

Abstract—This paper investigates anomalies such as worms,

power outages, and routing table leak (RTL) events occurring in

Border Gateway Protocol (BGP) that can cause connectivity and

data loss issues. Ensemble learning is a machine learning model

employing multiple classifiers in order to reliably identify

network anomalies. We use bagging, boosting, and random

forests ensemble models trained on network anomaly datasets

for classification improvement. Models were compared with

respect to the following performance metrics: F-measure,

Matthews correlation coefficient (MCC), Receiver operating

characteristic (ROC) curve, precision-recall (PR) curves and

model execution time. We observed improvement in

performance measures when ensemble classifiers realized in

Python were used in comparison to our previously reported

results on single classifiers. Further improvement in most

performance measures was observed by using sampling

techniques (oversampling and undersampling) on anomalous

datasets. This approach increases model execution time which is

not favorable for real-time anomaly detection models.

Index Terms—BGP, bagging, boosting, random forest.

I. INTRODUCTION

The main purpose of the Border Gateway Protocol (BGP)

is to exchange routing and reachability information between

autonomous systems (AS) in the Internet. BGP is susceptible

to anomalous behavior (intentional or unintentional), and as

such can cause problems with connectivity and data loss. BGP

anomaly detection is an ongoing challenge for researchers in

the computer networking domain as well as network operators.

Machine learning techniques have been used to address

anomaly prediction within the Internet [1]-[4].

The standard for classifier evaluation are various

performance measures. By combining multiple classifiers in

ensemble methods we aim to improve performance measures

previously reported in our work [1]-[3]. Authors is [4]

developed an unsupervised ensemble anomaly detection

method for network traffic. Although, it has no need for prior

data labeling, considering it uses multiple baseline models

trained on multiple sets od sampled data, it provides no

improvement in performance measures in respect to

supervised methods.

We have formerly employed Support Vector Machines

Manuscript received February 11, 2019; revised June 2, 2019. This work

was supported in part by the Ministry of Science and Technology, Republic

of Srpska, Bosna and Hercegovina.

M. Cosovic is with the University of East Sarajevo, Faculty of Electrical

Engineering, Istocno Sarajevo, Bosnia and Hercegovina (e-mail:

marijana.cosovic@etf.ues.rs.ba).

E. Junuz is with Dzemal Bijedic University, Faculty of Information

Technology, Mostar, Bosnia and Hercegovina (e-mail: emina@edu.fit.ba).

(SVM), Naïve Bayes (NB), and decision tree (C4.5)

classifiers, as well as neural networks [1]-[3] for anomaly

detection. In this paper we use ensemble methods, namely

bagging [5], boosting [6] and random forest [7], to achieve

better classification results. We do not consider accuracy as

one of the performance measures since anomalous datasets

are highly imbalanced. Instead we use F-measure, Matthews

correlation coefficient (MCC), Receiver operating

characteristic (ROC) curve, and precision-recall (PR) curves.

In addition, we consider model execution time, since anomaly

detection systems aim at real-time performance. We observe

BGP routing data and traffic traces contained in the BGP

update messages and extract information during anomaly

occurrence. We train classifiers based on information

extracted from the BGP update messages for ten different

anomalous events: worms, power outage event, and routing

table leak events affecting BGP performance.

This paper is organized as follows. In Section II, we

describe methodology used for BGP anomaly classification.

Three ensemble models are briefly presented and their

performance measures obtained on all ten anomalous datasets

are discussed in Section III. In addition, oversampling and

undersampling algorithms were applied to original datasets

and performance measures achieved on those datasets were

discussed. We conclude with Section IV.

II. METHODOLOGY

Classification of BGP anomalies was performed on ten

different datasets of known anomalies in BGP. Slammer,

Nimda, and Code Red I are worm events considered in [1].

AS9121, AWS, Malay, and Indosat are RTL events described

in detail in [2] while Moscow Power Blackout, Panix Hijack,

and AS-PATH Error events were discussed in [3]. Web

application [8] was developed for analysis and testing of the

anomalous events in the Internet. For BGP anomaly events

considered, data is collected through The Réseaux IP

Européens (RIPE) [9] and Route Views [10] projects. Data

preprocessing techniques have been used to complete and

clear inconsistencies in the datasets. We did not consider that

a small percentage of missing data (less than 0.5%) could

have a negative impact on classification, but nevertheless

missing data is replaced by the average of ten surrounding

values in the neighborhood of the missing value. Since feature

matrices are generated for a period of five days, a large

number of files corresponding to one event are integrated into

one. We extracted 15 features from the BGP update messages

of anomalous events [8], considering volume and AS-PATH

features, hence our feature matrix for each of the datasets is

7200x15. Data is normalized (each feature has a mean value

of zero, and standard deviation of one) to eliminate the impact

of Internet growth (number of ASs, routing table, etc.), since

BGP Anomaly Prediction Using Ensemble Learning

Marijana Cosovic and Emina Junuz

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

452doi: 10.18178/ijmlc.2019.9.4.825

datasets belong to different time periods. Data discretization

was also performed to achieve better measures for evaluation

of classification models. In addition to the original,

normalized and discretized datasets data sampling algorithms

were used. The use of sampling techniques in this paper aims

at balancing the classes in anomalous datasets. Oversampling

and undersampling algorithms were used as reported in [11],

and measurements of the BGP anomaly classification

ensemble models were compared, with or without data

sampling techniques. BGP anomaly detection methodology is

shown in Fig. 1. Further details can be found in [8].

Fig. 1. BGP anomaly detection methodology [8].

III. ENSEMBLE CLASSIFICATION METHODS

By combining multiple classifiers ensemble methods are

used to improve classification accuracy. Combined classifiers

can improve accuracy [12] of individual models under several

conditions: (i) individual model should classify a new

instance with a classification error that is better than random

errors and (ii) classification error should be of variable nature.

The pseudo code for the general procedure of the ensemble

method is shown below. D is the original data set for training;

N is the number of basic classifiers; T is a set of data for

testing; and F is a function of the decision process, which

defines the ensemble classifier. N different classifiers are

formed based on N subsets of the original dataset D. On the

test set, a classifier is formed in accordance with the decision

process function.

The reasons why ensemble methods have more success

than individual classifiers are statistical, computational and

representational in nature. Risk of choosing an ineffective

classifier is mediated by using a combination of classifiers

and in this way various errors associated with single

classifiers can be averaged out. All classifiers search the

hypothesis space that can have infinitely many hypotheses so

search process optimization becomes essential in determining

an adequate hypothesis. Different techniques are used in case

of inadequate datasets with either fewer or too many instances.

Representational reasons are dealing with existence of an

adequate and representative training dataset based on which

the classifier can learn a dataset distribution.

A. Bagging

One of the basic techniques for ensemble methods

construction is bagging [13]. It is based on creation of a large

number of different datasets based on the original training

dataset and combining them into one common model i.e.

prediction based on the majority vote rule. New datasets are

generated by random sampling of data with replacement from

the original dataset i.e. using bootstrapping method. Every

training dataset is independent and certain instances from the

original dataset could occur several times in the new dataset,

and some could be omitted. (Boot-strap AGGregatING).

The author in [14] has shown that slight changes in the

training datasets when combined with weak classifiers create

different hypotheses. Weak classifiers, such as decision trees

and neural networks, are classifiers that for small changes in

the training dataset exhibit changes in their classification

performance. By using bagging technique, the variance

shown in expression (1) can be reduced if the number of

models m is high:

2(*() ())

0
1

i

i

h h

m

−
→

−


x x (1)

B. Boosting

First effective boosting algorithm presented in several

papers [15-17] used for binary classification is AdaBoost

(Adaptive Boosting). The model, in general, is not taking

independent random samples from the original training

dataset but rather is generated in such a way that weights are

successively applied to the training dataset.

The weights are increased or decreased in accordance with

the experience of previous models, and a vote with a weight

majority is applied in which more accurate models have

greater influence in the voting [17]. Hence, a classifier which

has an accuracy below 0.5 has a negative weight factor while a

classifier which have accuracy greater than 0.5 receive

positive weighting factors. In case of classifier which has an

accuracy of 0.5, algorithm categorizes it as neutral in the final

classifier outcome. AdaBoost algorithm adds models

successively either until it generates a hypothesis that will

perfectly classify the training dataset or until the

predetermined maximum number of models is reached.

In the case of most learning algorithms, the error between the

training and testing models increases with the complexity of

the model. In the case of boosting, an increase of the number

of iterations results in equalizing or even decreasing the

difference between the model training and testing errors. This

is due to the fact that the margin on a training dataset is higher

and smaller errors are expected on the training dataset.

Although the final classifier is seemingly complex, the

increase in the margin reduction in the variance of the model

is present [16].

The equation which represents the final classifier, and

which is made of the K weak classifiers is given by:

 ()













= 

=

K

k

kk xhsignxH

1

)((2)

where hk is a hypothesis of the weak classifier, and ωk

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

453

weighting factor as determined by the AdaBoost algorithm.

Classifier error is calculated based on following equation













 −
=

k

k
k






1

2

1
ln (3)

where k is the number of misclassified instances divided by

the number of total instances in the training dataset. Equation

(3) implies that in case of εk 0→k we have that the

weighting factor of the classifier increases exponentially, for a

random guess 0.5k → the weighting factor is zero, and for

1k → the weighting factor decreases exponentially towards

very large negative number. For calculated k and in

accordance with equation (4) we determine the weights for the

i-th instance from the training dataset:

k

ikikk
k

Z

xhyiD
iD

)(()(
)(

−
=+

exp
1 (4)

where)(iDk is a vector of weighting factors used during the

training of the k-th classifier. Each of the weight factors

)(iD represents the probability that the i-th instance would be

selected as a part of the training dataset. kZ is the sum of the

weight factors and in the equation (4) is used as a normalizing

factor such that:

  −=

n

ikikkk xhyiDZ

1

)(()(exp . (5)

kh and iy could have two possible values since it is a

binary classification, hence their product could be -1 or 1. If

the actual and predicted value is the same, their product is

positive, and if they differ, the product is negative.

Outliers values that are not realistic could pose a problem

to algorithm performance and hence it is advisable to remove

these values from the training dataset prior to training the

model. It is recommended for the training dataset using the

AdaBoost algorithm to be of the best quality considering that

ensemble methods in machine learning work on the correction

of instances in the training dataset. Boosting methods are very

sensitive to noise in the data, especially if it is in the output

variables. Authors in [18] show that the AdaBoost algorithm

overfits the data in the presence of noise in the training dataset

therefore demonstrating the need for outlier removal.

However, it has been shown in [19], that if model is based on

a boosting method with an increased number of iterations it

overfits much slower than a model based on other methods.

The concept of soft margins also enrich the boosting method

and it is used in RegBoost [20], Ada-BoostReg, Linear

Programming Boost, and Quadratic Programming Boost [21]

Same concept of soft margins and use of slack variable

implementation for its regularization strategies is also applied

in Support Vector Machines.

C. Random Forest

The first Random Forest algorithm, based on decision trees,

has been developed in [22], [23]. Today's versions of the

algorithm uses the bagging method of [13] together with [22],

[24]. Authors in [25] show that AdaBoost could be considered

a representative of Random Forest algorithms.

The advantage of usage of the decision tree is the speed of

generating a classification model. On the other hand, the

complexity of the model is limited and has the effect of

degrading the accuracy of the training set. The Random Forest

Method was created in response to improving accuracy with

the increasing complexity of the model being trained. The

basic principle on which this ensemble method is based,

shown in Fig. 2, is that in a randomly selected space, which is

a subset of the original space (D1, D2, .., DN) of features,

generates multiple decision trees T1, T2, .., TN.

Fig. 2. Random forest ensemble method.

Bootstrap method has been used for generation of decision

trees, which means that the trees are built from a subset of the

original feature space with substitutions as shown in Fig. 2.

The Random Forest method, unlike the decision trees that

select the best feature for division of the feature space, uses k

randomly chosen features for dividing the feature space.

Typically for Random Forest nk = , where n is the total

number of features. Thus, a bagging method is combined with

a randomly selected subset of features.

By combining decision trees generated in this way,

classification accuracy increases, and it is associated with

independence between the trees that make up the random

forest. Also, the overfitting problem is minimized in the case

of Random Forest method in comparison to the decision tree

method. Random Forest is a method that can be implemented

in parallel, and is also effective in dealing with a large number

of input features, that is, with high-dimensional data, and the

data in which distributions are not known.

IV. RESULTS AND DISCUSSION

The AdaBoost algorithm, using the C4.5 decision tree for

the base classifier, was developed in Python, and its

performance measures are shown in Table I.

TABLE I: ADABOOST METHOD PERFORMANCE MEASURES WITH C4.5

DECISION TREE BASE

Dataset Acc F-measure MCC ROC PR Time (s)

Slammer 0.9710 0.876 0.860 0.985 0.947 1.68

Nimda 0.7471 0.742 0.494 0.827 0.816 3.6

Code Red I 0.9457 0.639 0.614 0.870 0.645 3.04

Moscow PB 0.9967 0.927 0.926 0.977 0.932 1.31

AS9121 RTL 0.9986 0.938 0.937 0.999 0.976 0.65

Panix Hijack 0.9990 0.945 0.945 0.991 0.974 0.56

AS -PATH 0.9972 0.943 0.941 0.999 0.964 0.68

AWS 0.9949 0.823 0.825 0.957 0.835 1.44

Malay 0.9933 0.864 0.861 0.980 0.909 1.43

Indosat 0.9844 0.541 0.549 0.898 0.530 2.06

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

454

The classification is based on the combination of weak

classifiers in order to create a strong one. Decision stump, the

simplest form of decision tree, was used, and classification

results improved in comparison to the C4.5 base algorithm.

The basic function of the boosting algorithm is learning the

weight factors of some weaker classifiers. The weight factors

are adjusted based on the performance ratio of the new weak

classifier and the previously trained ones. The training set

adjusts in such a way that instances, which previous

classifications have not successfully classified, have added

weight factors, and for all other instances weight factors are

reduced. We applied oversampling algorithms to Slammer,

Code Red I, Moscow PB, and AS9121 RTL datasets. The best

performance for AdaBoost classification is obtained when

random oversampling (ROS) algorithm was applied on all

discussed datasets. The random undersampling (RUS)

algorithm applied to the Slammer and AS9121 RTL datasets

gives the best classification performance when comparing all

undersampling techniques. The Cluster Centroid (CC)

algorithm applied to the Code Red I, and Moscow PB datasets

has the best classification performance amongst ten

undersampling techniques. Classification performance for

Slammer, Code Red I, Moscow PB, and AS9121 has

generally been improved by using undersampling and

oversampling techniques compared to the original datasets,

but oversampling techniques provide superior classification

measures. Thus, for example, the number of incorrectly

classified instances of anomaly is reduced from 254 to 11 for

the Code Red I set. AdaBoost classification on oversampled

Slammer, Moscow PB, and AS9121 RTL datasets has no

incorrectly classified anomalous instances. The number of

incorrectly classified regular instances increased using the

oversampling technique for Slammer, Code Red I, and

Moscow PB datasets while in the case of the AS9121 RTL

dataset, the total number of incorrectly classified instances is

lower than AdaBoost classification applied to the original

datasets.

TABLE II: ADABOOST PERFORMANCE MEASURES WITH

OVERSAMPLING/UNDERSAMPLING DATASETS

Dataset F-measure MCC ROC PR Time (s)

Slammer

ROS 0.992 0.984 0.999 0.998 3.53

RUS 0.949 0.898 0.989 0.990 0.39

Code Red I

ROS 0.985 0.969 0.997 0.995 5.61

CC 0.884 0.765 0.948 0.938 0.34

Moscow PB
ROS 0.999 0.999 1 1 1.76

CC 0.967 0.935 0.982 0.982 0.08

AS9121 RTL
ROS 0.999 0.999 1 1 1.32

RUS 0.981 0.962 0.981 0.969 0.01

If we compare the execution time of the boosting ensemble

method and the original datasets (Table I), as well as the

oversampled datasets (Table II), we can conclude that the

execution time is, as expected, longer than in the case of the

oversampled datasets but approximately half as long for all

original datasets apart in the case of the Moscow PB dataset.

Since real-time anomaly detection requires a shorter model

training time, the AdaBoost method with previously sampled

data sets is adequate. Table III illustrates the performance of

the bagging technique with a C4.5 decision tree which is used

to implement a weak classifier. The bagging method

generates multiple versions of the classifier that are used as a

whole by the mechanism of the majority vote. Generation

methods are based on manipulation of the training set, and it is

recommended that the number of weak classifiers be limited

to 10 [6] due to performance measure improvement.

TABLE III: BAGGING METHOD PERFORMANCE MEASURES WITH C4.5

DECISION TREE BASE

Dataset Acc F-measure MCC ROC PR Time (s)

Slammer 0.9732 0.855 0.871 0.986 0.950 0.75

Nimda 0.7581 0.754 0.516 0.842 0.835 2.4

Code Red I 0.9526 0.668 0.654 0.895 0.686 1.57

Moscow PB 0.9960 0.911 0.909 0.960 0.925 0.71

AS9121 RTL 0.9988 0.943 0.943 0.980 0.935 0.42

Panix Hijack 0.9993 0.962 0.962 0.998 0.950 0.65

AS -PATH 0.9974 0.945 0.944 0.995 0.954 0.31

AWS 0.9950 0.825 0.829 0.950 0.839 0.71

Malay 0.9928 0.853 0.850 0.980 0.907 0.63

Indosat 0.9861 0.565 0.588 0.913 0.609 0.81

The best classification performance for the bagging method

is obtained for the ROS algorithm on all discussed data sets.

The RUS algorithm applied to the Slammer and AS9121 RTL

datasets gives the best classification performance when

comparing all undersampling techniques. The CC algorithm

applied to the Code Red I and Moscow PB datasets has the

best classification performance of all ten undersampling

techniques. As in the case of boosting, classification

performance for all considered datasets has generally

improved by using undersampling and oversampling

techniques compared to original datasets, but oversampling

techniques provide superior classification measures. The

number of erroneously classified anomalous instances was

reduced from 127 to 5 for the Slammer dataset and from 257

to 15 for the Code Red I dataset. On the other hand, by

applying bagging techniques to the previously oversampled

Moscow PB and AS9121 RTL datasets, there are no

erroneously classified anomalous instances. The number of

incorrectly classified regular instances increased using

oversampling techniques for all datasets except for AS9121

RTL. The total number of incorrectly classified instances is

lower than when the bagging method is applied to the original

datasets.

TABLE IV: BAGGING PERFORMANCE MEASURES WITH

OVERSAMPLING/UNDERSAMPLING DATASETS

Dataset F-measure MCC ROC PR Time (s)

Slammer

ROS 0.989 0.977 0.999 0.999 2.17

RUS 0.945 0.889 0.989 0.990 0.23

Code Red I

ROS 0.985 0.969 0.997 0.994 4.00

CC 0.875 0.750 0.944 0.923 0.22

Moscow PB
ROS 0.999 0.998 0.999 0.999 1.49

CC 0.961 0.923 0.981 0.972 0.04

AS9121 RTL
ROS 0.999 0.999 0.999 0.999 0.77

RUS 0.981 0.962 1 0.999 0.01

If the execution time for the bagging ensemble method is

compared to the original (Table III) and oversampled (Table

IV) datasets, it can be concluded that the execution time is

longer, as expected, in the case of oversampled datasets but

less than two times as long in the case of Moscow PB and

AS9121 RTL datasets and less than three times as long in the

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

455

case of the remaining two datasets. Random forest

classification algorithm, with a decision tree base classifier,

was also implemented in Python. Table V shows the random

forest measure performance with a C4.5 decision tree used as

a weak classifier.

The best classification performance measures for random

forest ensemble method were obtained by using the ROS

algorithm on all considered datasets.

The RUS applied to the Slammer and AS9121 RTL

datasets gives the best classification performance measures

when comparing all undersampling techniques. The CC

algorithm applied to the Code Red I and Moscow PB datasets

has the best classification performance measures.

Classification performance measures for all considered

datasets generally improved by using oversampling and

undersampling techniques compared to the original datasets,

although oversampling techniques are superior in

classification measures.

TABLE V: RANDOM FOREST METHOD PERFORMANCE MEASURES WITH

C4.5 DECISION TREE BASE

Dataset Acc F-measure MCC ROC PR Time (s)

Slammer 0.9758 0.896 0.883 0.989 0.955 1.29

Nimda 0.7771 0.774 0.554 0.861 0.856 2.42

Code Red I 0.9528 0.664 0.653 0.901 0.694 1.75

Moscow PB 0.9960 0.910 0.909 0.979 0.933 1.32

AS9121 RTL 0.9988 0.944 0.944 0.994 0.983 0.69

Panix Hijack 0.9993 0.962 0.962 0.992 0.981 0.45

AS -PATH 0.9979 0.957 0.956 0.999 0.982 0.57

AWS 0.9951 0.826 0.832 0.970 0.864 1.17

Malay 0.9940 0.880 0.877 0.987 0.937 1.2

Indosat 0.9855 0.612 0.592 0.731 0.544 1.11

For example, the number of erroneously classified

anomalous instances is reduced from 264 to 9 for the Code

Red I set while using the random forest method on the

oversampled Slammer, Moscow PB, and AS9121 RTL

datasets causes no erroneously classified anomalous instances.

The number of incorrectly classified regular instances

increased using the oversampling technique in the Slammer,

Code Red I, and Moscow PB datasets, while for the AS9121

RTL dataset, the total number of erroneously classified

instances is lower in comparison to the random forest method

applied to the original datasets.

If the execution time of the random forest ensemble method

is compared to the original (Table V) and oversampled (Table

VI) datasets it can be concluded that execution time is

expectedly longer in the case of the oversampled datasets, and

it is two times longer than in all datasets except the Moscow

PB dataset for which the training time is one and a half times

longer than the training time of the original dataset. Since

real-time anomaly detection requires a shorter training time of

the model this qualifies the random forest method with

sampled datasets as an adequate choice.

Fig. 3. shows the execution time of three ensemble methods

considered on original datasets. The bagging method has the

shortest training time on all datasets except for the Panix

hijack dataset in which the random forest method has shorter

training time. The difference between the two models is

minimal.

Fig. 4. shows the classifications performance measures

(F-measure, MCC, ROC, and PR) for all three ensemble

methods.

TABLE VI: RANDOM FOREST METHOD PERFORMANCE MEASURES WITH

OVERSAMPLING/UNDERSAMPLING DATASETS

Dataset F-measure MCC ROC PR Time (s)

Slammer

ROS 0.992 0.984 0.999 0.999 2.65

RUS 0.954 0.908 0.991 0.990 0.28

Code Red I

ROS 0.989 0.979 0.999 0.999 3.48

CC 0.883 0.767 0.950 0.944 0.32

Moscow PB
ROS 0.999 0.999 0.999 0.999 1.96

CC 0.950 0.899 0.992 0.992 0.1

AS9121 RTL
ROS 0.999 0.999 0.999 0.999 1.51

RUS 0.994 0.987 0.999 0.999 0.03

Fig. 3. Ensemble models execution time on considered datasets.

Fig. 4. Ensemble method performance measures (Bagging, AdaBoost, and Random forest) for Slammer, Nimda, Code Red I, Moscow PB, AS9121 RTL,

Panix Hijack, AS-PATH Error, AWS, Malay, and Indosat datasets: (a) F-measure, (b) MCC, (c) ROC, and (d) PR.

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

456

V. CONCLUSION AND FUTURE WORK

This paper compares several ensemble methods for

improvement in performance measures in BGP anomaly

detection domain. The random forest method compared to a

single classifier models (SVM, NB and DT) provides the best

tradeoff between model execution time and the rest of

performance measures considered over all datasets. Bagging

and boosting ensemble methods were used as well but the

random forest ensemble method proved to be superior. For

example, when random forest and bagging method were

compared the biggest F-measure margin (4.7%) was obtained

in case of Indosat amongst all datasets in the study. Slammer

dataset has the next best F-measure value with a 4.1% margin

while Malay dataset has a 3.7% margin when random forest

method was applied in comparison to bagging. Remaining

datasets have 2% or lesser margin of F-measure between the

two compared methods. Boosting ensemble method was

compared to the random forest as well.

We report better performance measures in case of the

random forest when compared to boosting ensemble methods

with greater margin than in case of bagging methods. For

example, when random forest and boosting method were

compared the biggest F-measure margin (7.1%) was obtained

in case of Indosat amongst all datasets in the study. Nimda

dataset has the next best F-measure value with a 3.2% margin

while Code Red I dataset has a 2.5% margin when random

forest method was applied in comparison to boosting.

Remaining datasets have 2.3% or lesser margin of F-measure

between the two compared methods.

We are planning to increase the number of anomalous

datasets considered in this study and test the efficiency of the

random forest method in the future.

REFERENCES

[1] M. Cosovic, S. Obradovic, and L. Trajkovic, “Performance evaluation

of BGP anomaly classifiers,” in Proc. Int. Conf. on Digital Inform.,

Networking and Wireless Commun., Moscow, Russia, Feb. 2015, pp.

115–120.

[2] M. Cosovic, S. Obradovic, and E. Junuz, “Deep Learning for Detection

of BGP Anomalies,” in Proc. Int. Work-Conf. On Time Series,

Granada, Spain, Sept. 2017, pp. 487-498.

[3] M. Cosovic, S. Obradovic, and Lj. Trajkovic, “Classifying anomalous

events in BGP datasets,” in Proc. 29th Annu. IEEE Can. Conf. on

Electr. and Comput. Eng., Vancouver, Canada, May 2016, pp.

697–700.

[4] S. Nawata, M. Uchida, Y. Gu, M. Tsuru, and Y. Oie, “Unsupervised

ensemble anomaly detection through time-periodical packet

sampling,” in Proc. 13th IEEE Global Internet Symposium, San Diego,

CA, USA, March 2010, pp. 1-6.

[5] S. B. Kotsiantis, “Supervised machine learning: A review of

classification techniques,” Informatica, vol. 31, no. 3, pp. 249-268,

2007.

[6] J. Rodriguez, and J. Maudes, “Boosting recombined weak classifiers,”

Pattern Recognition Lett., vol. 29, no. 8, pp. 1049-1059, 2008.

[7] T. K. Ho, “Random decision forests,” in Proc. 3rd Int. Conf. on

Document Anal. and Recognition, Montreal, Canada, Aug. 1995, pp.

278–282.

[8] M. Cosovic, S. Obradovic, “Ensemble methods for classifying BGP

anomalies,” Ind. Technolog., vol. 4, no. 1, pp. 12-20, June 2017.

[9] RIPE RIS raw data. [Online]. Available: http://www.ripe.net/

data-tools/stats/ris/ris-raw-data

[10] University of Oregon Route Views project. [Online]. Available:

http://www.routeviews.org/

[11] M. Cosovic and S. Obradovic, “BGP Anomaly detection with balanced

datasets,” Tehnički vjesnik, vol. 25, no. 3, pp. 766-775, June 2018.

[12] T. G. Dietterich, “Ensemble methods in machine learning,” in Proc.

the 1st Int. Workshop on Multiple Classifier Systems, London, UK,

Aug. 2000, pp. 1-15.

[13] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,

pp. 123-140, August 1996.

[14] R. E. Schapire, “The strength of weak learnability,” Mach. Learning,

vol. 5, no. 2, pp. 197–227, 1990.

[15] R. E. Schapire, “Using output codes to boost multiclass learning

problems,” in Proc. 14th Int. Conf. on Mach. Learning, Nashville, TN,

USA, July 1997, pp. 313-321.

[16] R. E. Schapire, Y. Freund, P. Barlett, and W. S. Lee, “Boosting the

margin: A new explanation for the effectiveness of voting methods,” in

Proc. 14th Int. Conf. on Mach. Learning, Nashville, TN, USA, July

1997, pp. 322-330.

[17] R. E. Schapire, and Y. Singer, “Improved boosting algorithms using

confidence-rated predictions,” in Proc. 11th Ann. Conf. on Comput.

learning theory, Madison, WI, USA, July 1998, pp. 80-91.

[18] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft margins for AdaBoost,”

Mach. Learning, vol. 42, no. 3, pp. 287-320, March 2001.

[19] P. Bühlmann, and B. Yu “Boosting with the L2 Loss,” Journal of the

American Statistical Association, vol. 98, no. 462, pp. 324-339, 2003.

[20] B. Kégl, and L. Wang, “Boosting on manifolds: adaptive regularization

of base classifiers,” in Proc. 17th Int. Conf. on NEURAL Inf. Process.

Syst., Vancouver, Canada, December 2004, pp. 665- 672.

[21] G. Rätsch, T. Onoda, and K. R. Müller, “Regularizing AdaBoost,” in

Proc. Conf. on Neural Inf. Process. Syst., Denver, CO, USA,

December 1998, pp. 564-570.

[22] T. K. Ho, “Random decision forests,” in Proc. 3rd Int. Conf. on

Document Analysis and Recognition, Montreal, Canada, August 1995,

pp. 278-282.

[23] T. K. Ho, “The Random Subspace Method for Constructing Decision

Forests,” IEEE Trans. Pattern Anal. and Mach. Intell., vol. 20, no. 8,

pp. 832-844, August 1998.

[24] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to

Statistical Learning: With Applications, R. Springer Publishing

Company, Inc., 2014.

[25] L. Breiman, “Random forests,” Mach. Learning, vol. 45, no. 1, pp.

5-32, 2001.

Marijana Cosovic received her bachelor’s degree in

applied sciences from Simon Fraser University,

Vancouver, Canada in 2005, M.Sc and Ph.D in

computer science and telecommunications from

University of East Sarajevo, B&H in 2010 and 2017,

respectively. She is currently working as an assistant

professor at the Faculty of Electrical Engineering,

University of East Sarajevo, Bosnia and Hercegovina.

Her research interest includes computational intelligence, machine learning

and data analytics & optimization.

Emina Junuz received her bachelor’s and master’s

degree in computer science engineering from University

of Granada, Granada, Spain in 2003, and Ph.D in

computer science from University Dzemal Bijedic,

Mostar, Bosnia and Hercegovina in 2011. She is

currently working as a professor at the Faculty of

Information Technologies, Dzemal Bijedic University,

Bosnia and Hercegovina. Her research interest includes

databases, software engineering, information systems.

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

457

