 

end 

The time efficiency of Algorithm 5.1 is O(HL), where H is 

the length of the sequence event flow and L is the maximum 

length of the cause-effect event flows. The time efficiency of 

Algorithm 5.2 is O(n2) where n is the number of elements in 

the set for which the linear dependency is considered. 

 

III. APPLICATION OF CEP MODEL 

In this section we demonstrate two experiments results in 

which the reader may better understand the CEP algebra 

Model. 

A. Backgroud 

As standards organization, the EPCglobal published a 

framework for developing application of EPC(Electronic 

Product Code, EPC in short) network, which is a kind of IoT, 

in the year 2007 [9]. In order to leave flexibility to it user, he 

only gives a series of interface for implement. The 

ALE(Application Layer Event, ALE in short) [10] is one of 

his interface through which clients may obtain filtered 

consolidated EPC data from a variety of RFID(Radio 

Frequency Identification, RFID in short) reader. It’s 

objective is that reduces the volume of EPC data that comes 

directly from RFID readers into coarser “events” of interest 

to applications. The processing done at this layer typically 

involves: (1) receiving EPCs from one or more RFID readers, 

(2) accumulating data over intervals of time, filtering to 

eliminate duplicate EPCs that are not of interest, and 

counting and grouping EPCs to reduce the volume of data; 

and (3) reporting in various forms such as XML, Database 

and so forth. The ALE model is showed as follow. 

 

 
Fig. 1. Framework for processing IoT big data.  

 

The framework showed in Fig. 1 meet the CEP algebra 

model perfectly, so that the algorithm 2.1 and algorithm 2.2 

can guide us to accomplish Transactional Event Subscription. 

The transactional event is one of four event type of 

EPC-based IoT. It has same meaning with the concept of 

Data Base Transaction. Therefore, the ALE must collect and 

filter all sequence events flow emerged in each EPC reader 

for transactional event with the negotiation condition of Type 

(Transaction). 

B. Transactional Event Subcription 

In order to compare the performance of deal with huge 
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volume EPC data between Cluster and PC, two different 

experimental systems were established. The environment 

parameter of cluster system and PC are showed in Table I. 
 

TABLE I: CONFIGURATION OF EXPERIMENT PLATFORM 

Num Type CUP System Software 

1 Cluster 2.4GHZ Linux  Hadoop-1* 

2 3.0GHZ+4Core Windows Self-made 

 

Without loss of generality, the EPC sgtin-96 and RFID IoT 

as experiment platform. The transactional event can be 

initiated as follow: 

<ID=any string, Alias=sgtin-96, Domain=EPC IoT, 

Type=transaction, Simulation=read, Location=all point of 

reader>. 

An EPC generator software is employed to create huge 

volume EPC Data in minute showed in the Table II. 
 

TABEL II: COLLECTING AND FILTERING TIME 

Num Data volume(T) Cluster ime(min) PC Time(min) 

1 200 1333 883 

2 300 1433 1433 
3 400 1550 1833 

4 500 1633 2233 

5 1024 3166 3700 

 

The following program segment is main part of dealing 

with transactional events by Map_ Reduce function support 

by Apache Hadoop 0.23.10 

 
public class EPClassifyMapper extends Mapper< LongWritable,Text, 

Text ,IntWritable>{ 

… 
private FilterPattern pattern; 

… 
public class EPClassifyMapper extends Mapper< LongWritable,Text, 

Text ,IntWritable>{ 

… 
private FilterPattern pattern; 

… 
protected void map(LongWritable key, Text values, Context context) 

throws IOException, InterruptedException { 

 …. // initial code 
 if(pattern.isGroup()) 

{ String temp = regex; 
   for(int index: pattern.getIndexs()) 

{if(index != -1){regexs[index] = strs[index]; }} 

   StringBuffer buffer = new StringBuffer(); 
   for(int i=0;i<regexs.length;i++) 

{buffer.append(regexs[i]); 
     if(pattern.match(str)) 

{value.set(1); 

     context.write(writeKey,value);}}} 

catch(ArrayIndexOutOfBoundsException e){…} 

public class EPClassifyReducer extends Reducer<Text, IntWritable, 
Text, IntWritable>{ 

// initial code 

protected void reduce(Text key, Iterable<IntWritable> values,Context 
context) throws IOException, InterruptedException { 

 int count = 0; 

 for(IntWritable n : values) 
{count += n.get(); } 

    value.set(count); 
    context.write(key, value);}} 

Fig. 2. Map_Reduce code of collecting EPC pattern. 

 

where the EPC Pattern refer to the following: 

urn:epc:pat:type_i:field_i_1.field_i_2.field_i_3... . 

Meanwhile the field_i_j take an item from *, digital,  

[lo-hi] and X. the pat takes the value sgtin-96[11]. For 

example, urn:epc:pat: sgtin-96:3.*.*.[5000-9999]. 

Fig. 3 is corresponding graph of Table II. Obviously, the 

cluster system consume less time than PC when the data 

volume is over 300G. 
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Fig. 3. Collecting and filtering time of cluster and PC.  

 

C. Pushing EPC Data Report Service 

In this section we demonstrate the pushing service have 

better performance than getting service based on algorithm 2.  

The Web Service is a popular technical method that 

provides communications between two electronic devices 

over the World Wide Web. It is a software function provided 

at a network address over the web with the service always on  

as in the concept of utility computing [12]. 

 

 
Fig. 4. Service queue for pushing. 

 

It can identify two major classes of Web services: 

• REST(Representational state transfer (REST)) compliant 

Web services,  

• Arbitrary Web services, in which the service may expose 

an arbitrary set of operations.  

In this paper a new WSDL schema was established in 

which bidirectional web service request can be described. We 

use a string to mark the direction in WSDL schema. The 

“callee” presents provider of web resources, and the “caller” 

presents applier. The “callee” act as original meaning of Web 

Service and “caller” is new Web Service pattern. 

For the reason of limited pages, we only demonstrate the 

evidence of new pushing service pattern (demonstrated on 

Fig. 4) has a better performance than the old getting service 

pattern.  

First we focus on the waiting time. It has been proved that 

the time of a queue waiting for service meet exponential 

distribution ( ) 1-
t

F t e
−

= , and pushing service pattern spends 

less residents time than getting service pattern, that means the 

value of  is more larger in pushing pattern than getting 

pattern with respect to the meaning of (=np, i.e. the total 

experimental times product the probability for sample). 

Therefore, we can compare their performance on =0.5, 0.6 

for getting service pattern and =1, 2, 3 for pushing service 

with time t[0, 12].  

Another performance aspect is service times. It also has 

been proved that the service times for a queue meet Poisson 
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Distribution and pushing service pattern has lager value of  

than getting service pattern with respect to the meaning of . 

Therefore, we can compare their performance on =0.5, 0.6 

for getting service pattern and =1, 2, 3 for pushing service 

with constant times and stochastic times at constant time, i.e. 

t=12, c=12, =5, 10, 20 and n=10, 20. 

Fig. 5 indicates that the rate of push service is high, and 

the time is relatively small, and the Fig. 6 show that the 

number of services has increased. Both the Fig. 5 and the Fig. 

6 show the pushing service pattern has better performance 

than the getting service pattern. 

 

 
Fig. 6. Different performance in service times. 

 

 
Fig. 5. Difference in waiting time.  

 

IV. RELATED WORK 

The Internet of Things have been experienced 

tremendously fast development during the past decade 

whither in theory or practice. Jayavardhana Gubbi, et al. [2] 

given a vision on architecture, future developing directions of 

IoT. There are four application directions or domains: 

Personal and Home, Enterprise, Utilities and Mobile are 

categorized in his paper. As a side effect of IoT application, 

the Jayavardhana Gubbi also pointed out one of most 

important outcomes is the creation of an unprecedented 

amount of data, the technique for collecting, storing and 

processing come up against numerous challenges. Meng Ma, 

et al. [3] pay a attention to the big data processing technology 

of IoT, and suggest a layered architecture of IoT which is 

consisted of four layers, i.e. Sensing Layer, Network Layer, 

Middleware Layer, Application Layer. C. C. Aggarwal, et al. 

[13] described the IoT as massive real-time data sensor: “IoT 

is designed to connect thousands of objects in large scale. 

Communications between different entities in dynamic 

networks generate a large volume of heterogeneous data in 

the form of real-time, high-speed, uninterrupted data flows. 

Scalable storage, filtering and compression schemes are 

essential for efficient big data processing.” In addition, the 

related observation and review can see such as [14]-[17]. 

The CEP is a prospective approach to IoT massive 

real-time data processing. Meng Ma, et al. [3] classify the 

CEP model for IoT event processing into four type, (1) 

Graph-based CEP Model. In this model, complex events are 

expressed in tree structure. (2) Automata-based CEP Model. 

All events are constructed into corresponding automata, set 

of states and transition functions in automata-based model. (3) 

Petri-net-based CEP Model. Complex events are transformed 

into corresponding Petri_net in Petri-net-based CEP model. 

Y.H. Wang, et al. [18] argues that the CEP technology 

encounters the challenge of massive distributed data because 

of weak processing ability by most of the current methods 

efficiently. A high-performance complex event processing 

method over distributed probabilistic event flows is proposed 

against the big challenge. In this paper a contributed method 

uses probabilistic nondeterministic finite automaton and 

active instance stacks to process a complex event in both 

single and distributed probabilistic event flows. A parallel 

algorithm is designed to improve the performance. However, 

the authors only demonstrate the high level patterns for deal 

with IoT event instead of contributing any confident 

technology and the experiment results only base on 

simulation software, so that the contribution is discounted. 

Nicholas Poul, et al. [19] propose a novel approach to 

high-level patterns of event match in CEP in contrast with 

database management systems (DBMSs in short). The new 

method can specify queries as high-level patterns of event, 

and if the CEP system detects complex events matching these 

queries the system notices clients of matches in soft real time. 

Omran Saleh, et al. [20] consider that most of the conducted 

works in sensor network field avert to address the wider 

issues of how to integrate CEP with in-network processing. 

The author employs the algebraic method to support 

sampling, filtering and preprocessing events, such as 

disjunction, sequence, conjunction and some forms of 

negation operator. All above so called algebraic operator only 

carry out common data arrangement and week support for 

event pattern mining. Analogous research works published in 

[21], [22]. 

As a new research area the big data processing has became 

a hot topic. Weizhong Yan, et al. [23] consider the Power 

Iteration Clustering(PIC in short) is not enough suitable to 

Big Data Processing, and expand PIC’s data scalability by 

implementing a parallel power iteration clustering (p-PIC). 

Aditya B. Patel [24] reports the experimental work on big 

data problem and its optimal solution using Hadoop cluster, 

Hadoop Distributed File System (HDFS) for storage and 

using parallel processing to process large data sets using Map 

Reduce programming framework. Wen Xiong [25] 

emphasize the priority of benchmarking big data and 

discover much more redundancy existed in these pioneering 

benchmark suites and give three findings: how to remove 

redundancy safely, input data sets for data analysis and 

benchmarks can be used as academic research. Cristina L. 

Abad [26] employ Markov renewal process model for 

evaluating performance of Big Data processing, and provide 

two kind of algorithm for creating two workflow traces, one 
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for popularity and another for temporal locality. Analogous 

report and review published in [27], [28]. 

 

V. CONCLUSION 

In this paper, we propose an algebraic model for CEP and 

demonstrate its application in IoT Big Data processing. Our 

contributions can be concluded as follow: 

1) Proposed a mathematic CEP model that can facilitate the 

pre-analysis and design for Big Data processing 

algorithm. The contributed Horizontal/Vertical CEP 

Model considers event flow with sequence and 

cause-effect two direction, so that a complex event 

relationship can be described clearly. The experimental 

results have proved that the CEP model can support to 

collect and filter IoT Big Data flow. 

2) In contrast with the traditional Web service, the 

contributed pushing service pattern can send event report 

to subscriber actively instead of waiting for visitor which 

the Web Service does. We also demonstrate our novel 

technique for processing Big Data flow by using Apache 

Hadoop, and the experiment result show that it is suitable 

for the CEP model. 

Algebraic approach to CEP is far more complex than what 

a single model can describe. There are many more properties 

of CEP architecture that need further exploration. Here are 

the specific problems for our future research: 

1) To implement a tool for supporting the CEP automatic 

analysis, involved defined event pattern filtering 

algorithms and the complex event report generating 

algorithms. 

2) To apply to a large number of real cases to support and 

improve the approach of algebraic modeling proposed in 

this paper.  

We believe that IoT Big Data processing system design 

should and can be specified and modeled with a sound 

theoretical framework. This paper is an attempt toward this 

direction. 
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