

Abstract—Minimum cross-entropy estimation is an

extension to the maximum likelihood estimation for

multinomial probabilities. Given a probability

distribution {𝒓𝒊}𝒊=𝟏
𝒌 , we show in this paper that the

monotonic estimates {𝒑𝒊}𝒊=𝟏
𝒌 for the probability

distribution by minimum cross-entropy are each given by

the simple average of the given distribution values over

some consecutive indexes. Results extend to the

monotonic estimation for multivariate outcomes by

generalized cross-entropy. These estimates are the exact

solution for the corresponding constrained optimization

and coincide with the monotonic estimates by least

squares. A non-parametric algorithm for the exact

solution is proposed. The algorithm is compared to the

“pool adjacent violators” algorithm in least squares case

for the isotonic regression problem. Applications to

monotonic estimation of migration matrices and risk

scales for multivariate outcomes are discussed.

Index Terms—Maximum likelihood, cross-entropy,

least squares, isotonic regression, constrained

optimization, multivariate risk scales.

I. INTRODUCTION

Utilizing prior knowledge is important for a learning

process. A common prior is the monotone relationship

between input and output. For example, we expect the loss

for a loan to be lower when collateral value and quality of

collateral type are higher; and people tend to buy less of a

product when price increases. Examples of learnings, where

monotonic constraints are imposed, include isotonic

regression ([1]-[4]), rating migration models ([5]),

classification trees ([6]), rule learning ([7]), binning ([8]),

and deep lattice network ([9]).

For a random vector (𝑦1, 𝑦2, … , 𝑦𝑘), let 𝑝𝑖 be the expected

value of 𝑦𝑖 , and 𝑆 = {(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1
𝑛 a given sample

for the random vector, where (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘) denotes the

𝑖𝑡ℎ observation, and 𝑦𝑖𝑗 its 𝑗𝑡ℎ component. We assume:

 0 ≤ 𝑦𝑖𝑗 ≤ 1, 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛, (1.1)

𝑦𝑖1 + 𝑦𝑖2 + … + 𝑦𝑖𝑘 = 1. (1.2)

That is, each observation (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘) is a percentage

distribution over 𝑘 ordinal indexes. We use the following

notations: 𝑑𝑗 = ∑ 𝑦𝑖𝑗
𝑛
𝑖=1 , 𝑟𝑗 = 𝑑𝑗/𝑛, 𝐷 = 𝑑1 + 𝑑2 + ⋯ +

 Mauscript received January 24, 2019; revised April 15, 2019.

𝑑𝑘 , and 𝑅 =
𝐷

𝑛
.

Given an observed distribution 𝑞 = {𝑞𝑖}𝑖=1
𝑘 and the

predicted distribution 𝑝 = {𝑝𝑖}𝑖=1
𝑘 , the cross-entropy

between 𝑞 and 𝑝 is defined as:

𝐻(𝑞, 𝑝) = − ∑ 𝑞𝑖 log(𝑝𝑖).

𝑘

𝑖=1

By using the Kullback-Leibler (KL) divergence (also

called relative entropy) between 𝑞 and 𝑝 ([10]), one can

show that cross-entropy 𝐻(𝑞, 𝑝) measures the dissimilarity

between 𝑞 and 𝑝 (see Appendix, or [11], [12]). The cross-

entropy for the given sample 𝑆 is defined as:

𝐶𝐸 = − ∑ ∑ 𝑦𝑖𝑗 log(𝑝𝑗)𝑘

𝑗=1
𝑛
𝑖=1

 = − ∑ (∑ 𝑦𝑖𝑗) log(𝑝𝑗) 𝑛
𝑖=1

𝑘
𝑗=1 (1.3)

= − ∑ 𝑑𝑗 log(𝑝𝑗) .𝑘

𝑗=1

The monotonic minimum cross-entropy estimates are the

values {𝑝𝑗}
𝑗=1

𝑘

that minimize (1.3) subject to (1.4) and (1.5)

below:

 0 ≤ 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑘 , (1.4)

 𝑝1 + 𝑝2 + ⋯ + 𝑝𝑘 = 1.

(1.5)

Because − ∑ 𝑑𝑗 log(𝑝𝑗)𝑘
𝑗=1 = −𝑛 ∑ 𝑟𝑗 log(𝑝𝑗)𝑘

𝑗=1 ,

the

measure 𝐶𝐸

defined by

(1.3) is the same as the cross-entropy

between {𝑟𝑗}
𝑗=1

𝑘
 and

{𝑝𝑗}
𝑗=1

𝑘
,

up to a scalar

𝑛. Therefore, 𝐶𝐸

measures the dissimilarity between {𝑟𝑗}
𝑗=1

𝑘
 and {𝑝𝑗}

𝑗=1

𝑘
.

When each observation (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘)

is multinomial,

i.e. all 𝑦𝑖1 , 𝑦𝑖2, …, and 𝑦𝑖𝑘

are zero but one, which is 1, then

𝑑𝑖

becomes the frequency that 𝑦𝑖

takes the value 1. Therefore,

(1.3) is the negative multinomial log-likelihood, up to a

constant given by the logarithm of some multinomial

coefficient, which is independent of {𝑝𝑗}
𝑗=1

𝑘
. In this case, the

minimum cross-entropy estimates are the maximum

multinomial likelihood estimates.

Generalization to multivariate outcomes.

Given a

sample 𝑆 = {(𝑦𝑖1, 𝑦𝑖2 , … , 𝑦𝑖𝑘)}𝑖=1
𝑛

of the random vector

(𝑦1, 𝑦2, … , 𝑦𝑘), where 𝑦𝑖𝑗 ≥ 0

for 1 ≤ 𝑗 ≤ 𝑘 and 1 ≤ 𝑖 ≤ 𝑛

(in absence of (1.2)),

the generalized cross-entropy is defined,

similarly

to 𝐶𝐸,

as:

𝐺𝐶𝐸 = − ∑ ∑ 𝑦𝑖𝑗 log(𝑝𝑗) 𝑘
𝑗=1

𝑛
𝑖=1

 = − ∑ 𝑑𝑗 log(𝑝𝑗)𝑘
𝑗=1 .(1.6)

Bill Huajian Yang is with Royal Bank of Canada, Canada (e-mail:
hy02@yahoo.ca).

Monotonic Estimation for Probability Distribution and

Multivariate Risk Scales by Constrained Minimum

Generalized Cross-Entropy

Bill Huajian Yang

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

506doi: 10.18178/ijmlc.2019.9.4.833

The monotonic minimum generalized cross-entropy

estimates are the values {𝑝𝑗}
𝑗=1

𝑘
that minimize (1.6) subject to

(1.4) and (1.7) below:

 𝑝1 + 𝑝2 + … + 𝑝𝑘 = 𝑅. (1.7)

Recall 𝑅 =
𝐷

𝑛
. Clearly, minimizing (1.3) for 𝐶𝐸 subject to

(1.4) and (1.5) is a special case of minimizing (1.6) for 𝐺𝐶𝐸

subject to (1.4) and (1.7).

Main results. We show in this paper that for a given

sample 𝑆 = {(𝑦𝑖1, 𝑦𝑖2 , … , 𝑦𝑖𝑘)}𝑖=1
𝑛 , where 𝑦𝑖𝑗 ≥ 0 for 1 ≤

𝑗 ≤ 𝑘 and 1 ≤ 𝑖 ≤ 𝑛, there exist partition integers {𝑘𝑖}𝑖=0
𝑚 ,

where 0 = 𝑘0 < 𝑘1 < ⋯ < 𝑘𝑚 = 𝑘, such that the

monotonic minimum generalized cross-entropy estimates

{𝑝𝑗}
𝑗=1

𝑘
 that minimize (1.6) subject to (1.4) and (1.7) are

given by the simple average (see Proposition 3.3) below:

 𝑝𝑗 =
1

𝑘𝑖−𝑘𝑖−1
∑ 𝑟𝑗

𝑘𝑖
𝑗=𝑘𝑖−1+1 . (1.8)

One of the most important monotonic estimations is by

least squares, i.e. the isotonic regression ([1]). The goal of

isotonic regression is to find {𝑝𝑖}𝑖=1
𝑘 , subject to (1.4), that

minimize the weighted sum squares ∑ 𝑤𝑖(𝑟𝑖 − 𝑝𝑖)
2𝑘

𝑖=1 ,

where {𝑤𝑖}𝑖=1
𝑘 are the given weights. A unique exact solution

to the isotonic regression exists and can be obtained by a non-

parametric algorithm called Pool Adjacent Violators (PAV)

([1], [2], [4], [8]).

Results by (1.8) are the exact solution to the constrained

optimization problem corresponding to (1.6) and are proved

to be also the least squares estimates subject only to (1.4) (see

Proposition 3.4), which links to isotonic regression. That is,

for monotonic least squares estimates, (1.7) is an implication,

while it is a condition (i.e. a constraint) for monotonic

generalized cross-entropy estimates.

A non-parametric algorithm (Algorithm 4.1) is proposed

in section IV for the partition integers in (1.8), hence the

monotonic estimates. This algorithm is compared in section

V to the PAV algorithm.

The key ideas to the proof of (1.8) and the algorithms

proposed in this paper are the re-parameterization of the

estimates so that (1.4) is automatically satisfied.

Consequently, the constrained programming is transformed

into a tractable non-constrained mathematical programming

problem (see Section III and Section IV).

The paper is organized as follows: Partition integers are

defined in Section II. Equation (1.8) is proved in Section III.

We propose in Section IV a non-parametric algorithm for

finding these partition integers. In Section V, we compare

this non-parametric algorithm, in least squares case, with the

Pool Adjacent Violators algorithm for isotonic regression.

Two examples are provided in Section V, where monotonic

estimation for long-run rating migration matrices and loss

rate time series are discussed.

II. THE PARTITION INTEGERS

Given a sample 𝑆 = {(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1
𝑛 , where 𝑦𝑖𝑗 are

real numbers, let where 𝑑𝑗 = ∑ 𝑦𝑖𝑗
𝑛
𝑖=1 and 𝑟𝑗 = 𝑑𝑗/𝑛. Define:

 𝑣(𝑖, 𝑗) =
𝑟𝑖+𝑟𝑖+1+⋯+𝑟𝑗

(𝑗−𝑖+1)
 (2.1)

 =
𝑑𝑖+𝑑𝑖+1+⋯+𝑑𝑗

𝑛(𝑗−𝑖+1)
 . (2.2)

Then 𝑣(𝑖, 𝑗) is the simple average for the consecutive

values of {𝑟𝑖 , 𝑟𝑖+1, … , 𝑟𝑗 }, and 𝑣(1, 𝑘) =
𝐷

𝑛𝑘
, where 𝑑1 +

𝑑2 + ⋯ + 𝑑𝑘 = 𝐷. Let {𝑘𝑖}𝑖=0
𝑚 be partition integers, where

0 = 𝑘0 < 𝑘1 < ⋯ < 𝑘𝑚 = 𝑘, such that (2.3) and (2.4) below

hold for each 𝑖 > 0:

𝑣(𝑘𝑖−1 + 1, 𝑘𝑖)

 = 𝑚𝑖𝑛{𝑣(𝑘𝑖−1 + 1, 𝑗) | 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘}, (2.3)

 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖) < 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖 + 1). (2.4)

That is, given 𝑘𝑖−1, the partition integer 𝑘𝑖 is the largest

index where 𝑣(𝑘𝑖−1 + 1, 𝑗) reaches its minimum at 𝑗 = 𝑘𝑖

within the remaining range 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘. By definition,

when {𝑟}𝑖=1
𝑘 are strictly increasing, we have 𝑚 = 𝑘 and

{𝑘𝑖}𝑖=1
𝑚 = {1, 2, … , 𝑘}. By (2.3) and (2.4), we have:

𝑣(1, 𝑘1) < 𝑣(𝑘1 + 1, 𝑘2) < ⋯ < = 𝑣(𝑘𝑚−1 + 1, 𝑘𝑚).(2.5)

This is because, for example, if 𝑣(1, 𝑘1) ≥ 𝑣(𝑘1 + 1, 𝑘2),

then we have:

𝑣(1, 𝑘2) =
𝑘1

𝑘2
 𝑣(1, 𝑘1) +

𝑘2−𝑘1

𝑘2
𝑣(𝑘1 + 1, 𝑘2) ≤ 𝑣(1, 𝑘1).

This contradicts the fact that 𝑘1 is the largest index where

𝑣(1, 𝑗) reaches its minimum at 𝑗 = 𝑘𝑖 for 𝑗 ≥ 𝑘𝑖−1 + 1.

III. MONOTONIC ESTIMATION BY MINIMUM CROSS-

ENTROPY

In this section, we prove equation (1.8), first for the

minimum cross-entropy estimates subject to (1.4) and (1.5),

then for the minimum generalized cross-entropy estimates

subject to (1.4) and (1.7). At the end of the section, we show

that these estimates are also the monotonic least squares

estimates, in absence of (1.7).

Lemma 3.1. In absence of (1.4), the sample rates {𝑟𝑖}𝑖=1
𝑘

minimize (1.3) subject to (1.5). Similarly, in absence of (1.4),

the sample rates {𝑟𝑖}𝑖=1
𝑘 minimize (1.6) subject to (1.7).

Proof. First, we show that the 1st statement implies the 2nd

statement. The second statement in the lemma holds if 𝑅 =
𝐷

𝑛
= 0 because, in this case, 𝑑𝑖 = 0 and 𝑟𝑖 = 0 for all 𝑖′𝑠. If

𝑅 > 0, then:

 𝐺𝐶𝐸 = − ∑ 𝑑𝑗 log(𝑝𝑗)𝑘
𝑗=1 (3.1)

 = −𝑅 ∑ 𝑑𝑗
′[log(𝑝𝑗

′) + log(𝑅)]𝑘
𝑗=1

 = 𝑐 − 𝑅 ∑ 𝑑𝑗
′ log(𝑝𝑗

′)𝑘
𝑗=1 (3.2)

where 𝑑𝑗
′ = 𝑑𝑗/𝑅, 𝑝𝑗

′ = 𝑝𝑗/𝑅, and 𝑐 = − ∑ 𝑑𝑗 log(𝑅)𝑘
𝑗=1 . By

(1.7), {𝑝𝑗
′}

𝑗=1

𝑘
sum to one. Since {𝑑𝑗

′}
𝑗=1

𝑘
 sum to 𝑛, the

function −𝑅 ∑ 𝑑𝑗
′ log(𝑝𝑗

′)𝑘
𝑗=1 differs from (1.3), the

formulation of 𝐶𝐸, only by a constant scalar 𝑅. Therefore, if

the first statement in the lemma holds, then {𝑝𝑗
′ =

𝑟𝑗′}
𝑗=1

𝑘
minimize (3.2), because 𝑅 and 𝑐 are constants, where

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

507

𝑟𝑗
′ =

𝑑𝑗
′

𝑛
=

𝑑𝑗

𝑛𝑅
= 𝑟𝑗/𝑅. Since 𝑝𝑗 = 𝑝𝑗

′𝑅 = 𝑟𝑗, the sample rates

{𝑟𝑗}
𝑗=1

𝑘
 minimize (3.1) subject to (1.7).

We now show the first statement. We consider the

following three cases. Case (a). 0 < 𝑟𝑖 < 1 for all 1 ≤ 𝑖 ≤ 𝑘.

Take the derivative of 𝐶𝐸 with respect to 𝑝𝑖 in the range

0 < 𝑝𝑖 < 1 and set it to zero, using the relation 𝑝𝑘 = 1 −

(𝑝1 + 𝑝2 + ⋯ + 𝑝𝑘−1). We have
𝑑𝑖

𝑝𝑖
−

𝑑𝑘

𝑝𝑘
= 0. This holds for

all 𝑖′𝑠 . Thus the vector (𝑝1, 𝑝2, … , 𝑝𝑘) is in proportion

to (𝑑1, 𝑑2, … , 𝑑𝑘) , hence in proportion to (𝑟1, 𝑟2, … , 𝑟𝑘) .

Because of (1.5), we must have 𝑝𝑖 = 𝑟𝑖 .
Case (b). 𝑟𝑖 = 1 for some 𝑖. Then 𝑟𝑗 are all zero but this 𝑟𝑖 .

In this case, 𝐶𝐸 reduces to −𝑑𝑖 log(𝑝𝑖), which is minimized

at 𝑝𝑖 = 1(= 𝑟𝑖) within 0 ≤ 𝑝𝑖 ≤ 1.

Case (c). 𝑟𝑖 = 0 for some 𝑖′𝑠 and 0 < 𝑟𝑗 < 1 for all other

𝑟𝑗′𝑠 . Without loss of generality, we assume that 𝑖0 is the

integer where 0 < 𝑟𝑖 < 1 for 𝑖 ≤ 𝑖0 and 𝑟𝑖 = 0 for 𝑖 > 𝑖0.

Then 𝐶𝐸 reduces to − ∑ 𝑑𝑖log (𝑝𝑖)
𝑖0
𝑖=1 . Setting the derivatives

with respect to 𝑝𝑖 in the range 0 < 𝑝𝑖 < 1, 𝑖 ≤ 𝑖0, to zero,

and using the relation 𝑝𝑖0
= 1 − (𝑝1 + 𝑝2 + ⋯ + 𝑝𝑖0−1 +

𝑝𝑖0+1 + ⋯ + 𝑝𝑘), we have
𝑑𝑖

𝑝𝑖
−

𝑑𝑖0

𝑝𝑖0

= 0 . This implies,

 (𝑝1, 𝑝2, … , 𝑝𝑖0
) is in proportion to (𝑟1, 𝑟2, … , 𝑟𝑖0

). Thus 𝑝𝑖 =

𝑠𝑟𝑖 for 𝑖 ≤ 𝑖0 for a scalar 𝑠 > 0. Because 𝑟𝑖 = 0 for 𝑖 > 𝑖0 ,

we have ∑ 𝑟𝑖
𝑖0
𝑖=1 =1. Hence by (1.5), we have 0 < 𝑠 ≤ 1 .

With 𝑝𝑖 = 𝑠𝑟𝑖 , 0 < 𝑠 ≤ 1, for 𝑖 ≤ 𝑖0 , the function

− ∑ 𝑑𝑖log (𝑝𝑖)
𝑖0
𝑖=1 reaches its minimum at 𝑠 = 1, because

𝑑𝑖log (𝑠𝑟𝑖) is an increasing function of 𝑠. Therefore, 𝑝𝑖 = 𝑟𝑖

for 𝑖 ≤ 𝑖0. By (1.5), we must have 𝑝𝑖 = 0 = 𝑟𝑖 for 𝑖 > 𝑖0. □

Proposition 3.2. Given a sample 𝑆 =
{(𝑦𝑖1 , 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1

𝑛 subject to (1.1) and (1.2), let {𝑘𝑖}𝑖=0
𝑚 be

the partition integers defined by (2.3) and (2.4). Then the

minimum cross-entropy estimates {𝑝𝑖}𝑖=1
𝑘 that minimize (1.3)

subject to (1.4) and (1.5) are given by:

𝑝𝑗 = 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖)

 =
𝑟𝑘𝑖−1+1+𝑟𝑘𝑖−1+2+⋯+𝑟𝑘𝑖

(𝑘𝑖−𝑘𝑖−1)
 (3.3)

where 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖.

Proof. First, with the values given by (3.3), (1.4) holds by

(2.5), and 𝑝𝑘𝑖−1+1 + 𝑝𝑘𝑖−1+2 + ⋯ + 𝑝𝑘𝑖
= 𝑟𝑘𝑖−1+1 +

𝑟𝑘𝑖−1+2 + ⋯ + 𝑟𝑘𝑖
. Thus (1.5) holds as well for these specific

values.

Next, with the partition integers {𝑘𝑖}𝑖=0
𝑚 given by (2.3) and

(2.4), we have:

𝐶𝐸 = − ∑ 𝑑𝑗 log(𝑝𝑗)𝑘
𝑗=1 = 𝐶𝐸(1, 𝑘1) + 𝐶𝐸(𝑘1 +

1, 𝑘2) + ⋯ + 𝐶𝐸(𝑘𝑚−1 + 1, 𝑘𝑚) (3.4)

where:

 𝐶𝐸(𝑘𝑖−1 + 1, 𝑘𝑖) = − ∑ 𝑑𝑗 log(𝑝𝑗) .
𝑘𝑖
𝑗=𝑘𝑖−1 +1

Case (a). 𝑟1 = 0. In this case, 𝑟𝑗 = 0 and 𝑑𝑗 = 0 for all

1 ≤ 𝑗 ≤ 𝑘1, this is because 𝑗 = 𝑘1 is the largest index such

that 𝑣(1, 𝑗) reaches its minimum within the range 1 ≤ 𝑗 ≤ 𝑘.

Thus 𝐶𝐸(1, 𝑘1) = 0. Set 𝑝𝑗 = 0 by (3.3) for all 1 ≤ 𝑗 ≤ 𝑘1,

drop out 𝐶𝐸(1, 𝑘1) from (3.4), and focus only on 𝐶𝐸 =
𝐸(𝑘1 + 1, 𝑘2) + ⋯ + 𝐶𝐸(𝑘𝑚−1 + 1, 𝑘𝑚). By the definition

of partition integers, we have 𝑟𝑘1+1 > 0 . Essentially,

dropping out indexes 1 ≤ 𝑗 ≤ 𝑘1 is the same as assuming

that the index starts from 𝑘1 + 1. Therefore, the problem

reduces to case (b) below.

Case (b). 𝑟1 > 0. Let 𝑝(𝑘𝑖−1 + 1, 𝑘𝑖) = 𝑝𝑘𝑖−1+1 +

𝑝𝑘𝑖−1+2 + ⋯ + 𝑝𝑘𝑖
 and 𝑑(𝑘𝑖−1 + 1, 𝑘𝑖) = 𝑑𝑘𝑖−1+1 +

𝑑𝑘𝑖−1+1 + ⋯ + 𝑑𝑘𝑖
. Normalize 𝑝𝑗

′𝑠 for 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖

by letting:

𝑝𝑗
0 =

𝑝𝑗

𝑝(𝑘𝑖−1 + 1, 𝑘𝑖)
, 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖 .

Then {𝑝𝑗
0 | 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖} sum up to 1, and we have:

𝐶𝐸(𝑘𝑖−1 + 1, 𝑘𝑖)

= − ∑ 𝑑𝑗{log(𝑝𝑗
0) +

𝑘𝑖

𝑗=𝑘𝑖−1 +1

 log[𝑝(𝑘𝑖−1 + 1, 𝑘𝑖)]}. (3.5)

Then by (3.4) and (3.5), we have:

𝐶𝐸 = − ∑ ∑ 𝑑𝑗{log(𝑝𝑗
0) +

𝑘𝑖
𝑗=𝑘𝑖−1 +1

𝑚
𝑖=1

 log[𝑝(𝑘𝑖−1 + 1, 𝑘𝑖)]} =

− ∑ ∑ 𝑑𝑗 log(𝑝𝑗
0) –

𝑘𝑖
𝑗=𝑘𝑖−1 +1

𝑚
𝑖=1 ∑ 𝑑(𝑘𝑖−1 +𝑚

𝑖=1

1, 𝑘𝑖) log[𝑝(𝑘𝑖−1 + 1, 𝑘𝑖)]
 = 𝐶𝐸1 + 𝐶𝐸2

where 𝐶𝐸1 = − ∑ ∑ 𝑑𝑗log (𝑝𝑗
0)

𝑘𝑖
𝑗=𝑘𝑖−1 +1

𝑚
𝑖=1 , 𝐶𝐸2 =

− ∑ 𝑑(𝑘𝑖−1 + 1, 𝑘𝑖) log[𝑝(𝑘𝑖−1 + 1, 𝑘𝑖)]𝑚
𝑖=1 . By Lemma 3.1,

𝐶𝐸2 is minimized at:

 𝑝(𝑘𝑖−1 + 1, 𝑘𝑖) = 𝑑(𝑘𝑖−1 + 1, 𝑘𝑖)/𝑛. (3.6)

Let 𝐶𝐸1(𝑘𝑖−1 + 1, 𝑘𝑖) = − ∑ 𝑑𝑗log (𝑝𝑗
0)

𝑘𝑖
𝑗=𝑘𝑖−1 +1 . Then

𝐶𝐸1 = 𝐶𝐸1(1, 𝑘1) + 𝐶𝐸1(𝑘1 + 1, 𝑘2) + ⋯ + 𝐶𝐸1(𝑘𝑚−1 +
1, 𝑘𝑚). It suffices to show that each 𝐶𝐸1(𝑘𝑖−1 + 1, 𝑘𝑖) is

minimized at:

 𝑝𝑗
0 =

1

𝑘𝑖−𝑘𝑖−1
. (3.7)

This is because, if (3.7) is true, then by (3.6), we have:

𝑝𝑗 = 𝑝𝑗
0𝑝(𝑘𝑖−1 + 1, 𝑘𝑖)

 =
1

𝑘𝑖 − 𝑘𝑖−1

𝑑(𝑘𝑖−1 + 1, 𝑘𝑖)

𝑛

 = 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖) (3.8)

by (2.2). The proof is then complete.

We prove (3.7) only for 𝐶𝐸1(1, 𝑘1). The proof for other

𝐶𝐸1(𝑘𝑖−1 + 1, 𝑘𝑖) is similar. Without loss of generality, we

assume 𝑚 = 1 . In this case, 𝐶𝐸1(1, 𝑘1) = 𝐶𝐸(1, 𝑘) and

 𝑝𝑗
0 = 𝑝𝑗 for all 𝑗′𝑠.

For 1≤ 𝑖 ≤ 𝑘, parameterize 𝑝𝑖 by:

 𝑝𝑖 = exp(𝑏1 + 𝑏2 + ⋯ + 𝑏𝑖) /∆ (3.9)

where 𝑏𝑖 = 𝑎𝑖
2, 1 ≤ 𝑖 ≤ 𝑘 , and ∆= ∑ exp(𝑏1 + 𝑏2 +𝑘

𝑖=1

⋯ + 𝑏𝑖). Then by (3.9), {𝑝𝑖}𝑖=1
𝑘 satisfy (1.4) and (1.5). Let

𝑐0 = 0 and 𝑐𝑖 = 𝑝𝑖 + 𝑝2 + ⋯ + 𝑝𝑖 . The partial derivative of

𝑑𝑖log (𝑝𝑖) with respect to 𝑎𝑗, when 𝑗 ≤ 𝑖, is:

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

508

𝜕𝑑𝑖 log(𝑝𝑖)

𝜕𝑎𝑗

 = (
2𝑑𝑖𝑎𝑗

𝑝𝑖
) [𝑝𝑖 − 𝑝𝑖(𝑝𝑗 + 𝑝𝑗+1 + ⋯ + 𝑝𝑘)]

 = 2𝑑𝑖𝑎𝑗[1 − (𝑝𝑗 + 𝑝𝑗+1 + ⋯ + 𝑝𝑘)]

 = 2𝑑𝑖𝑎𝑗𝑐𝑗−1

using the relation 1 = 𝑐𝑘 = 𝑝1 + 𝑝2 + ⋯ + 𝑝𝑘 .

When 𝑗 > 𝑖, we have:

𝜕𝑑𝑖 log(𝑝𝑖)

𝜕𝑎𝑗

 = (
2𝑑𝑖𝑎𝑗

𝑝𝑖
) [−𝑝𝑖(𝑝𝑗 + 𝑝𝑗+1 + ⋯ + 𝑝𝑘)]

 = 2𝑑𝑖𝑎𝑗[−(𝑝𝑗 + 𝑝𝑗+1 + ⋯ + 𝑝𝑘)]

= 2𝑑𝑖𝑎𝑗(𝑐𝑗−1 − 1).

Therefore, the partial derivative of 𝐶𝐸(1, 𝑘) with respect

to 𝑎𝑗 is:

𝜕𝐶𝐸

𝜕𝑎𝑗
= − ∑

𝜕𝑑𝑖 log(𝑝𝑖)

𝜕𝑎𝑗

𝑘
𝑖=1

 = −2𝑎𝑗(𝑐𝑗−1 ∑ 𝑑𝑖
𝑘
𝑖=1 − ∑ 𝑑𝑖

𝑗−1
𝑖=1)

 = −2𝑎𝑗(𝑐𝑗−1𝑛 − ∑ 𝑑𝑖
𝑗−1
𝑖=1) = −2𝑎𝑗𝑔(𝑗)

using the relation ∑ 𝑑𝑖
𝑘
𝑖=1 = 𝑛, where:

 𝑔(𝑗) = (𝑐𝑗−1𝑛 − ∑ 𝑑𝑖
𝑗−1
𝑖=1).

We claim 𝑎2 = 𝑎3 = 𝑎𝑘 = 0. If this is true, then by (3.9),

we have 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑘 =
1

𝑘
= 𝑣(1, 𝑘). The proof

follows. Otherwise, let 𝑖0 > 1 be the smallest index such that

𝑎𝑖0
≠ 0. Then we have:

(i) 𝑝𝑖0−1 < 𝑝𝑖0
;

(ii) 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑖0−1;

(iii) 𝑔(𝑖0) = 0.

Therefore, by (iii), we have:

 0 = 𝑔(𝑖0) = 𝑐𝑖0−1𝑛 − ∑ 𝑑𝑖
𝑖0−1
𝑖=1

 ⇒ 𝑐𝑖0−1 = ∑
𝑑𝑖

𝑛
= (𝑖0 − 1)𝑣(1, 𝑖0 − 1)

𝑖0−1
𝑖=1 .

By (ii), 𝑐𝑖0−1 = (𝑖0 − 1)𝑝1, thus we have 𝑝1 = 𝑣(1, 𝑖0 −

1). This leads to the following:

 1 = 𝑘𝑣(1, 𝑘)

 = 𝑝1 + 𝑝2+. . +𝑝𝑘 > 𝑘𝑝1 = 𝑘𝑣(1, 𝑖0 − 1)

where the inequality follows from (i) and (1.4). Thus we have

𝑣(1, 𝑖0 − 1) < 𝑣(1, 𝑘).This contradicts the fact that 𝑗 = 𝑘 is

the largest index that 𝑣(1, 𝑗) reaches it minimum for all 1 ≤
𝑗 ≤ 𝑘. □

The following proposition generalizes the results of

Proposition 3.2 to the case for the minimum generalized

cross-entropy estimates.

Proposition 3.3. Given a sample 𝑆 =
{(𝑦𝑖1 , 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1

𝑛 , where 𝑦𝑖𝑗 ≥ 0, let {𝑘𝑖}𝑖=0
𝑚 be the

partition integers defined by (2.3) and (2.4). The minimum

generalized cross-entropy estimates {𝑝𝑖}𝑖=1
𝑘 that minimize

(1.6) subject to (1.4) and (1.7) are given by:

 𝑝𝑗 =
𝑟𝑘𝑖−1+1+𝑟𝑘𝑖−1+2+⋯+𝑟𝑘𝑖

(𝑘𝑖−𝑘𝑖−1)
 (3.10)

where 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖 .

Proof. If 𝑅 =
𝐷

𝑛
= 0, the proposition holds, because 𝑑𝑗 =

0 for all 1 ≤ 𝑗 ≤ 𝑘. Assume 𝑅 > 0. By (3.2), we have:

𝐺𝐶𝐸 = 𝑐 − 𝑅 ∑ 𝑑𝑗
′ log(𝑝𝑗

′)𝑘
𝑗=1

where 𝑑𝑗
′ = 𝑑𝑗/𝑅, 𝑝𝑗

′ = 𝑝𝑗/𝑅, and 𝑐 = −𝑅 ∑ 𝑑𝑗
′ log(𝑅)𝑘

𝑗=1 .

Since {𝑝𝑗
′}

𝑗=1

𝑘
sum to one and {𝑑𝑗

′}
𝑗=1

𝑘
 sum to 𝑛, the function

−𝑅 ∑ 𝑑𝑗
′ log(𝑝𝑗

′)𝑘
𝑗=1 differs from (1.3), the formulation of 𝐶𝐸,

only by a scalar 𝑅 . Because 𝑅 and 𝑐 are constants, by

Proposition 3.2, the minimum estimates of this function

subject to (1.4) and (1.5) are given by 𝑝𝑗
′ =

𝑟𝑘𝑖−1+1
′ +𝑟𝑘𝑖−1+2

′ +⋯+𝑟𝑘𝑖
′

(𝑘𝑖−𝑘𝑖−1)
 for 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖 , where 𝑟𝑗

′ =

𝑑𝑗
′

𝑛
=

𝑑𝑗

𝑛𝑅
= 𝑟𝑗/𝑅 . The equation (3.10) follows from the

equations 𝑝𝑗 = 𝑅𝑝𝑗
′ and 𝑟𝑗

′ =
𝑟𝑗

𝑅
. □

 Given a sample 𝑆 = {(𝑦𝑖1 , 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1
𝑛 , where 𝑦𝑖𝑗

are real numbers, we are interested in the least squares

estimates {𝑝𝑖}𝑖=1
𝑘 that minimize (3.11) subject to (3.12)

below:

𝑆𝑆𝐸 = ∑ ∑ (𝑦𝑖𝑗 − 𝑝𝑗)
2

,𝑛
𝑖=1

𝑘
𝑗=1 (3.11)

 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑘 . (3.12)

Proposition 3.4. 𝐿𝑒𝑡 {𝑘𝑖}𝑖=0
𝑚 be the partition integers

defined by (2.3) and (2.4). The least squares estimates

{𝑝𝑗}
𝑗=1

𝑘
 of (3.11) subject to (3.12) are given by:

𝑝𝑗 = 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖)

 =
𝑟𝑘𝑖−1+1+𝑟𝑘𝑖−1+2+⋯+𝑟𝑘𝑖

(𝑘𝑖−𝑘𝑖−1)
 (3.13)

where 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖. These estimates satisfy (1.7).

Proof. First, similarly to the proof of Proposition 3.2, these

specific values for {𝑝𝑗}
𝑗=1

𝑘
 satisfy (1.7). By (2.5), (3.12)

holds. Let:

 𝑆𝑆𝐸 = ∑ 𝑆𝑆𝐸(𝑘𝑖−1 + 1, 𝑘𝑖)
𝑚
𝑖=1

where:

𝑆𝑆𝐸(𝑘𝑖−1 + 1, 𝑘𝑖)

 = ∑ ∑ (𝑦𝑔𝑗 − 𝑝𝑗)
2

.𝑛
𝑔=1

𝑘𝑖
𝑗=𝑘𝑖−1+1

Because of (2.5), it suffices to show 𝑆𝑆𝐸(𝑘𝑖−1 + 1, 𝑘𝑖) is

minimized at 𝑝𝑗 = 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖) , where 𝑘𝑖−1 + 1 ≤ 𝑗 ≤

𝑘𝑖. We show only the case when 𝑖 = 1 for 𝑆𝑆𝐸(1, 𝑘1). The

proof for other 𝑆𝑆𝐸(𝑘𝑖−1 + 1, 𝑘𝑖) is similar. Without loss of

generality, we assume 𝑘1 = 𝑘. In this case, 𝑚 = 1 and 𝑘1 =
𝑘, and 𝑆𝑆𝐸(1, 𝑘) = 𝑆𝑆𝐸.

Parameterize 𝑝𝑗 by letting 𝑝1 = 𝑎1 and for 2 ≤ 𝑗 ≤

𝑘:

 𝑝𝑗 = 𝑎1 + (𝑏2 + ⋯ + 𝑏𝑗) (3.14)

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

509

where 𝑏𝑖 = 𝑎𝑖
2. With this parametrization, (3.12) holds. Plug

(3.14) into (3.11) and take the partial derivative of 𝑆𝑆𝐸 with

respect to 𝑎𝑗. For 𝑗 ≥ 2, we have:

𝜕𝑆𝑆𝐸

𝜕𝑎𝑗
= − ∑ ∑ 4𝑎𝑗(𝑦𝑔𝑖 − 𝑝𝑖)𝑛

𝑔=1
𝑘
𝑖=𝑗

 = −4𝑎𝑗 ∑ (𝑑𝑖 − 𝑛𝑝𝑖)
𝑘
𝑖=𝑗 = −4𝑎𝑗ℎ(𝑗)

where ℎ(𝑗) = ∑ (𝑑𝑖 − 𝑛𝑝𝑖)𝑘
𝑖=𝑗 . Setting this derivative to

zero, we have either 𝑎𝑗 = 0 or ℎ(𝑗) = 0. For 𝑗 = 1, we have:

𝜕𝑆𝑆𝐸

𝜕𝑎1
= − ∑ ∑ 2(𝑦𝑔𝑖 − 𝑝𝑖)

𝑛
𝑔=1

𝑘
𝑖=1

= −2 ∑ (𝑑𝑖 − 𝑛𝑝𝑖)
𝑘
𝑖=1 = −2ℎ(1).

Setting this derivative to zero, we have:

 0 = ℎ(1) = ∑ (𝑑𝑖 − 𝑛𝑝𝑖)𝑘
𝑖=1

 ⇒ ∑ 𝑝𝑖 =
𝑑1+𝑑2+⋯+𝑑𝑘

𝑛

𝑘
𝑖=1 (3.15)

=
𝐷

𝑛
= 𝑅 = 𝑘𝑣(1, 𝑘).

We claim that 𝑎𝑗 = 0 for all 1 < 𝑗 ≤ 𝑘. If this is true, then

𝑝1 = 𝑝2 = ⋯ = 𝑝𝑘 . By (3.15), we have 𝑝1 =
𝐷

𝑛𝑘
=

𝑣(1, 𝑘), and the proof follows. Otherwise, let 𝑖0, 1 < 𝑖0 ≤
𝑘, be the smallest index such that 𝑎𝑗 = 0 𝑤hen 1 < 𝑗 < 𝑖0 ,

and 𝑎𝑖0
≠ 0 . Then we have ℎ(1) = 0 and ℎ(𝑖0) = 0. Thus:

0 = ℎ(1) − ℎ(𝑖0) = ∑ (𝑑𝑖 − 𝑛𝑝𝑖)
𝑖0−1
𝑖=1 . (3.16)

Since 𝑎𝑗 = 0 for 1 < 𝑗 < 𝑖0 , we have 𝑝1 = 𝑝2 = ⋯ =

𝑝𝑖0−1. Thus by (3.16), we have:

 𝑝1 =
𝑑1+𝑑2+⋯+𝑑𝑖0−1

𝑛 (𝑖0−1)
= 𝑣(1, 𝑖0 − 1). (3.17)

Since 𝑎𝑖𝑜
> 0, we have 𝑝1 < 𝑝𝑖0

, hence ∑ 𝑝𝑖 > 𝑘𝑝1
𝑘
𝑖=1

by (3.12). Thus by (3.17) and (3.15), we have:

 𝑘𝑣(1, 𝑖0 − 1)

 = 𝑘𝑝1 < ∑ 𝑝𝑖 = 𝑘𝑣(1, 𝑘)𝑘
𝑖=1

 ⇒ 𝑣(1, 𝑖0 − 1) < 𝑣(1, 𝑘).

This contradicts the fact that 𝑗 = 𝑘 is the largest index that

𝑣(1, 𝑗) reaches it minimum for all 1 ≤ 𝑗 ≤ 𝑘. □

IV. ALGORITHMS FOR MONOTONIC ESTIMATION BY

MINIMUM GENERALISED CROSS-ENTROPY

In this section we propose algorithms for finding

monotonic estimates. First, we propose a non-parametric

algorithm with time complexity 𝑂(𝑘2) for the partition

integers, hence the exact solution for the monotonic estimates.

Algorithm 4.1 (Non-parametric). Set 𝑘0 = 0. Assume

that partition integers {𝑘𝑗}, 0 ≤ 𝑗 ≤ 𝑖 − 1, have been found

for an integer 𝑖 > 0, and that {𝑝𝑗}, 1 ≤ 𝑗 ≤ 𝑘𝑖−1, have been

calculated by (3.10) or (3.13). Scan into the remaining

indexes range 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘 for a value 𝑗 = 𝑘𝑖 such that

𝑣(𝑘𝑖−1 + 1, 𝑗) =
𝑟𝑘𝑖−1+1 + 𝑟𝑘𝑖−1+2 + ⋯ + 𝑟𝑗

(𝑗 − 𝑘𝑖−1)

reaches its minimum for all 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘, and 𝑗 = 𝑘𝑖 is

the largest index for this minimum. Calculate {𝑝𝑗}, 𝑘𝑖−1 +

1 ≤ 𝑗 ≤ 𝑘𝑖 , by (3.10) or (3.13) as 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖). Repeat

this process until 𝑘𝑖 = 𝑘. □

Next, we propose a parametric algorithm as below, which

can be implemented by using SAS procedure PROC

NLMIXED ([13]), for an approximation of the estimates

minimizing (1.6) subject to (1.4) and (1.7) (or strictly

monotonic constraints: 0 ≤ 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑘). Recall that

𝑅 = ∑ 𝑟𝑖
𝑘
𝑖=1 = 𝐷/𝑛.

Algorithm 4.2 (Parametric). Assume 𝑅 > 0.
Parameterize 𝑝𝑗 by:

 𝑝𝑗 =
𝑅𝑤𝑗

𝑤1+𝑤2+⋯+𝑤𝑘
, (4.1)

where:

 𝑤𝑗 = exp(𝑏1 + 𝑏2 + ⋯ +𝑏𝑗), (4.2)

and 𝑏𝑖 = 𝑎𝑖
2 + 𝜖, 1 ≤ 𝑖, 𝑗 ≤ 𝑘. Then ∑ 𝑝𝑖 𝑘

𝑖=1 = 𝑅 and
𝑝𝑖

𝑝𝑖−1
≥ exp(𝜖) . Here 𝜖 ≥ 0 is an appropriately selected

constant for the desired monotonicity. Plug (4.1) into (1.6)

and perform a non-constrained optimization to obtain the

estimates {𝑎𝑖}𝑖=1
𝑘 , hence {𝑝𝑖}𝑖=1

𝑘 by (4.1) and (4.2). □

V. APPLICATIONS

A. Isotonic Regression

Given real numbers {𝑟𝑖}𝑖=1
𝑘 , the task of isotonic regression

is to find {𝑝𝑖}𝑖=1
𝑘 that minimize the weighted sum squares

∑ 𝑤𝑖(𝑟𝑖 − 𝑝𝑖)
2𝑘

𝑖=1 , where {𝑤𝑖}𝑖=1
𝑘 are the given weights.

When 𝑤𝑖 is 1 and 𝑟𝑖 takes value 0 or 1 for all 𝑖’s, it is known

([14]) that the results for isotonic regression coincide with the

maximum likelihood estimates subject to (1.4) for the

Bernoulli log-likelihood ∑ [𝑟𝑖 log(𝑝𝑖) + (1 − 𝑟𝑖)log (1 −𝑘
𝑖=1

𝑝𝑖)].
A unique exact solution to the isotonic regression exists

and can be obtained by a non-parametric algorithm called

Pool Adjacent Violators (PAV) ([1]). The basic idea, as

described in [4], is the following: Starting with 𝑟1, we move

to the right and stop at the first place where 𝑟𝑖 > 𝑟𝑖+1.
Since 𝑟𝑖+1 violates the monotonic assumption, we pool 𝑟𝑖 and

𝑟𝑖+1 replacing both with their weighted average. Call this

average 𝑟𝑖
∗ = 𝑟𝑖+1

∗ = (𝑤𝑖𝑟𝑖 + 𝑤𝑖+1𝑟𝑖+1)/(𝑤𝑖 + 𝑤𝑖+1). We

then move to the left to make sure that 𝑟𝑖−1 ≤ 𝑟𝑖
∗- if not, we

pool 𝑟𝑖−1 with 𝑟𝑖
∗ and 𝑟𝑖+1

∗ replacing these three with their

weighted average. We continue to the left until the monotonic

requirement is satisfied, then proceed again to the right (see

[1], [2], [4], [8]). This algorithm finds the exact solution via

forward and backward averaging.

Another parametric algorithm, called Active Set Method,

approximates the solution using the Karush-Kuhn-Tucker

(KKT, [15]) conditions for linearly constrained optimization

([2], [8]).

For a given sample 𝑆 = {(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1
𝑛 , where 𝑦𝑖𝑗

are real numbers, the sum-squares-error 𝑆𝑆𝐸 in (3.11) can be

rewritten as:

 𝑆𝑆𝐸 = ∑ ∑ (𝑦𝑖𝑗 − 𝑝𝑗)
2𝑛

𝑖=1
𝑘
𝑗=1

 = ∑ ∑ (𝑦𝑖𝑗 − 𝑟𝑗)
2𝑛

𝑖=1
𝑘
𝑗=1 +

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

510

 ∑ 𝑛(𝑟𝑗 − 𝑝𝑗)
2𝑘

𝑗=1 = 𝑆𝑆𝐸1 + 𝑆𝑆𝐸2

where 𝑆𝑆𝐸1 = ∑ ∑ (𝑦𝑖𝑗 − 𝑟𝑗)
2𝑛

𝑖=1
𝑘
𝑗=1 , 𝑆𝑆𝐸2 = ∑ 𝑛(𝑟𝑗 −𝑘

𝑗=1

𝑝𝑗)
2

, 𝑟𝑗 =
𝑑𝑗

𝑛
, and 𝑑𝑗 = ∑ 𝑦𝑖𝑗

𝑛
𝑖=1 . Because 𝑆𝑆𝐸1 does not

depend on parameters {𝑝𝑗}
𝑗=1

𝑘
, the estimates that minimize

𝑆𝑆𝐸 subject to (3.12) are the same as the estimates that

minimize 𝑆𝑆𝐸2 subject to (3.12). Hence, the least squares

estimates {𝑝𝑗}
𝑗=1

𝑘
of (3.11) subject to (3.12) are the solution

to the isotonic regression problem where weights 𝑤𝑖 are

equal to 𝑛.
The algorithm PAV repeatedly searches both backward

and forward for violators and takes average whenever a

violator is found. In contrast, Algorithm 4.1 determines

explicitly the groups of consecutive indexes by a forward

search for partition integers. Average is then to be taken over

each of these groups. For Algorithm 4.2, the constrained

optimization is transformed into a non-constrained

mathematical programming, through a re-parameterization.

No KKT conditions and active set method are used.

B. Monotonic Estimation of Risk Scales for Multivariate

Outcomes

In this section, we show two examples on how the

proposed algorithms can be used for monotonic estimation

for a loss rate time series and a long-run migration matrix.

Parametric methods for monotonic estimation of long-run

migration matrices was discussed in ([5]).

TABLE I: SMOOTHING LOSS SERIES

In the first example, a loan portfolio is observed for loss

for each loan since the account is opened. The 1st row in

Table I shows the yearly (since account open date) loss rate

for the portfolio for 25000 accounts (i.e. 𝑛 = 25000). The

rate is calculated as the ratio of the total loss amount in a year

divided by the total initial balance at open date for the

portfolio. It is assumed that the loss rate is decreasing as loans

survive through time.

The non-parametric algorithm (Algorithm 4.1, labelled as

“NPSM”) is used, by reversing the time index, to obtain the

monotonic least squares estimates for 10 yearly rates. As a

result, simple average is taken for cell groups {1, 2} and {8,

9, 10} respectively. For other cells the rate is kept unchanged.

Strictly monotonic least squares estimates are obtained by

using algorithm 4.2 (labelled as “PSM”, where 𝜖 in the

algorithm is chosen to satisfy exp(𝜖) = 1.05).

A benchmark model of the form 𝑝𝑖 = 𝑎 + 𝑏𝑒𝜆𝑡𝑖 is

calibrated, where 𝑡𝑖 denotes the time since account opening,

with parameters being estimated by least squares regression.

This is a simplified model for monotonic continuous yield

curve used by Nelson and Siegel ([16], pp.483). We label this

approach by “NSSM”.

As shown in the table, the non-parametric algorithm gets

the lowest sum squared error (labelled as “SSE”).

In the second example, the non-parametric algorithm is

used to “smooth” the long-run average rating migration

matrix for a portfolio with six non-default ratings. It is

expected that an entity will migrate to the closer non-default

rating than a faraway non-default rating, i.e. the following

conditions are required for each 𝑖𝑡ℎ row in the long-run

average migration matrix:

 𝑝𝑖,𝑖+1 ≥ 𝑝𝑖,𝑖+2 ≥ ⋯ ≥ 𝑝𝑖,𝑘, (5.1)

 𝑝𝑖,1 ≤ 𝑝𝑖,2 ≤ ⋯ ≤ 𝑝𝑖,𝑖−1 (5.2)

where 𝑝𝑖,𝑗 denotes the probability of migrating from non-

default rating 𝑖 to non-default rating 𝑗, conditional on that it

migrates to a non-default rating. Smoothing of a given

migration matrix means the action of modifying the

migration matrix subject to (5.1) and (5.2) with minimum

loss (cross-entropy).

Table II below shows the sample long-run average rating

migration matrix before smoothing, conditional on migrating

to a non-default rating, calculated from the historical sample

generated synthetically between 2007Q1 and 2017Q1 for a

commercial portfolio. There are six non-default ratings.

Three highlighted blocks violate (5.1) or (5.2).

TABLE II: LONG-RUN TRANSITION MATRIX BEFORE SMOOTHING

For the 𝑖𝑡ℎ row of the migration matrix, we let 𝑛𝑖𝑗 and 𝑟𝑖𝑗

denote respectively the observed frequency and rate

migrating from 𝑖𝑡ℎ rating to 𝑗𝑡ℎ rating, conditional on

migrating to a non-default rating. Let 𝑛1 = 𝑛𝑖1 + 𝑛𝑖2 + ⋯ +
𝑛𝑖𝑖−1 , and 𝑛2 = 𝑛𝑖 𝑖+1 + 𝑛𝑖 𝑖+2 + ⋯ + 𝑛𝑖6 . For 𝑗 < 𝑖 , let

𝑝𝑖𝑗
0 = 𝑝𝑖𝑗/𝑝1, where 𝑝1 = 𝑝𝑖1 + 𝑝𝑖2 + ⋯ + 𝑝𝑖 𝑖−1. For 𝑗 > 𝑖,

let 𝑝𝑖𝑗
0 = 𝑝𝑖𝑗/𝑝2 , where 𝑝2 = 𝑝𝑖 𝑖+1 + 𝑝𝑖 𝑖+2 + ⋯ + 𝑝𝑖6 .The

log-likelihood for a specific 𝑖𝑡ℎ row of the migration matrix

is:

 𝐿𝐿 = ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗)6
𝑗=1 = 𝑛𝑖𝑖 log(𝑝𝑖𝑖)+

 ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗) +𝑖−1
𝑗=1 ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗)6

𝑗=𝑖+1

 = 𝑛𝑖𝑖 log(𝑝𝑖𝑖) + 𝑛1 log(𝑝1) + 𝑛2 log(𝑝2) +

 ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0) +𝑖−1

𝑗=1 ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0)6

𝑗=𝑖+1

 = 𝐿𝐿1 + ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0) +𝑖−1

𝑗=1 ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0)6

𝑗=𝑖+1

where 𝐿𝐿1 = 𝑛𝑖𝑖 log(𝑝𝑖𝑖) + 𝑛1 log(𝑝1) + 𝑛2 log(𝑝2). By

Lemma 3.1, 𝐿𝐿1 is maximized at 𝑝𝑖𝑖 = 𝑟𝑖𝑖 , 𝑝1 = 𝑟𝑖1 + 𝑟𝑖2 +
⋯ + 𝑟𝑖 𝑖−1, and 𝑝2 = 𝑟𝑖 𝑖+1 + 𝑟𝑖 𝑖+2 + ⋯ + 𝑟𝑖 6. Applying

Algorithm 4.1 respectively to ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0)𝑖−1

𝑗=1 for the left-

hand-side off the diagonal in the row, and to

∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0)6

𝑗=𝑖+1 for the right-hand-side off the diagonal,

 TABLE 1. SMOOTHING LOSS RATE SERIES

Loss rate by year since open

1 2 3 4 5 6 7

5.000% 6.500% 5.000% 4.000% 5.000% 3.500% 3.000%

NPSM 5.750% 5.750% 5.000% 4.500% 4.500% 3.500% 3.000%

PSM 5.890% 5.610% 5.000% 4.610% 4.390% 3.500% 3.089%

NSSM 5.723% 5.332% 4.948% 4.572% 4.203% 3.841% 3.486%

8 9 10 SSE

2.500% 3.000% 3.000% 0.00000

2.830% 2.830% 2.830% 4.47917

2.942% 2.802% 2.668% 6.70271

3.138% 2.796% 2.462% 9.85846

 TABLE 2. LONG-RUN TRANSITION MATRIX BEFORE SMOOTHING

Transition probability before smoothing

Rating 1 2 3 4 5 6

1 0.9716 0.0183 0.0031 0.0055 0.0010 0.0002

2 0.0062 0.9453 0.0307 0.0128 0.0021 0.0026

3 0.0007 0.0103 0.9380 0.0409 0.0066 0.0028

4 0.0002 0.0007 0.0126 0.9673 0.0126 0.0054

5 0.0004 0.0012 0.0079 0.0800 0.8272 0.0705

6 0.0002 0.0013 0.0027 0.0450 0.0120 0.8994

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

511

we get the maximum likelihood estimates for 𝑝𝑖𝑗
0 subject to

(5.2) or (5.1), hence the maximum likelihood estimates 𝑝𝑖𝑗

for all 𝑗 for a fixed 𝑖, subject to (5.1) or (5.2).

Take, for example, the right-hand-side of the diagonal for

the first row in the matrix, before smoothing, these numbers

are:

 0.0183, 0.0031, 0.0055, 0.0010, 0.0002. (5.3)

We can think these numbers are the sample multinomial

percentages by dividing into each the sum of these 5 numbers,

then applying Algorithm 4.1 to obtain the smoothed rates,

and finally times back the sum of the above 5 numbers. Or

equivalently, apply Algorithm 4.1 directly without

normalization to (5.3). This means, the smoothed results are

given by replacing the values for the 2nd and the 3rd numbers

by their average on 0.0031 and 0.0055, while keeping others

unchanged. Table III shows the migration matrix after

smoothing.

TABLE III: LONG-RUN TRANSITION MATRIX AFTER SMOOTHING

VI. CONCLUSIONS AND FUTURE WORKS

With the proposed non-parametric algorithm, the exact

solution to the monotonic estimation of the risk scales for

multivariate outcomes becomes easier. No calculation for the

optimization gradients and Hessian matrices, only a machine

learning data driven process is required.

 One of the interesting future research subjects is the

monotonic estimation for the survival probability of a loan

over a risk rated portfolio: a loan with lower risk rating is

expected to survive more likely. We will propose models and

algorithms for the monotonic estimation of these survival

probabilities.

ACKNOWLEDGMENT
The author thanks Carlos Lopez for his consistent inputs,

insights, and supports for this research. Special thanks go to

Clovis Sukam, Biao Wu, Wallace Law, and Glenn Fei for

many valuable conversations and their critical reading for

this manuscript.

The views expressed in this article are not necessarily

those of Royal Bank of Canada or any of its affiliates. Please

direct any comments to the author at: h_y02@yahoo.ca.

APPENDIX

Given two discrete probability distributions 𝑝 = {𝑝𝑖}𝑖=1
𝑘

and 𝑞 = {𝑞𝑖}𝑖=1
𝑘 , the Kullback-Leibler (KL) divergence (also

called relative entropy) between 𝑞 and 𝑝 is defined as

 𝐷𝐾𝐿(𝑞||𝑝) = ∑ 𝑞𝑖 log(𝑞𝑖/𝑝𝑖)
𝑘
𝑖=1 (A-1)

For a fixed 𝑞 , 𝐷𝐾𝐿(𝑞||𝑝) measures the dissimilarity

between 𝑞 and 𝑝 ([7]). The cross-entropy 𝐻(𝑞, 𝑝) is defined

as

 𝐻(𝑞, 𝑝) = − ∑ 𝑞𝑖 log(𝑝𝑖)𝑘
𝑖=1 (A-2)

Hence, we have

𝐻(𝑞, 𝑝) = 𝐻(𝑞) + 𝐷𝐾𝐿(𝑞||𝑝)

where 𝐻(𝑞) = − ∑ 𝑞𝑖 log(𝑞𝑖)
𝑘
𝑖=1 , the entropy for distribution

𝑞. When 𝑞 is fixed and given, cross-entropy 𝐻(𝑞, 𝑝) is the

same as 𝐷𝐾𝐿(𝑞||𝑝)(= ∑ 𝑞𝑖 log(𝑞𝑖) − ∑ 𝑞𝑖 log(𝑝𝑖)𝑘
𝑖=1

𝑘
𝑖=1) as

a function of 𝑝, up to an additive constant (because 𝑞 is

fixed). Both take on minimal values when 𝑝 = 𝑞, which is 0

for KL divergence and 𝐻(𝑞) for the cross-entropy. Thus

cross-entropy measures the dissimilarity between the given

distribution 𝑞 and the distribution 𝑝 ([5], [9]).

REFERENCES

[1] R. E. Barlow, D. J. Bartholomew, J. M. Bremner, H. D. Brunk,
Statistical Inference under Order Restrictions; the Theory and

Application of Isotonic Regression, New York: Wiley, 1972.

[2] M. J. Best and N. Chakravarti, “Active set algorithms for isotonic
regression; a unifying framework,” Mathematical Programming, vol.

47, pp. 425–439, 1990.

[3] J. Friedman and R. Tibshirani, 1984, “The monotone smoothing of
scatterplots,” Technometrics, vol. 26, no. 3, pp. 243-250.

[4] J. D. Leeuw, K. Hornik, and P. Mair, “Isotone optimization in R: Pool-

adjacent-violators algorithm (PAVA) and active set methods,” Journal
of Statistical Software, vol. 32, no. 5, 2009.

[5] B. H. Yang, “Smoothing algorithms by constrained maximum

likelihood,” Journal of Risk Model Validation, vol. 12, no. 2, pp. 89-
102, 2018.

[6] R. Potharst and A. J. Feelders, “Classification trees for problems with

monotonicity constraints,” SIGKDD Explorations, vol. 14, no. 1, pp.
1-10, 2002.

[7] W. Kotlowski and R. Slowinski, 2009, “Rule learning with

monotonicity constraints,” in Proc. the 26th Annual International
Conference on Machine Learning, 2009, pp. 537-544.

[8] T. Eichenberg, “Supervised weight of evidence binning of numeric

variables and factors,” R-Package Woebinning, 2018.
[9] S. You, D. Ding, K. Canini, J. Pfeifer, and M. Gupta, “Deep lattice

networks and partial monotonic functions,” in Proc. 31st Conference

on Neural Information Processing System, 2017.
[10] S. Kullback and R. A. Leibler, “On information and sufficiency,”

Annals of Mathematical Statistics, vol. 22, no. 1, 1951, pp. 79–86.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
2016.

[12] K. Murphy, Machine Learning: A Probabilistic Perspective, MIT,

2012.
[13] SAS Institute Inc, SAS/STAT(R) 13.2, User’s Guide, 2014.

[14] T. Robertson, F. T. Wright, R. L. Dykstra, Order Restricted Statistical

Inference, John Wiley & Son, 1998.
[15] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer,

2006.
[16] C. R. Nelson and A. F. Siegel, “Parsimonious modeling of yield

curves,” Journal of Business, vol. 60, no. 4, pp. 473-489, 1987.

Bill Huajian Yang got Ph.D in mathematics in

1996 from Lehigh University, USA. He published
the thesis “The stable homotopy types of stunted

lens spaces mod 4” in Transaction American

Mathematical Society in 1998; He was a postdoc
fellow in mathematics in 1998 at McMaster

University. He is a member of editorial board for

Journal of Risk Model Validation, and Current
Analysis on Economic & Finance. He started

working for the banking industry in 2001 and is

currently a senior quantitative methodology leader with Royal Bank of
Canada. His research areas focus on machine learning driven data mining

and analytics.

 TABLE 3. LONG-RUN TRANSITION MATRIX AFTER SMOOTHING

Transition probability after smoothing

Rating 1 2 3 4 5 6

1 0.9718 0.0183 0.0043 0.0043 0.0010 0.0002

2 0.0062 0.9455 0.0307 0.0128 0.0024 0.0024

3 0.0007 0.0103 0.9387 0.0409 0.0066 0.0028

4 0.0002 0.0007 0.0126 0.9684 0.0126 0.0054

5 0.0004 0.0012 0.0080 0.0810 0.8380 0.0714

6 0.0002 0.0014 0.0028 0.0296 0.0296 0.9363

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

512

