
  

  

Abstract—This paper investigates anomalies such as worms, 

power outages, and routing table leak (RTL) events occurring in 

Border Gateway Protocol (BGP) that can cause connectivity and 

data loss issues. Ensemble learning is a machine learning model 

employing multiple classifiers in order to reliably identify 

network anomalies. We use bagging, boosting, and random 

forests ensemble models trained on network anomaly datasets 

for classification improvement. Models were compared with 

respect to the following performance metrics: F-measure, 

Matthews correlation coefficient (MCC), Receiver operating 

characteristic (ROC) curve, precision-recall (PR) curves and 

model execution time. We observed improvement in 

performance measures when ensemble classifiers realized in 

Python were used in comparison to our previously reported 

results on single classifiers. Further improvement in most 

performance measures was observed by using sampling 

techniques (oversampling and undersampling) on anomalous 

datasets. This approach increases model execution time which is 

not favorable for real-time anomaly detection models.            

 
Index Terms—BGP, bagging, boosting, random forest. 

 

I. INTRODUCTION 

The main purpose of the Border Gateway Protocol (BGP) 

is to exchange routing and reachability information between 

autonomous systems (AS) in the Internet. BGP is susceptible 

to anomalous behavior (intentional or unintentional), and as 

such can cause problems with connectivity and data loss. BGP 

anomaly detection is an ongoing challenge for researchers in 

the computer networking domain as well as network operators. 

Machine learning techniques have been used to address 

anomaly prediction within the Internet [1]-[4].  

The standard for classifier evaluation are various 

performance measures. By combining multiple classifiers in 

ensemble methods we aim to improve performance measures 

previously reported in our work [1]-[3]. Authors is [4] 

developed an unsupervised ensemble anomaly detection 

method for network traffic. Although, it has no need for prior 

data labeling, considering it uses multiple baseline models 

trained on multiple sets od sampled data, it provides no 

improvement in performance measures in respect to 

supervised methods.  

We have formerly employed Support Vector Machines 
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(SVM), Naïve Bayes (NB), and decision tree (C4.5) 

classifiers, as well as neural networks [1]-[3] for anomaly 

detection. In this paper we use ensemble methods, namely 

bagging [5], boosting [6] and random forest [7], to achieve 

better classification results. We do not consider accuracy as 

one of the performance measures since anomalous datasets 

are highly imbalanced. Instead we use F-measure, Matthews 

correlation coefficient (MCC), Receiver operating 

characteristic (ROC) curve, and precision-recall (PR) curves. 

In addition, we consider model execution time, since anomaly 

detection systems aim at real-time performance. We observe 

BGP routing data and traffic traces contained in the BGP 

update messages and extract information during anomaly 

occurrence. We train classifiers based on information 

extracted from the BGP update messages for ten different 

anomalous events: worms, power outage event, and routing 

table leak events affecting BGP performance. 

This paper is organized as follows. In Section II, we 

describe methodology used for BGP anomaly classification. 

Three ensemble models are briefly presented and their 

performance measures obtained on all ten anomalous datasets 

are discussed in Section III. In addition, oversampling and 

undersampling algorithms were applied to original datasets 

and performance measures achieved on those datasets were 

discussed. We conclude with Section IV. 

 

II. METHODOLOGY 

Classification of BGP anomalies was performed on ten 

different datasets of known anomalies in BGP. Slammer, 

Nimda, and Code Red I are worm events considered in [1]. 

AS9121, AWS, Malay, and Indosat are RTL events described 

in detail in [2] while Moscow Power Blackout, Panix Hijack, 

and AS-PATH Error events were discussed in [3]. Web 

application [8] was developed for analysis and testing of the 

anomalous events in the Internet. For BGP anomaly events 

considered, data is collected through The Réseaux IP 

Européens (RIPE) [9] and Route Views [10] projects. Data 

preprocessing techniques have been used to complete and 

clear inconsistencies in the datasets. We did not consider that 

a small percentage of missing data (less than 0.5%) could 

have a negative impact on classification, but nevertheless 

missing data is replaced by the average of ten surrounding 

values in the neighborhood of the missing value. Since feature 

matrices are generated for a period of five days, a large 

number of files corresponding to one event are integrated into 

one. We extracted 15 features from the BGP update messages 

of anomalous events [8], considering volume and AS-PATH 

features, hence our feature matrix for each of the datasets is 

7200x15. Data is normalized (each feature has a mean value 

of zero, and standard deviation of one) to eliminate the impact 

of Internet growth (number of ASs, routing table, etc.), since 
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datasets belong to different time periods. Data discretization 

was also performed to achieve better measures for evaluation 

of classification models. In addition to the original, 

normalized and discretized datasets data sampling algorithms 

were used. The use of sampling techniques in this paper aims 

at balancing the classes in anomalous datasets. Oversampling 

and undersampling algorithms were used as reported in [11], 

and measurements of the BGP anomaly classification 

ensemble models were compared, with or without data 

sampling techniques. BGP anomaly detection methodology is 

shown in Fig. 1. Further details can be found in [8]. 

 

 
Fig. 1. BGP anomaly detection methodology [8]. 

 

III. ENSEMBLE CLASSIFICATION METHODS 

By combining multiple classifiers ensemble methods are 

used to improve classification accuracy. Combined classifiers 

can improve accuracy [12] of individual models under several 

conditions: (i) individual model should classify a new 

instance with a classification error that is better than random 

errors and (ii) classification error should be of variable nature. 

The pseudo code for the general procedure of the ensemble 

method is shown below. D is the original data set for training; 

N is the number of basic classifiers; T is a set of data for 

testing; and F is a function of the decision process, which 

defines the ensemble classifier. N different classifiers are 

formed based on N subsets of the original dataset D. On the 

test set, a classifier is formed in accordance with the decision 

process function. 

 

 
 

The reasons why ensemble methods have more success 

than individual classifiers are statistical, computational and 

representational in nature. Risk of choosing an ineffective 

classifier is mediated by using a combination of classifiers 

and in this way various errors associated with single 

classifiers can be averaged out. All classifiers search the 

hypothesis space that can have infinitely many hypotheses so 

search process optimization becomes essential in determining 

an adequate hypothesis. Different techniques are used in case 

of inadequate datasets with either fewer or too many instances. 

Representational reasons are dealing with existence of an 

adequate and representative training dataset based on which 

the classifier can learn a dataset distribution.  

A. Bagging 

One of the basic techniques for ensemble methods 

construction is bagging [13]. It is based on creation of a large 

number of different datasets based on the original training 

dataset and combining them into one common model i.e. 

prediction based on the majority vote rule. New datasets are 

generated by random sampling of data with replacement from 

the original dataset i.e. using bootstrapping method. Every 

training dataset is independent and certain instances from the 

original dataset could occur several times in the new dataset, 

and some could be omitted. (Boot-strap AGGregatING).  

The author in [14] has shown that slight changes in the 

training datasets when combined with weak classifiers create 

different hypotheses. Weak classifiers, such as decision trees 

and neural networks, are classifiers that for small changes in 

the training dataset exhibit changes in their classification 

performance. By using bagging technique, the variance 

shown in expression (1) can be reduced if the number of 

models m is high: 
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B. Boosting 

First effective boosting algorithm presented in several 

papers [15-17] used for binary classification is AdaBoost 

(Adaptive Boosting). The model, in general, is not taking 

independent random samples from the original training 

dataset but rather is generated in such a way that weights are 

successively applied to the training dataset.  

The weights are increased or decreased in accordance with 

the experience of previous models, and a vote with a weight 

majority is applied in which more accurate models have 

greater influence in the voting [17]. Hence, a classifier which 

has an accuracy below 0.5 has a negative weight factor while a 

classifier which have accuracy greater than 0.5 receive 

positive weighting factors.  In case of classifier which has an 

accuracy of 0.5, algorithm categorizes it as neutral in the final 

classifier outcome. AdaBoost algorithm adds models 

successively either until it generates a hypothesis that will 

perfectly classify the training dataset or until the 

predetermined maximum number of models is reached. 

In the case of most learning algorithms, the error between the 

training and testing models increases with the complexity of 

the model. In the case of boosting, an increase of the number 

of iterations results in equalizing or even decreasing the 

difference between the model training and testing errors. This 

is due to the fact that the margin on a training dataset is higher 

and smaller errors are expected on the training dataset. 

Although the final classifier   is seemingly complex, the 

increase in the margin reduction in the variance of the model 

is present [16]. 

The equation which represents the final classifier, and 

which is made of the K weak classifiers is given by: 
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where hk is a hypothesis of the weak classifier, and ωk 
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weighting factor as determined by the AdaBoost algorithm. 

Classifier error is calculated based on following equation 
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where  k  is the number of misclassified instances divided by 

the number of total instances in the training dataset. Equation 

(3) implies that in case of εk 0→k  we have that the 

weighting factor of the classifier increases exponentially, for a 

random guess  0.5k →   the weighting factor is zero, and for 

1k →  the weighting factor decreases exponentially towards 

very large negative number. For calculated k  and in 

accordance with equation (4) we determine the weights for the 

i-th instance from the training dataset: 
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where )(iDk   is a vector of weighting factors used during the 

training of the k-th classifier. Each of the weight factors     

)(iD represents the probability that the i-th instance would be 

selected as a part of the training dataset. kZ  is the sum of the 

weight factors and in the equation (4) is used as a normalizing 

factor such that: 

   −=

n

ikikkk xhyiDZ

1

)(()( exp .                   (5) 

kh  and iy  could have two possible values since it is a 

binary classification, hence their product could be -1 or 1. If 

the actual and predicted value is the same, their product is 

positive, and if they differ, the product is negative. 

Outliers values that are not realistic could pose a problem 

to algorithm performance and hence it is advisable to remove 

these values from the training dataset prior to training the 

model. It is recommended for the training dataset using the 

AdaBoost algorithm to be of the best quality considering that 

ensemble methods in machine learning work on the correction 

of instances in the training dataset. Boosting methods are very 

sensitive to noise in the data, especially if it is in the output 

variables. Authors in [18] show that the AdaBoost algorithm 

overfits the data in the presence of noise in the training dataset 

therefore demonstrating the need for outlier removal. 

However, it has been shown in [19], that if model is based on 

a boosting method with an increased number of iterations it 

overfits much slower than a model based on other methods. 

The concept of soft margins also enrich the boosting method 

and it is used in RegBoost [20], Ada-BoostReg, Linear 

Programming Boost, and Quadratic Programming Boost [21] 

Same concept of soft margins and use of slack variable 

implementation for its regularization strategies is also applied 

in Support Vector Machines. 

C. Random Forest 

The first Random Forest algorithm, based on decision trees, 

has been developed in [22], [23]. Today's versions of the 

algorithm uses the bagging method of [13] together with [22], 

[24]. Authors in [25] show that AdaBoost could be considered 

a representative of Random Forest algorithms.  

The advantage of usage of the decision tree is the speed of 

generating a classification model. On the other hand, the 

complexity of the model is limited and has the effect of 

degrading the accuracy of the training set. The Random Forest 

Method was created in response to improving accuracy with 

the increasing complexity of the model being trained. The 

basic principle on which this ensemble method is based, 

shown in Fig. 2, is that in a randomly selected space, which is 

a subset of the original space (D1, D2, .., DN) of features, 

generates multiple decision trees T1, T2, .., TN. 
 

 
Fig. 2. Random forest ensemble method. 

 

Bootstrap method has been used for generation of decision 

trees, which means that the trees are built from a subset of the 

original feature space with substitutions as shown in Fig. 2. 

The Random Forest method, unlike the decision trees that 

select the best feature for division of the feature space, uses k 

randomly chosen features for dividing the feature space. 

Typically for Random Forest nk = , where n is the total 

number of features. Thus, a bagging method is combined with 

a randomly selected subset of features.  

By combining decision trees generated in this way, 

classification accuracy increases, and it is associated with 

independence between the trees that make up the random 

forest. Also, the overfitting problem is minimized in the case 

of Random Forest method in comparison to the decision tree 

method. Random Forest is a method that can be implemented 

in parallel, and is also effective in dealing with a large number 

of input features, that is, with high-dimensional data, and the 

data in which distributions are not known. 

 

IV. RESULTS AND DISCUSSION   

The AdaBoost algorithm, using the C4.5 decision tree for 

the base classifier, was developed in Python, and its 

performance measures are shown in Table I. 

 
TABLE I: ADABOOST METHOD PERFORMANCE MEASURES WITH C4.5 

DECISION TREE BASE 

Dataset Acc F-measure MCC ROC PR Time (s) 

Slammer 0.9710 0.876 0.860 0.985 0.947 1.68 

Nimda 0.7471 0.742 0.494 0.827 0.816 3.6 

Code Red I 0.9457 0.639 0.614 0.870 0.645 3.04 

Moscow PB 0.9967 0.927 0.926 0.977 0.932 1.31 

AS9121 RTL 0.9986 0.938 0.937 0.999 0.976 0.65 

Panix Hijack 0.9990 0.945 0.945 0.991 0.974 0.56 

AS -PATH 0.9972 0.943 0.941 0.999 0.964 0.68 

AWS 0.9949 0.823 0.825 0.957 0.835 1.44 

Malay 0.9933 0.864 0.861 0.980 0.909 1.43 

Indosat 0.9844 0.541 0.549 0.898 0.530 2.06 
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The classification is based on the combination of weak 

classifiers in order to create a strong one. Decision stump, the 

simplest form of decision tree, was used, and classification 

results improved in comparison to the C4.5 base algorithm. 

The basic function of the boosting algorithm is learning the 

weight factors of some weaker classifiers. The weight factors 

are adjusted based on the performance ratio of the new weak 

classifier and the previously trained ones. The training set 

adjusts in such a way that instances, which previous 

classifications have not successfully classified, have added 

weight factors, and for all other instances weight factors are 

reduced. We applied oversampling algorithms to Slammer, 

Code Red I, Moscow PB, and AS9121 RTL datasets. The best 

performance for AdaBoost classification is obtained when 

random oversampling (ROS) algorithm was applied on all 

discussed datasets. The random undersampling (RUS) 

algorithm applied to the Slammer and AS9121 RTL datasets 

gives the best classification performance when comparing all 

undersampling techniques. The Cluster Centroid (CC) 

algorithm applied to the Code Red I, and Moscow PB datasets 

has the best classification performance amongst ten 

undersampling techniques. Classification performance for 

Slammer, Code Red I, Moscow PB, and AS9121 has 

generally been improved by using undersampling and 

oversampling techniques compared to the original datasets, 

but oversampling techniques provide superior classification 

measures. Thus, for example, the number of incorrectly 

classified instances of anomaly is reduced from 254 to 11 for 

the Code Red I set. AdaBoost classification on oversampled 

Slammer, Moscow PB, and AS9121 RTL datasets has no 

incorrectly classified anomalous instances. The number of 

incorrectly classified regular instances increased using the 

oversampling technique for Slammer, Code Red I, and 

Moscow PB datasets while in the case of the AS9121 RTL 

dataset, the total number of incorrectly classified instances is 

lower than AdaBoost classification applied to the original 

datasets. 
 

TABLE II: ADABOOST PERFORMANCE MEASURES WITH 

OVERSAMPLING/UNDERSAMPLING DATASETS 

Dataset  F-measure MCC ROC PR Time (s) 

Slammer 

 

ROS 0.992 0.984 0.999 0.998 3.53 

RUS 0.949 0.898 0.989 0.990 0.39 

Code Red I 

 

ROS 0.985 0.969 0.997 0.995 5.61 

CC 0.884 0.765 0.948 0.938 0.34 

Moscow PB 
ROS 0.999 0.999 1 1 1.76 

CC 0.967 0.935 0.982 0.982 0.08 

AS9121 RTL 
ROS 0.999 0.999 1 1 1.32 

RUS 0.981 0.962 0.981 0.969 0.01 

 

If we compare the execution time of the boosting ensemble 

method and the original datasets (Table I), as well as the 

oversampled datasets (Table II), we can conclude that the 

execution time is, as expected, longer than in the case of the 

oversampled datasets but approximately half as long for all 

original datasets apart in the case of the Moscow PB dataset. 

Since real-time anomaly detection requires a shorter model 

training time, the AdaBoost method with previously sampled 

data sets is adequate. Table III illustrates the performance of 

the bagging technique with a C4.5 decision tree which is used 

to implement a weak classifier. The bagging method 

generates multiple versions of the classifier that are used as a 

whole by the mechanism of the majority vote. Generation 

methods are based on manipulation of the training set, and it is 

recommended that the number of weak classifiers be limited 

to 10 [6] due to performance measure improvement. 

 
TABLE III: BAGGING METHOD PERFORMANCE MEASURES WITH C4.5 

DECISION TREE BASE 

Dataset Acc F-measure MCC ROC PR Time (s) 

Slammer 0.9732 0.855 0.871 0.986 0.950 0.75 

Nimda 0.7581 0.754 0.516 0.842 0.835 2.4 

Code Red I 0.9526 0.668 0.654 0.895 0.686 1.57 

Moscow PB 0.9960 0.911 0.909 0.960 0.925 0.71 

AS9121 RTL 0.9988 0.943 0.943 0.980 0.935 0.42 

Panix Hijack 0.9993 0.962 0.962 0.998 0.950 0.65 

AS -PATH 0.9974 0.945 0.944 0.995 0.954 0.31 

AWS 0.9950 0.825 0.829 0.950 0.839 0.71 

Malay 0.9928 0.853 0.850 0.980 0.907 0.63 

Indosat 0.9861 0.565 0.588 0.913 0.609 0.81 

 

The best classification performance for the bagging method 

is obtained for the ROS algorithm on all discussed data sets. 

The RUS algorithm applied to the Slammer and AS9121 RTL 

datasets gives the best classification performance when 

comparing all undersampling techniques. The CC algorithm 

applied to the Code Red I and Moscow PB datasets has the 

best classification performance of all ten undersampling 

techniques. As in the case of boosting, classification 

performance for all considered datasets has generally 

improved by using undersampling and oversampling 

techniques compared to original datasets, but oversampling 

techniques provide superior classification measures. The 

number of erroneously classified anomalous instances was 

reduced from 127 to 5 for the Slammer dataset and from 257 

to 15 for the Code Red I dataset. On the other hand, by 

applying bagging techniques to the previously oversampled 

Moscow PB and AS9121 RTL datasets, there are no 

erroneously classified anomalous instances. The number of 

incorrectly classified regular instances increased using 

oversampling techniques for all datasets except for AS9121 

RTL. The total number of incorrectly classified instances is 

lower than when the bagging method is applied to the original 

datasets. 

 
TABLE IV: BAGGING PERFORMANCE MEASURES WITH 

OVERSAMPLING/UNDERSAMPLING DATASETS 

Dataset  F-measure MCC ROC PR Time (s) 

Slammer 

 

ROS 0.989 0.977 0.999 0.999 2.17 

RUS 0.945 0.889 0.989 0.990 0.23 

Code Red I 

 

ROS 0.985 0.969 0.997 0.994 4.00 

CC 0.875 0.750 0.944 0.923 0.22 

Moscow PB 
ROS 0.999 0.998 0.999 0.999 1.49 

CC 0.961 0.923 0.981 0.972 0.04 

AS9121 RTL 
ROS 0.999 0.999 0.999 0.999 0.77 

RUS 0.981 0.962 1 0.999 0.01 

 

If the execution time for the bagging ensemble method is 

compared to the original (Table III) and oversampled (Table 

IV) datasets, it can be concluded that the execution time is 

longer, as expected, in the case of oversampled datasets but 

less than two times as long in the case of Moscow PB and 

AS9121 RTL datasets and less than three times as long in the 
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case of the remaining two datasets. Random forest 

classification algorithm, with a decision tree base classifier, 

was also implemented in Python. Table V shows the random 

forest measure performance with a C4.5 decision tree used as 

a weak classifier.  

The best classification performance measures for random 

forest ensemble method were obtained by using the ROS 

algorithm on all considered datasets. 

The RUS applied to the Slammer and AS9121 RTL 

datasets gives the best classification performance measures 

when comparing all undersampling techniques. The CC 

algorithm applied to the Code Red I and Moscow PB datasets 

has the best classification performance measures. 

Classification performance measures for all considered 

datasets generally improved by using oversampling and 

undersampling techniques compared to the original datasets, 

although oversampling techniques are superior in 

classification measures. 

 
TABLE V: RANDOM FOREST METHOD PERFORMANCE MEASURES WITH 

C4.5 DECISION TREE BASE  

Dataset Acc F-measure MCC ROC PR Time (s) 

Slammer 0.9758 0.896 0.883 0.989 0.955 1.29 

Nimda 0.7771 0.774 0.554 0.861 0.856 2.42 

Code Red I 0.9528 0.664 0.653 0.901 0.694 1.75 

Moscow PB 0.9960 0.910 0.909 0.979 0.933 1.32 

AS9121 RTL 0.9988 0.944 0.944 0.994 0.983 0.69 

Panix Hijack 0.9993 0.962 0.962 0.992 0.981 0.45 

AS -PATH 0.9979 0.957 0.956 0.999 0.982 0.57 

AWS 0.9951 0.826 0.832 0.970 0.864 1.17 

Malay 0.9940 0.880 0.877 0.987 0.937 1.2 

Indosat 0.9855 0.612 0.592 0.731 0.544 1.11 

  

For example, the number of erroneously classified 

anomalous instances is reduced from 264 to 9 for the Code 

Red I set while using the random forest method on the 

oversampled Slammer, Moscow PB, and AS9121 RTL 

datasets causes no erroneously classified anomalous instances. 

The number of incorrectly classified regular instances 

increased using the oversampling technique in the Slammer, 

Code Red I, and Moscow PB datasets, while for the AS9121 

RTL dataset, the total number of erroneously classified 

instances is lower in comparison to the random forest method 

applied to the original datasets. 

If the execution time of the random forest ensemble method 

is compared to the original (Table V) and oversampled (Table 

VI) datasets it can be concluded that execution time is 

expectedly longer in the case of the oversampled datasets, and 

it is two times longer than in all datasets except the Moscow 

PB dataset for which the training time is one and a half times 

longer than the training time of the original dataset. Since 

real-time anomaly detection requires a shorter training time of 

the model this qualifies the random forest method with 

sampled datasets as an adequate choice. 

Fig. 3. shows the execution time of three ensemble methods 

considered on original datasets. The bagging method has the 

shortest training time on all datasets except for the Panix 

hijack dataset in which the random forest method has shorter 

training time. The difference between the two models is 

minimal. 

Fig. 4. shows the classifications performance measures 

(F-measure, MCC, ROC, and PR) for all three ensemble 

methods. 
 

TABLE VI: RANDOM FOREST METHOD PERFORMANCE MEASURES WITH 

OVERSAMPLING/UNDERSAMPLING DATASETS 

Dataset  F-measure MCC ROC PR Time (s) 

Slammer 

 

ROS 0.992 0.984 0.999 0.999 2.65 

RUS 0.954 0.908 0.991 0.990 0.28 

Code Red I 

 

ROS 0.989 0.979 0.999 0.999 3.48 

CC 0.883 0.767 0.950 0.944 0.32 

Moscow PB 
ROS 0.999 0.999 0.999 0.999 1.96 

CC 0.950 0.899 0.992 0.992 0.1 

AS9121 RTL 
ROS 0.999 0.999 0.999 0.999 1.51 

RUS 0.994 0.987 0.999 0.999 0.03 

 

 
Fig. 3. Ensemble models execution time on considered datasets. 

 

 
Fig. 4. Ensemble method performance measures (Bagging, AdaBoost, and Random forest) for Slammer, Nimda, Code Red I, Moscow PB, AS9121 RTL, 

Panix Hijack, AS-PATH Error, AWS, Malay, and Indosat datasets: (a) F-measure, (b) MCC, (c) ROC, and (d) PR. 
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V. CONCLUSION AND FUTURE WORK 

This paper compares several ensemble methods for 

improvement in performance measures in BGP anomaly 

detection domain. The random forest method compared to a 

single classifier models (SVM, NB and DT) provides the best 

tradeoff between model execution time and the rest of 

performance measures considered over all datasets. Bagging 

and boosting ensemble methods were used as well but the 

random forest ensemble method proved to be superior. For 

example, when random forest and bagging method were 

compared the biggest F-measure margin (4.7%) was obtained 

in case of Indosat amongst all datasets in the study. Slammer 

dataset has the next best F-measure value with a 4.1% margin 

while Malay dataset has a 3.7% margin when random forest 

method was applied in comparison to bagging. Remaining 

datasets have 2% or lesser margin of F-measure between the 

two compared methods. Boosting ensemble method was 

compared to the random forest as well.  

We report better performance measures in case of the 

random forest when compared to boosting ensemble methods 

with greater margin than in case of bagging methods. For 

example, when random forest and boosting method were 

compared the biggest F-measure margin (7.1%) was obtained 

in case of Indosat amongst all datasets in the study. Nimda 

dataset has the next best F-measure value with a 3.2% margin 

while Code Red I dataset has a 2.5% margin when random 

forest method was applied in comparison to boosting. 

Remaining datasets have 2.3% or lesser margin of F-measure 

between the two compared methods. 

We are planning to increase the number of anomalous 

datasets considered in this study and test the efficiency of the 

random forest method in the future. 
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