

Abstract—The Internet of Things (IoT in short) have been

experienced tremendously fast development in the past decade

whither in theory or practice. But one of the side effects of the

IoT is that it can create an unprecedented amount of data. As

the typical technology, the CEP (Complex Event Processing

CEP in short) has plays an important role in the processing of

dealing with IoT event flow. However, how to control the huge

amount of data injected into the network and how to fast

transform them to end user has met the challenge. In this paper,

an CEP model is proposed for facilitating algorithm analysis

and formal expression. Based on the CEP model a few

algorithm for dealing with big data problem are discussed

formally, including fast classification of event flow and the fast

pushing of data report service. Two case studies of EPC IoT are

practiced, and the experiment results show the feasibility of

proposed algorithm which is based on CEP model.

Index Terms—Internet of things, complex event processing,

Algebra model, EPC network.

I. INTRODUCTION

The term Internet of Things was first coined by Kevin

Ashton in 1999 in the context of supply chain management

[1]. In the past decade the definition has been more inclusive

covering wide range of applications and IoT has become an

emerging information field. There are several application

domains which having been impacted by the emerging IoT.

Personal and Home IoT at the scale of an individual or home,

Enterprise IoT at the scale of a community, Utility IoT at a

national or regional scale and Mobile IoT which is usually

spread across other domains mainly due to the nature of

connectivity and scale [2]. IoT employs a layered architecture

which is consisted of four layers [3]: (1) Sensing Layer is a

connection between physical and cyber worlds, such as RFID

read, sensor, monitoring camera, etc. (2) Network Layer is the

media to convey the collected data to upper layers for further

processing and higher-level abstraction. (3) Middleware

Layer is a crucial part in IoT architecture. IoT middleware is

an effective integration of several major functions including

communications management, devices management, data

processing, semantic reasoning. (4) Application Layer is

established based on the three lower layers and provides

domain-oriented IoT applications for end-users in various

application domains.

Manuscript received July 12, 2019; revised October 10, 2019. This work

was supported in part by Natural Science Foundation of China (Grant No:
61672041, 61370051). It is also partly supported by Beijing Government and

Education Committee (Grant No. PHR201107107).

Jing Sun and Huiqun Zhao are with Computer School, North China
University of Technology, Beijing 100144 China (e-mail:

sunjing8248@163.com, zhaohq6625@sina.com).

One of the obviously properties of IoT is the creation of

an unprecedented amount of data [2]. The massive amount of

data flowing from the environment to the Internet is a side

effect of the IoT. Surprisingly, how to control the huge

amount of data injected into the network from the

environment is a problem so far mostly neglected in the IoT

research [4].

It is obviously that the IoT data flowing processing is a

kind of big data problem. How to intelligently automate the

process of colleting and aggregating context information on a

large scale is a big challenge. The various challenges faced in

big data management include scalability, unstructured data,

accessibility, real time analytics, fault tolerance and many

more [5]. The CEP is a feasible approach to solve the big data

problem. It is a methodology and technique paradigm for

collecting, aggregating and analyzing event flows of

information about things that happen (event). The goal of

CEP is to identify meaningful events pattern and respond to

event subscriber as quickly as possible. CEP relies on a

number of techniques, including [6]:

• Event-pattern detection

• Event abstraction

• Event filtering

• Event aggregation and transformation

• Modeling event hierarchies

• Detecting relationships (such as causality, membership or

timing) between events

• Abstracting event-driven processes

However, in large-scale IoT applications, the current CEP

technology encounters the challenge of massive distributed

data which cannot be handled by most of the current methods

efficiently [7]. In this paper, we focus on the issue of event

aggregating and transforming in IoT big event flows.

The paper organized as follow. In Section II a group of

definition about the basic conception of event and event

operation will be illuminated formally, two key definitions

are the Sequence and Invoke event operator which give a

basic semantic model of event flows. We also define the CEP

architecture and CEP model using the concept of event

operation. Two implement techniques for dealing complex

event with respect to IoT big event flows are discussed in the

Section III. One is how to implement fast aggregating of

complex events by Hadoop framework, another is fast

pushing EPC data report service. Finally, in Section IV and

Section V, we give related works and research conclusion.

II. AN ALGEBRA MODEL OF CEP

Commonly, the CEP model has been classified into three

types [8]. 1)Graph-based CEP Model. Complex events are

expressed in tree structure with its leaf nodes represent the

primitive events. Once the corresponding event occurs, the

A Novel CEP Model and Its Applications in Internet of

Things Big Data Processing

Jing Sun and Huiqun Zhao

doi: 10.18178/ijmlc.2019.9.6.864

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

721

http://en.wikipedia.org/wiki/Abstraction

occurrence will be stored in the leaf node and pushed to its

father node. 2)Automata-based CEP Model. Event is

constructed into corresponding automata, set of states and

transition functions in automata-based model. Complex event

is successfully detected if the automata reaches an accept

state according to the event history. 3)Petri-net-based CEP

Model. Employ Petri_net as formal notation, the input place

represents the primitive event and output place indicates the

occurrence of complex event.

In this section, we advise an algebra CEP model that use

algebra notation to describe and deal with the event

relationship and the event processing strategy.

A. Eevent and Events Composition

We initiate our discuss with basic event description.

Definition 2.1 (Basic Event). An Event is 7-tuple: <ID;

Domain; Alias; Type; Time; Stimulation; Location> where:

1) ID is the identifier of an Event which differs from others.

2) Domain is territory where we discuss the problem.

3) Alias is an event name, for example an EPC.

4) Type is a classification identifying one of various types

of event. The Type relates with its domain, all types

consist of a Type set.

5) Time is the moment of an event occurs.

6) Stimulation is an act of activities set those may

stimulate an event.

7) Location is place where an event is stimulated (or

occurs).

In the following part of this paper, we use Dom(U) to

denote the universal set of Event, Dom(A) to denote a domain

from Event A, and f(A) denote the item f of an Event A. For

example, the item Type of Event A is expressed as Type(A).

In this paper, Events are represented by uppercase letters (e.g.

A; B; X; Y) and activities of Event are represented by

lowercase letters (e.g. a; b; x; y). Activity x in a particular

item f of a Event A is denoted as xf(A), e.g. xActivities(A).

We also use Boolean values for activities: T when an activity

is active and F when it is inactive.

Definition 2.2 (Event unequal and equal). Let A and B be

two Events in domain(A) and domain(B). Both A and B are

unequal, denoted as AB, if anyone of the following five

conditions are met:

1) Different Domain, denote to Domain(A)Domain(B)

2) Different Alias, denote to Alias(A)Alias(B)

3) Different Type, denote to Type(A)Type(B)

4) Different Stimulation, denote to Stimulation(A)

Stimulation(B)

5) Different Location, denote to Location(A) Location(B)

Conversely, if all above five couple element of event are

same, then say A equal B, denoted as A=B.

It is reasonable that the Time is different of two equivalent

events.

Now we define Event composition operation. In essence, a

composite is a combination of Event as the result of

successively applying the connective operation.

Definition 2.3 (Sequence). Let A=<IDA; DomainA; AliasA;

TypeA; TimeA; StimulationA; LocationA>, B=<IDB; DomainB;

AliasB; TypeB; TimeB; StimulationB; LocationB>. If the

following 2-conditions are met:

1) Time(A)<Time(B)

2) Location(A)=Location(B)

and construct a new event C that C=<IDAB; DomainA=B;

AliasAB; TypeAB; TimeA; StimulationAB; LocationA=B>,

meanwhile both IDAB and AliasAB present new ID and new

Alias respectively with respect to original ID and Alias; The

TypeAB and StimulationAB are new set composed by the

corresponding element from Event A or Event B respectively.

The TimeC is same with TimeA because Event A emerges

before Event B, The LocationA=B can be coded by LocationA

or LocationB. The new Event C is result of both A and B

sequence composite, denoted C=AB. Conversely, say A

latter than B. Especially, if A=B then C=A or C=B.

The AB is an abstract of two sequence event which two

physical entity worn sensor device are captured in same place.

Theorem 2.1: the Sequence operation is associative, i.e.

(AB)C=A (BC).

Proof: Let A, B and C be three events, the following

composition can be operated.

(AB)C=(<IDAB; DomainA=B; AliasAB; TypeAB;

TimeA; StimulationAB; LocationA=B>)C

=IDABC;DomainA=B=C; AliasABC; TypeABC; TimeA;

StimulationABC; LocationA=B=C>

and A(BC)=<IDA; DomainA;AliasA; TypeA; TimeA;

StimulationA; LocationA>(<IDBC; DomainB=C; AliasBC;

TypeBC; TimeB;StimulationBC;LocationB=C>)

=<IDABC; DomainA=B=C; AliasABC; TypeABC; TimeA;

StimulationABC; LocationA=B=C>

The (AB)C=A(BC) is met, therefore the theorem

2.1 is true.

Based on theorem 2.1 we can rewrite a (AB)C to

ABC. this 3-events algebra expression can be expended

into m events.

Corollary 2.1 Let E1, E2, …, Em be m Events, the

E1E2E3…Em is still an Event.

Obviously, the corollary 2.1 is true.

Now we define sequential event flow.

Definition 2.4 (Sequence Flow). Let E1, E2, …, Em be m

events, if E1E2E3…Em is still an event then say the

sequence event of E1, E2, …, Em is a sequence flow.

Definition 2.5 (Invoke). Let A=<IDA; DomainA; AliasA;

TypeA; TimeA; StimulationA; LocationA>, B=<IDB; DomainB;

AliasB; TypeB; TimeB; StimulationB; LocationB>. If the

following 3-conditions are met:

1) Domain(A)=Domain(B)

2) Type(A)=Type(B)

3) Time(A)<Time(B)

and construct a new Event C that C=<IDA→B;DomainA=B;

AliasA→B; TypeA=B; TimeA; StimulationAB; LocationAB>,

meanwhile the IDA→B and AliasA→B present new ID and Alias

respectively, The TypeA=B can be coded by TypeA or TypeB

and StimulationAB={s| sStimulation(A) or Stimulation(B)}

and LocationAB={p| pLocaion(A) or Location(B)}, the

TimeC is same with TimeA because Event A emerges before

Event B. The new Event C is result of Event A invoke B,

denoted C=A→B.

The A→B is an abstract of two sequence event which a

physical entity worn sensor device is captured in different

place of same domain.

Theorem 2.2: the Invoke operation is associative, i.e.

(A→B)→C=A→(B→C).

Proof: it is similar with the theorem 2.1.

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

722

Corollary 2.2 Let E1, E2, …, Em be m Events, the

E1→E2→E3→…→Em is still an Event.

We name the < E1, E2, …, Em> is a invoke event flow.

Definition 2.6 (Cause-Effect Flow). Let E1, E2, …, Em be

m Events, if E1→E2→E3→…→Em is still an Event then

speak of E1, E2, …, Em as cause-effect flow.

Definition 2.7 (synchronization). Let A=<IDA; DomainA;

AliasA; TypeA; TimeA; StimulationA; LocationA>, B=< IDB;

DomainB; AliasB; TypeB; TimeB; StimulationB; LocationB>, if

the following 5-conditions are met:

1) Alias(A) Alias(B)

2) Type(A)=Type(B)

3) Time(A)=Time(B)

4) Location(A)Location(B)

5) (a, b)Negotiation, aStimulation(A) and

bStimulation(B),

and construct a new Event C=<IDAΘB; DomainA=B; AliasAΘB;

TypeA=B; TimeA=B; StimulationAΘB; LocationAB>,

meanwhile both IDAΘB and AliasAΘB present new ID and new

Alias respectively with respect to original ID and Alias. The

StimulationAΘB={(a, b)Negotiation, aStimulation(A) and

bStimulation(B)}, LocationAB={p| pLocation(A) or

Location(B)}. The new Event C is result of A synchronously

collaborating B, denoted C=AΘB.

The collaborative operator implies that two different events

occur at exactly time on negotiation in different place. The

Negotiation is set of internal activities, for example, (read,

write) and (send, receive).

A related event operation is parallel composition which the

Negotiation is null.

Definition 2.8 (asynchronization). Let A=<IDA;

DomainA; AliasA; TypeA; TimeA; StimulationA; LocationA>,

B= <IDB; DomainB; AliasB; TypeB; TimeB; StimulationB;

LocationB>, if the following 5-conditions are met:

1) Alias(A) Alias(B)

2) Type(A)=Type(B)

3) Time(A) Time(B)

4) Location(A)Location(B)

5) (a,b)Negotiation, aStimulation(A) and

bStimulation(B)

and construct a new Event C=<IDA||B; DomainA=B; AliasA||B;

TypeA=B;TimeAB; Stimulation; LocationAB>, meanwhile

both IDA||B and AliasA||B present new ID and new Alias

respectively with respect to original ID and Alias; the

TimeAB and LocationAB are new set constructed by the

corresponding element from event A and event B respectively.

The new Event C is result of Event A asynchronously

collaborating Event B, denoted C=A|| B.

Theorem 2.3: Both synchronous and asynchronous

operation are associative individually, i.e.

(AΘB)ΘC=AΘ(BΘC), (A||B)||C=A||(B||C).

Proof: it is similar with the theorem 2.1.

Theorem 2.4: Both synchronous and asynchronous

operation are commutative individually, i.e. AΘB=BΘA,

A||B=B||A).

Proof: Based on the definition 2.7 and 2.8 the theorem 2.4

is true.

Corollary 2.3 Let E1, E2, …, Em be m Events, the both

E1ΘE2ΘE3Θ…ΘEm and E1||E2||E3||…||Em are still an Event

individually.

Theorem 2.5: The asynchronous operation is contributive

with respect to invoke operation. i.e.: (A→B)||C=A||C→B||C.

Proof: We only need to prove the two sides of the equation

(A→B)||C=A||C→B||C is established, i.e. satisfy the quality

definition given in Definition 2.2. We only prove that the

fourth of the five conditions is true.

Let A=<IDA; DomainA; AliasA; TypeA; TimeA;

StimulationA; LocationA>, B=<IDB; DomainB; AliasB; TypeB;

TimeB; StimulationB; LocationB> and C=<IDc; Domainc;

Aliasc; Typec; Timec; Stimulationc; Locationc> be three

events in Dom(U).

(A→B)||C=<IDA→B; DomainA=B; AliasA→B; TypeA=B;

TimeA; StimulationAB; LocationAB>||C=<IDA→B||C;

DomainA=B=C; AliasA=B||C; TypeA=B=C; TimeAC;

Stimulation(AB)C; Location ABC> and

A||C→B||C=< IDA||B; DomainA=B; AliasA||B; TypeA=C;

TimeAC; StimulationAC; LocationAC>→B||C = <IDA||C→A||B;

DomainA=C=B; AliasA||C→A||B; TypeA=C=B; TimeAC;

Stimulation (AC)(BC); LocationABC>.

See above two equation, the Simulation(AB)C=

SimulationA||C or SimulationB||C and Stimulation(AC)(BC)

=Stimulation(A||C) or Stimulation(B||C). Let IDA→B||C=IDA||C→A||B;

AliasA→B||C=AliasA||C→A||B, hence (A→B)||C=A||C→B||C.

It is feasible to let IDA→B||C same with IDA||C→A||B and

AliasA→B||C same with AliasA||C→A||B because both of them are

only a namely string.

B. An Algebra Model of CEP

Based on event composite operation we can define the

CEP model.

Definition 2.9 (CEP Architecture). Let U be a domain. A

CEP architecture is defined as:

1) An event itself is CEP architecture.

2) The result of applying a finite number composite

operation of events is CEP architecture.

CEP architecture is denoted T=<E, O>, where E is set of

events and O is a set of event operations.

It is able to prove that the events with respect to all

composite operators construct an algebraic system.

Theorem 2.6 Let T=<E, O> be a CEP architecture, T is an

algebraic system with respect to any event composite

operation OPiO.

Proof: This theorem follows the closure property of all

composite operation.

In order to facilitate big data analysis, it is necessary to

define the CEP architecture.

Definition 2.10 (Horizontal/Vertical CEP Model). Let U

be a domain. A Vertical CEP model is defined as T=<E, O>,

where the E=(A1, A2, … Am-1, Am) is a tuple of m sequence

events flow, i.e. each Ak is sequence events flow, and O is a set

of event operations. The Horizontal CEP Model is defined as

T=<E, O>, where the E=(B1, B2, … Bm-1, Bm) is a tuple of m

cause-effect events flow, i.e. each Bk is cause-effect events

flow, and O is a set of event operations.

The CEP architecture has the Hierarchical properties. i.e.

architecture is constructed by compositing events.

Theorem 2.7: Let E1=(A1, A2, A3…, Am) be a Vertical CEP

model, make an asynchronization composite E1||E1=((A1||

Aj1),…,(Am||Ajm), (Ai1||A1), …, (Aim||Am)) = (Ai1|| Aj1, Ai2||

Aj2, …, Aik||Ajk). Let the (Aik||Ajk)= (Ai1||Aj1, Ai2|| Aj2,…,

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

723

Aik||Ajk), then both Aik and Ajk must be couple of negotiated

events.

Proof: consider the E1||E1=(A1||E1),…,(Am||E1),

(E1||A1),…,(E1||Am)). Since only the couple of negotiated

events to be cared, other events can be cancelled such that

E1||E1=((A1||Aj1),…,(Am||Ajm),(Ai1||A1),…, (Ain||Am),

(Aik||Ajk), where (Aik,Ajk) are couples of negotiated events.

Again, all those negotiated event couples have already are

expressed in (Aik||Ajk) therefore we can cancel out those

remained expression so that the theorem 2.7 hold.

Corollary 2.4：If the couple of negotiated events (Aik||Ajk)

in theorem 2.7 are cause-effect event flow, i.e.

E1=(A1,A2,A3…,Am) be a Horizontal CEP model, make an

asynchronization composite E1||E1=((A1||Aj1)→…→ (Am||Ajm)

→(Ai1||A1)→…→(Aim||Am))=(Ai1||Aj1→ Ai2||Aj2→…→ Aik||

Ajk), let (Aik||Ajk)= (Ai1||Aj1→ Ai2||Aj2→…→Aik||Ajk), then

both Aik and Ajk must be couple of negotiated events.

The theorem 2.7 and corollary 2.4 can help us to deduce a

useful events pattern. The designer of CEP system can set

negotiation conditions with respect to domain knowledge or

user need. For example, all the events of cause-effect events

flow are in transaction event which must hold the atomicity

of the transactional event. The following algorithm show how

to classify for big data flow based on theorem 2.7.

Algorithm 2.1 Classifying events of big data flow

Input: A vertical CEP model E=(A1, A2, A3,…,Am)

Output: Aik||Ajk where (Aik, Ajk) is couple of negotiated

events.

begin

for each Ai(A1, A2, A3, …, Am)do // (A1, A2,

A3,…,Am)is data structure of E

for each Aj(A1, A2, A3, …, Am)do

if

(Stimulation(Aik),Stimulation(Ajk))Negotiati

on then

Bk[i,j]= Aik||Ajk; //create upper level

asynchronous event flow.

Sum=Sum+1; // count the number

of negotiated events

end

end

end.

In order to improve event aggregation and transformation,

it is the intents of this paper, an algorithm for pushing event

report is proposed.

Algorithm 2.2: Pushing event report

Input: Created cause-effect flow E=(Ai1, Ai2, Ai3,…, Aim)

and a statistic report of events flow.

Output: Aik||Ajk where (Aik, Ajk) is couple of negotiated

events

begin

for each Aik do

IPik=edit(Aik) //parse the Aik to get IP and

interface of upper node of CEP model..

for each IPik do

push(IPik, Aik,report(Aik);

end

end

end

The time efficiency of Algorithm 5.1 is O(HL), where H is

the length of the sequence event flow and L is the maximum

length of the cause-effect event flows. The time efficiency of

Algorithm 5.2 is O(n2) where n is the number of elements in

the set for which the linear dependency is considered.

III. APPLICATION OF CEP MODEL

In this section we demonstrate two experiments results in

which the reader may better understand the CEP algebra

Model.

A. Backgroud

As standards organization, the EPCglobal published a

framework for developing application of EPC(Electronic

Product Code, EPC in short) network, which is a kind of IoT,

in the year 2007 [9]. In order to leave flexibility to it user, he

only gives a series of interface for implement. The

ALE(Application Layer Event, ALE in short) [10] is one of

his interface through which clients may obtain filtered

consolidated EPC data from a variety of RFID(Radio

Frequency Identification, RFID in short) reader. It’s

objective is that reduces the volume of EPC data that comes

directly from RFID readers into coarser “events” of interest

to applications. The processing done at this layer typically

involves: (1) receiving EPCs from one or more RFID readers,

(2) accumulating data over intervals of time, filtering to

eliminate duplicate EPCs that are not of interest, and

counting and grouping EPCs to reduce the volume of data;

and (3) reporting in various forms such as XML, Database

and so forth. The ALE model is showed as follow.

Fig. 1. Framework for processing IoT big data.

The framework showed in Fig. 1 meet the CEP algebra

model perfectly, so that the algorithm 2.1 and algorithm 2.2

can guide us to accomplish Transactional Event Subscription.

The transactional event is one of four event type of

EPC-based IoT. It has same meaning with the concept of

Data Base Transaction. Therefore, the ALE must collect and

filter all sequence events flow emerged in each EPC reader

for transactional event with the negotiation condition of Type

(Transaction).

B. Transactional Event Subcription

In order to compare the performance of deal with huge

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

724

volume EPC data between Cluster and PC, two different

experimental systems were established. The environment

parameter of cluster system and PC are showed in Table I.

TABLE I: CONFIGURATION OF EXPERIMENT PLATFORM

Num Type CUP System Software

1 Cluster 2.4GHZ Linux Hadoop-1*

2 3.0GHZ+4Core Windows Self-made

Without loss of generality, the EPC sgtin-96 and RFID IoT

as experiment platform. The transactional event can be

initiated as follow:

<ID=any string, Alias=sgtin-96, Domain=EPC IoT,

Type=transaction, Simulation=read, Location=all point of

reader>.

An EPC generator software is employed to create huge

volume EPC Data in minute showed in the Table II.

TABEL II: COLLECTING AND FILTERING TIME

Num Data volume(T) Cluster ime(min) PC Time(min)

1 200 1333 883

2 300 1433 1433
3 400 1550 1833

4 500 1633 2233

5 1024 3166 3700

The following program segment is main part of dealing

with transactional events by Map_ Reduce function support

by Apache Hadoop 0.23.10

public class EPClassifyMapper extends Mapper< LongWritable,Text,

Text ,IntWritable>{

…
private FilterPattern pattern;

…
public class EPClassifyMapper extends Mapper< LongWritable,Text,

Text ,IntWritable>{

…
private FilterPattern pattern;

…
protected void map(LongWritable key, Text values, Context context)

throws IOException, InterruptedException {

 …. // initial code
 if(pattern.isGroup())

{ String temp = regex;
 for(int index: pattern.getIndexs())

{if(index != -1){regexs[index] = strs[index]; }}

 StringBuffer buffer = new StringBuffer();
 for(int i=0;i<regexs.length;i++)

{buffer.append(regexs[i]);
 if(pattern.match(str))

{value.set(1);

 context.write(writeKey,value);}}}

catch(ArrayIndexOutOfBoundsException e){…}

public class EPClassifyReducer extends Reducer<Text, IntWritable,
Text, IntWritable>{

// initial code

protected void reduce(Text key, Iterable<IntWritable> values,Context
context) throws IOException, InterruptedException {

 int count = 0;

 for(IntWritable n : values)
{count += n.get(); }

 value.set(count);
 context.write(key, value);}}

Fig. 2. Map_Reduce code of collecting EPC pattern.

where the EPC Pattern refer to the following:

urn:epc:pat:type_i:field_i_1.field_i_2.field_i_3... .

Meanwhile the field_i_j take an item from *, digital,

[lo-hi] and X. the pat takes the value sgtin-96[11]. For

example, urn:epc:pat: sgtin-96:3.*.*.[5000-9999].

Fig. 3 is corresponding graph of Table II. Obviously, the

cluster system consume less time than PC when the data

volume is over 300G.

0

100

200

300

400

500

600

700

800

900

1000

50 100 151 200 300 400 500 1024 2048 3072 4096

Data size（GB）

R
u
n
n
i
n
g

t
i
m
e
(
m
i
n
)

cluster running time（s）

single machine running time(s)

Fig. 3. Collecting and filtering time of cluster and PC.

C. Pushing EPC Data Report Service

In this section we demonstrate the pushing service have

better performance than getting service based on algorithm 2.

The Web Service is a popular technical method that

provides communications between two electronic devices

over the World Wide Web. It is a software function provided

at a network address over the web with the service always on

as in the concept of utility computing [12].

Fig. 4. Service queue for pushing.

It can identify two major classes of Web services:

• REST(Representational state transfer (REST)) compliant

Web services,

• Arbitrary Web services, in which the service may expose

an arbitrary set of operations.

In this paper a new WSDL schema was established in

which bidirectional web service request can be described. We

use a string to mark the direction in WSDL schema. The

“callee” presents provider of web resources, and the “caller”

presents applier. The “callee” act as original meaning of Web

Service and “caller” is new Web Service pattern.

For the reason of limited pages, we only demonstrate the

evidence of new pushing service pattern (demonstrated on

Fig. 4) has a better performance than the old getting service

pattern.

First we focus on the waiting time. It has been proved that

the time of a queue waiting for service meet exponential

distribution () 1-
t

F t e
−

= , and pushing service pattern spends

less residents time than getting service pattern, that means the

value of  is more larger in pushing pattern than getting

pattern with respect to the meaning of (=np, i.e. the total

experimental times product the probability for sample).

Therefore, we can compare their performance on =0.5, 0.6

for getting service pattern and =1, 2, 3 for pushing service

with time t[0, 12].

Another performance aspect is service times. It also has

been proved that the service times for a queue meet Poisson

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

725

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Utility_computing
http://en.wikipedia.org/wiki/Representational_state_transfer

Distribution and pushing service pattern has lager value of 

than getting service pattern with respect to the meaning of .

Therefore, we can compare their performance on =0.5, 0.6

for getting service pattern and =1, 2, 3 for pushing service

with constant times and stochastic times at constant time, i.e.

t=12, c=12, =5, 10, 20 and n=10, 20.

Fig. 5 indicates that the rate of push service is high, and

the time is relatively small, and the Fig. 6 show that the

number of services has increased. Both the Fig. 5 and the Fig.

6 show the pushing service pattern has better performance

than the getting service pattern.

Fig. 6. Different performance in service times.

Fig. 5. Difference in waiting time.

IV. RELATED WORK

The Internet of Things have been experienced

tremendously fast development during the past decade

whither in theory or practice. Jayavardhana Gubbi, et al. [2]

given a vision on architecture, future developing directions of

IoT. There are four application directions or domains:

Personal and Home, Enterprise, Utilities and Mobile are

categorized in his paper. As a side effect of IoT application,

the Jayavardhana Gubbi also pointed out one of most

important outcomes is the creation of an unprecedented

amount of data, the technique for collecting, storing and

processing come up against numerous challenges. Meng Ma,

et al. [3] pay a attention to the big data processing technology

of IoT, and suggest a layered architecture of IoT which is

consisted of four layers, i.e. Sensing Layer, Network Layer,

Middleware Layer, Application Layer. C. C. Aggarwal, et al.

[13] described the IoT as massive real-time data sensor: “IoT

is designed to connect thousands of objects in large scale.

Communications between different entities in dynamic

networks generate a large volume of heterogeneous data in

the form of real-time, high-speed, uninterrupted data flows.

Scalable storage, filtering and compression schemes are

essential for efficient big data processing.” In addition, the

related observation and review can see such as [14]-[17].

The CEP is a prospective approach to IoT massive

real-time data processing. Meng Ma, et al. [3] classify the

CEP model for IoT event processing into four type, (1)

Graph-based CEP Model. In this model, complex events are

expressed in tree structure. (2) Automata-based CEP Model.

All events are constructed into corresponding automata, set

of states and transition functions in automata-based model. (3)

Petri-net-based CEP Model. Complex events are transformed

into corresponding Petri_net in Petri-net-based CEP model.

Y.H. Wang, et al. [18] argues that the CEP technology

encounters the challenge of massive distributed data because

of weak processing ability by most of the current methods

efficiently. A high-performance complex event processing

method over distributed probabilistic event flows is proposed

against the big challenge. In this paper a contributed method

uses probabilistic nondeterministic finite automaton and

active instance stacks to process a complex event in both

single and distributed probabilistic event flows. A parallel

algorithm is designed to improve the performance. However,

the authors only demonstrate the high level patterns for deal

with IoT event instead of contributing any confident

technology and the experiment results only base on

simulation software, so that the contribution is discounted.

Nicholas Poul, et al. [19] propose a novel approach to

high-level patterns of event match in CEP in contrast with

database management systems (DBMSs in short). The new

method can specify queries as high-level patterns of event,

and if the CEP system detects complex events matching these

queries the system notices clients of matches in soft real time.

Omran Saleh, et al. [20] consider that most of the conducted

works in sensor network field avert to address the wider

issues of how to integrate CEP with in-network processing.

The author employs the algebraic method to support

sampling, filtering and preprocessing events, such as

disjunction, sequence, conjunction and some forms of

negation operator. All above so called algebraic operator only

carry out common data arrangement and week support for

event pattern mining. Analogous research works published in

[21], [22].

As a new research area the big data processing has became

a hot topic. Weizhong Yan, et al. [23] consider the Power

Iteration Clustering(PIC in short) is not enough suitable to

Big Data Processing, and expand PIC’s data scalability by

implementing a parallel power iteration clustering (p-PIC).

Aditya B. Patel [24] reports the experimental work on big

data problem and its optimal solution using Hadoop cluster,

Hadoop Distributed File System (HDFS) for storage and

using parallel processing to process large data sets using Map

Reduce programming framework. Wen Xiong [25]

emphasize the priority of benchmarking big data and

discover much more redundancy existed in these pioneering

benchmark suites and give three findings: how to remove

redundancy safely, input data sets for data analysis and

benchmarks can be used as academic research. Cristina L.

Abad [26] employ Markov renewal process model for

evaluating performance of Big Data processing, and provide

two kind of algorithm for creating two workflow traces, one

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

726

for popularity and another for temporal locality. Analogous

report and review published in [27], [28].

V. CONCLUSION

In this paper, we propose an algebraic model for CEP and

demonstrate its application in IoT Big Data processing. Our

contributions can be concluded as follow:

1) Proposed a mathematic CEP model that can facilitate the

pre-analysis and design for Big Data processing

algorithm. The contributed Horizontal/Vertical CEP

Model considers event flow with sequence and

cause-effect two direction, so that a complex event

relationship can be described clearly. The experimental

results have proved that the CEP model can support to

collect and filter IoT Big Data flow.

2) In contrast with the traditional Web service, the

contributed pushing service pattern can send event report

to subscriber actively instead of waiting for visitor which

the Web Service does. We also demonstrate our novel

technique for processing Big Data flow by using Apache

Hadoop, and the experiment result show that it is suitable

for the CEP model.

Algebraic approach to CEP is far more complex than what

a single model can describe. There are many more properties

of CEP architecture that need further exploration. Here are

the specific problems for our future research:

1) To implement a tool for supporting the CEP automatic

analysis, involved defined event pattern filtering

algorithms and the complex event report generating

algorithms.

2) To apply to a large number of real cases to support and

improve the approach of algebraic modeling proposed in

this paper.

We believe that IoT Big Data processing system design

should and can be specified and modeled with a sound

theoretical framework. This paper is an attempt toward this

direction.

REFERENCES

[1] K. Ashton. That ‘Internet of Things’ thing. RFiD Journal. [Online].
Available: http://www.rfidjournal.com/articles/view?4986

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future directions,”

Future Generation Computer Systems. vol. 29, no. 7, pp. 1645-1660,

2013.
[3] M. Ma, P. Wang, and C. H. Chu, “Data management for internet of

things: Challenges, approaches and opportunities,”

GreenCom-iThings-CPSCom.2013, pp. 1144-1151, Aug. 20-23, 2013.

[4] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of

things: Vision, applications and research challenges,” Ad Hoc
Networks, vol. 10, pp. 1497-1516, 2012.

[5] C. Dobre and F. Xhafa, “Intelligent services for big data science,”
Future Generation Computer Systems, 2014.

[6] O. Etzion and P. Niblett, Event Processing in Action, Manning

Publications, Shelter Island New York U.S, August 2010.
[7] Y. H. Wang, K. Cao, and X. M. Zhang, “Complex event processing

over distributed probabilistic event flows,” Computers and
Mathematics with Applications, vol. 66, pp. 1808-1821, 2013.

[8] M. Ma, P. Wang, and C. H. Chu, “Data management for internet of

things: Challenges,” Approaches and Opportunities, pp. 1144-1151,
2013.

[9] EPCglobal. (2010). Architecture framework final version. [Online].
Available:

http://www.gs1.org/gsmp/kc/epcglobal/architecture/architecture_1_4-

framework-20101215.pdf

[10] EPCglobal. (2009). The Application Level Events (ALE) Specification,

Version 1.1.1. [Online]. Available:
http://www.gs1.org/gsmp/kc/epcglobal/ale/ale_1_1_1-standard-core-2

0090313.pdf

[11] W3C. (2004). Web Services Glossary. W3C. [Online]. Available:

http://www.w3.org/TR/ws-gloss/

[12] W3C. Web Services Architecture. W3C. [Online]. Available:
http://www.w3.org/TR/ ws-arch/

[13] C. C. Aggarwal, N. Ashish, and A. Sheth, “The internet of things: A
survey from the data-centric perspective,” Managing and Mining

Sensor Data, pp. 383-428, 2013.

[14] M. Díaz, G. Juan, O. Lucas, and A. Ryuga, “Big data on the internet of
things,” IMIS, Palermo, Italy, pp. 897-900, 2012.

[15] D. Tracey and C. Sreenan, “A Holistic architecture for the internet of
things, sensing services and big data,” in Proc. 13th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing,

Delft, Netherland, 2013, pp. 546-553.
[16] Z. Ding, Xu Gao, Jiajie Xu, and Hong Wu, “IOT-StatisticDB: A

general statistical database cluster mechanism for big data analysis in
the internet of things,” iThings/CPSCom2013, Beijing, China, pp.

535-54, Aug. 2013.

[17] C. G. Wang, M. Daneshmand et al., “Special Issue on Internet of
Things (IoT): Architecture, protocols and services,” IEEE Sensors

Journal, vol. 10, no. 13, pp. 3505-3510, October 2013.
[18] Y. H. Wang, K. Cao, and X. M. Zhang, “Complex event processing

over distributed probabilistic event flows,” Computers and

Mathematics with Applications, vol. 66, pp. 1808–1821, 2013.
[19] N. Poul, M. Migliavacca, and P. Pietzuch, Distributed Complex Event

Processing with Query Rewriting, Nashville, Tennessee, USA, July
6-9, 2009.

[20] O. Saleh and K.-U. Sattler, Distributed Complex Event Processing in

Sensor Networks, Milan Italy, pp. 23-26, June 2013.
[21] E. Ogasawara, J. Dias, D. Oliveira, F. Porto, P. Valduriez, and M.

Mattoso, “An algebraic approach for data-centric scientific
workflows,” in Proc. VLDB Endowment, 2011, vol. 4, no. 12, pp.

1328–1339.

[22] J. Dias, E. Ogasawara, D. de Oliveira, F. Porto et al., Algebraic
Dataflows for Big Data Analysis, pp. 150-155, October 8, 2013.

[23] W. Z. Yan, U. Brahmakshatriya, Y. Xue, M. Gilder, and B. Wise.
“p-PIC: Parallel power iteration clustering for big data,” Journal of

Parallel Distributed Computing, vol. 73, pp. 352-359, 2013.

[24] A. B. Patel, M. Birla, and U. Nair, Addressing Big Data Problem Using
Hadoop and Map Reduce, pp. 1-5, December 2012.

[25] W. Xiong, Z. B. Yu, Z. D. Bei et al., A Characterization of Big Data
Benchmarks, pp. 118-125, October 2013.

[26] C. L. Abad, M. Yuan, C. X. Cai et al., “Generating request flows on

Big Data using clustered renewal processes,” Performance Evaluation,
vol. 70, pp. 704-719, 2013.

[27] Z. B. Zheng, J. M. Zhu, and M. R. Lyu, Service-Generated Big Data
and Big Data-as-a-SERVICE: An Overview, Santa Clara CA USA, pp.

403-410, 2013.

[28] S. Sagiroglu and D. Sinanc, Big Data: A Review, CTS 2013:42-47, San
Diego, CA, USA, May 20-24, 2013.

International Journal of Machine Learning and Computing, Vol. 9, No. 6, December 2019

727

Jing Sun was born in January 1968 in Tieling City,

Liaoning Province, China. From September 1986 to
July 7, he graduated from the Mathematics

Department of Liaoning University with a bachelor of
science degree. From September 1998 to July 2000,

he graduated from the Department of Computer

Science and Technology of Liaoning University with
a master of science degree.

Her research interests are big data analytics,
internet of things technology.

Huiqun Zhao was born in September 1960 in Anshan

City, Liaoning Province, China. From September
1979 to July 1983, he obtained a bachelor of science

degree in mathematics from Jinzhou Normal

University. From September 1998 to July 2002, he
studied in the Department of Computer Science and

Engineering of Northeastern University and obtained

a doctorate in engineering.
His research interests are big data analytics, IoT

technology.

http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science/journal/0167739X/29/7
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.199
http://www.sciencedirect.com/science/journal/0167739X
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice
http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6679957
http://www.informatik.uni-trier.de/~ley/db/conf/cts/cts2013.html#SagirogluS13

