
  

  

Abstract—The discriminative approaches for hand pose 

estimation from depth images usually require dense annotated 

data to train a supervised network. Additionally, generative 

methods depend on temporal information in generating 

candidate poses which can be trapped due to local minima 

during the optimization process. Different from these methods, 

we propose a hybrid two-stage deep predictive neural network 

approach that performs predictive coding of image sequences of 

hand poses in order to capture latent features underlying a given 

image. Firstly, we train a deep convolutional neural network 

(CNN) for direct regression of hand joints position. Secondly, we 

add an unsupervised error term as a part of the recurrent 

architecture connected with predictive coding portion. An error 

regression term (ERT) ensures minimal residual errors of the 

estimated values while the predictive coding portion allows 

training of the network without the supervision of image 

sequences, so no dense annotation of data is required. We 

conduct a complete experiment using two challenging public 

datasets, ICVL and NYU. Using the ICVL datasets, our 

approach improved accuracy over the current state of the art 

methods with an average error joint of 7.5mm. We also achieve 

12.2mm average error joint on NYU dataset which is the 

smallest error to be achieved on all state-of-art approaches. 

 
Index Terms—Deep learning, hand pose estimation, joint 

regression, predictive neural networks.  

 

I. INTRODUCTION 

Hand pose estimation from depth is the first step for virtual 

reality and human-computer interaction applications. It has 

been an active research area which attracted tremendous 

attention thanks to the advent of commercial short-range 

depth sensors such as Intel Real Sense, Prime Sense Carmine 

and Leap Motion. An accurate hand pose estimation provides 

a natural way for interaction between a user and a virtual 

space that achieves greater user experience. 

Indeed, there is a growing interest in developing hand pose 

estimation systems [1], [2] Early approaches utilized 
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augmentation of the hand using specialized hardware such as 

optical sensors [2] and data gloves [3] to achieve this mission. 

The approaches were able to demonstrate the viability of 

gesture control for applications tracking with a high degree of 

accuracy. However, these approaches were cumbersome e.g. 

requires many calibrations, expensive and are not the most 

natural way for users have to contact material outside their 

bodies to use the systems. This led to the development of 

passive augmentation, vision-based approaches providing 

low-cost computing using RGB cameras. To achieve natural 

interaction, no augmentation was required. The approaches 

directly extract hand features from RGB sequences to define a 

customized hand model or a representation and then uses 

minimization techniques to refine the final hand pose. 

Compared with former approaches, vision-based methods 

were affordable and user-friendly. However, these 

approaches were not robust and stable enough for real-time 

application since RGB cameras are challenged by the varying 

light intensity and the complex background. Additionally, any 

RGB image provides only 2D information while hand shape 

topology in 3D space is the most important feature for hand 

pose estimation. For this reason, it is necessary to look for a 

better solution to alleviate these limitations. 

Fortunately, the advent of depth sensors which were 

developed for body pose estimation brings about the 

possibility of accomplishing such a challenging task. Depth 

sensors provide adequate 3D information of a hand geometry, 

which simplifies hand detection and in turn enhances the 

stability of hand pose estimation systems. 

On top of that, the fast development of hardware devices 

expands the computation power, which has led to the rise of 

deep learning. Deep learning approaches achieve the great 

success on image classification and analysis. Unquestionably, 

the utility of deep learning gives potential to hand pose 

estimation. In fact, recent approaches have confirmed that 

such deep learning methods outperformed the conventional 

optimization-based approaches. 

On the other hand, the increased demand for a natural way 

and user-friendly interface to applications such as 

Human-computer interaction, remote surgery, virtual reality, 

sign language recognition, and video games also boosts the 

development of stable hand pose estimation systems. 

Despite the fast progress of this field, hand pose estimation 

is still a difficult task due to some challenges one may face 

during the process of estimation. Before estimation of the 

hand pose, one needs to detect the location of a human hand in 

the input image. 

During the hand detection stage, the position of the user's 

hand from a complex environment in the image is determined 

which brings about the following problems. Firstly, the 
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human hand may have various shape and size on account to 

different subjects, viewpoints and the distance from the sensor, 

which results in the high intraclass variations. Secondly, the 

unreliability of the hand detection results, which may cause 

the failure of the subsequent pose estimation stage. To 

eradicate this problem, the previous body of works have only 

employed some strong assumptions to detect the human hands. 

The work of [4], [5] assume that the human hands will just be 

the nearest object from the camera appearing in the input 

images. These assumptions have some faults, for example, 

failure in training multiple user's hands or a hand being in a 

complex environment. Recently, Tzu-Yang et al. [6] tried to 

make such system more reliable by combining hand detector 

and pose estimation system. 
 

 
Fig. 1. Various application of human hand pose. 

 

 

 
Fig. 2. Hand Model structure showing an overview of the input and output 

hand image. (a) Input depth frame (b) Hand model showing joint distribution. 

(c) Hand model fitted to hand shape (d) Our hand model with 21 joints and 

with 29 degrees of freedom. 

 

The subsequent hand pose estimation stage is equivalently 

challenging. The hand is a small part of the body that 

produces self-occluded poses during estimation. The hand is 

also very dexterous, has many degrees of freedom and has fast 

movement. Due to this high degree of freedom, the domain of 

pose configurations becomes higher, and so pose estimation 

becomes difficult. Moreover, every pose definition requires a 

number of labels which make it difficult as a result. Labeling 

such a dataset is both hard and time-consuming which 

consequently makes training samples quite insufficient. 

Inspired by the challenge of labeling large numbers of a 

training date we discuss above; this paper presents a deep 

predictive neural network algorithm (PredNet) that captures 

latent parameters of hand poses and corresponding depth 

images for estimating 3D hand pose. We use standard 

autoencoder (SAE) and ladder network (LN) for modeling the 

generative process of hand poses and the depth map 

respectively. By combining with an unsupervised error term 

as a part of the recurrent architecture, the predictive coding 

portion of the network was trained without the supervision of 

the image sequences, so no dense annotation of the data is 

required. We consider a one to one mapping between a depth 

map and a hand pose. In this way, a latent hand poses 

parameter and a latent depth map parameter can be shared. 

Having a shared parameter is highly beneficial since a point 

sampled in either latent space can be defined both as 3D pose 

through SAE’s decoder or a depth map via LN generator. 
 

 

Fig. 3. General overview of the proposed framework. 

 

The general overview of the proposed framework is 

presented in Fig. 3. The core idea is to learn the basic implicit 

hand structure and transformations a hand can possibly 

undergo. To achieve this, our model is trained to estimate 

multiple frames from the image sequence while considering 

each initial estimation as an actual input and recursively 

iterating. Additionally, we include an ERT that provides a 

correction vector to improve the estimation accuracy. The 

ERT allows the network to learn from its own mistakes and 

correct them automatically giving an output with much 

greater accuracy. 

The gist of our approach is that our estimation does not 

require the labeled training examples, and therefore to the 

best of our knowledge we are the first to present a fully 

unsupervised approach for hand pose estimation. Unlike 

previous generative methods for hand pose estimation which 

depend on temporal information which can be trapped due to 

local minima and subsequently cause optimization failures, 

herein, our method works independently from temporal 

information. Instead, we train the network to learn the internal 

representation of the hand joint positions that are well suited 

to the subsequent estimation and decoding of the latent hand 

parameters. 

 

II. RELATED WORK 

There is a large body of works focusing on hand pose 
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estimation in the past few years and we refer the reader to [1], 

[2] for an overview. This section highlights recent approaches 

and examine their relevance to our approach. Generally, hand 

pose estimation aims to improve Human-Computer 

Interaction through augmentation free interaction. Due to the 

importance of this interaction, the focus should be offering a 

reduced cost of production, improve accuracy and extends 

research tremendously by adopting new methods (e.g. 

vision-based methods) to address the existing challenges.  

The early approaches were based on generative methods, 

whereby a multiple hand model is synthesized and matched 

with the best fit of the observed data. Then it defines the 

energy function to quantify the discrepancy between the 

synthesized and observed images and optimize the function to 

obtain the final pose. However, there was an overhead in 

rendering candidate poses with these generative approaches 

[7]. Martin et al. [8] addressed this challenge by recovering 

3D hand pose from a monocular image using model-based 

Bayesian inference method. The method synthesized the 

corresponding hand silhouette projection in the image plane 

measuring its likelihood in a given generative model for 

background and the hand skin pixels. Hand pose is then 

iteratively refined through minimization of negative log 

likelihood. Qian et al. [9] responded to the model-based 

challenges by sub-sampling the observed data and uses 

spheres to model the hand. Then Melax et al. [10] used a rigid 

body simulation for optimization. Point to surface constraints 

works similarly to ICP in the optimization process. As for 

many generative based optimization methods, ICP falls into 

local minima and this account for a reason why learning 

methods seem to be preferable.  

With the upsurge in the availability of short-range depth 

sensors, a number of discriminative learning approaches have 

been also proposed for hand pose estimation. Discriminative 

approach infers the hand pose directly from the observed 

visual data without depending on a model. Hand pose is then 

recovered from the single frame through forest regression or 

classification techniques [11]. 

Forests were applied to perform offset regression of the 

bodies joint using traditional Hough regression style voting 

[12]. Kinematic limitations would be implicitly modeled but 

would break for unseen examples hence the need for large 

datasets. Afterward [13] demonstrated the efficiency of forest 

regression using adaptive hierarchical classification approach, 

regressing all joints in one channel of forest per frame. 

However, the approach was susceptible to error propagation 

leading to wrongly estimated poses. Poier et al. [14] use a 

random regression forest to estimate hand joint distribution, 

and then builds a more reliable quality measurement scheme 

based on consistency between generated joint locations and 

predicted distribution. This approach distinguishes the joint 

estimation and model fitting in two stages. First, employed a 

learning regressor to deliver multiple initial hypotheses for 

the 3D position of each joint. Then, the kinematic parameters 

of a 3D hand model are found by deliberately exploiting the 

inherent uncertainty of the inferred joint proposals. 

On the other hand, classification techniques are recently 

employed in machine learning approach for discriminative 

modeling. Classification techniques make use of classifiers or 

artificial neural networks and deep learning to classify, regret, 

and estimate a hand joint positions for hand estimation. 

Tompson et al. [15] predict joint locations with the 

convolutional neural network (CNN). CNN also used for 

feature extraction and generates small heat maps for joint 

location. Joints were converted to hand skeleton using Inverse 

Kinematics (IK) process. However, Tompson’s approach 

predicted only 2D locations of joints and was unable to 

predict hidden joints. Moreover, accuracy is dependent to 

heat map resolution which means for every pixel, heat map 

has to be created as CNN has to be evaluated at each pixel 

location. This is computationally deprived. Guo et al. [16] 

recovered 3D hand pose, using tree-structured Region 

Ensemble Network (REN) which partitions the convolution 

outputs into regions and integrate results from multiple 

regressors on each region. Sridhar et al. [17] used a pixel 

classification to predict the joint position and then applies a 

similarity function to a model fitting and compare directly the 

generated joint locations to the predicted joint locations. 

Recently [18], [19] presented three neural network 

architecture that trains a feedback loop to predict 3D joint 

locations of a hand given a depth. The architecture combines 

generative network, a discriminative pose estimation network 

and a pose update network. The first two architectures 

estimate the joint locations and the third architecture refines 

the joint location estimates. To improve the accuracy of the 

location estimates, refinement step was iterated several times 

by centering the network on the location predicted at the 

previous iteration. Although the approach successfully 

improves localization accuracy and speed, training this 

architecture is, however, a complex difficult task. 

 

III. METHOD OVERVIEW 

The proposed hand pose estimation system aims to reduce 

the mutual failure cases of both generative and discriminative 

approaches to improve the accuracy of the estimation. We 

consider hand pose estimation problem as a statistical 

learning problem of a set of depth images. We combine 

generative and discriminative methods for generation of hand 

poses and the regression of the hand joint positions 

respectively. As a consequence, we use two networks to 

accomplish this mission, one for pose estimation and the other 

for joint regression. We pre-train each network separately to 

capture the latent features of an individual domain. We then 

learn a mapping between the two latent spaces. The complete 

hand pose estimation network is then trained end to end for 

hand pose estimation task. 

The functional description of our approach is shown in Fig. 

4. The main part of the architecture is covered by predictive 

neural networks which is the extension of the work of [20], 

these networks learn to predict positions of hand joints in an 

image sequence, with each layer in the network making local 

prediction and only forwarding deviations from those 

predictions to the subsequent network layers. These networks 

are able to robustly predict hand movements and that in so 

doing, the networks learn internal representations that are 

useful for decoding latent hand parameters internal 

representation that supports hand pose estimation with fewer 

training views. We use the latent variable as a way to combine 

supervised and unsupervised learning in a principled way. 
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The purpose of combining an auxiliary task is to help train the 

neural network as suggested by [21]. By sharing the hidden 

representation among more than one task, the network 

generalizes better. The idea of using unsupervised learning to 

complement supervision is not new. Different methods 

utilized different choices for unsupervised tasks, for example, 

reconstruction of the inputs at every level of the model [22], 

or classification of each input sample into its own class. Other 

methods have been able to simultaneously apply both 

unsupervised and supervised learning [23], often these 

unsupervised auxiliary tasks are only applied as pre-training, 

proceeded by normal supervised learning. However, in a 

complex task such as estimation of the human hand pose, 

there is much more structure in the input than it can be 

represented, and unsupervised learning cannot by definition 

know what will be useful for the task at hand. To solve that 

problem, this paper proposed the ladder networks where the 

auxiliary task is to denoise representations at every level of 

the model. The model structure is an autoencoder with skip 

connections from the encoder to the decoder and the learning 

task is similar to that in denoising autoencoders but applied to 

every layer, not just the inputs. Using skip connections, the 

decoder can recover any details discarded by the encoder. 

 

 
Fig. 4. A general overview of the deep prednet used for joint regression. 

 

A. Unsupervised Learning  

Herein, the ladder network Fig. 5 will decode the fully 

connected encoder in order to learn meaningful abstractions 

which help in denoising. We use the denoising function, 

Gaussian latent variable to support unsupervised learning. 

 

Fig. 5. An illustration of the operation of the ladder network showing 

feedforward path with sharing mappings. 

 

Consider the supervised cost Cc, as the average negative 

log probability of the noisy output y  matching the target 

( )t n  given the inputs ( )x n . 

1

1
log ( ( ) | ( ))

N

c

n

C P y t n x n
N =

= − =           (1) 

This structure regularizes supervised learning. 

Now then, when designing a suitable decoder to support 

unsupervised learning, a parameterization that supports the 

optimal denoising of gaussian latent variables is chosen. To 

derive the chosen parameterization and justify why it supports 

Gaussian latent variables, let assume that the noisy value of 

one latent variable z  that we want to denoise has the form of 

z z n= + , where z is the clean latent variable value that has 

Gaussian distribution with variance 
2

z , and n  is the 

Gaussian noise with variance 
2

n . We will estimate z , a 

denoised version of z , so that the estimate minimizes the 

squared error of difference to the clean latent variable values 

z . It can be shown that the functional form of ( )z g z=  has 

to be linear in order to minimize the denoising cost. Therefore, 

the result will be a weighted sum of the corrupted z  and a 

prior  . The weight w  of the corrupted z will be a function 

of the variance of z and n  according to: 

2

2 2

z

z n

w


 
=

+
                  (2) 

The denoising function will therefore be in the form of  

( ) (1 ) ( )z g z w z w z w  = =  + −  = −  +  

w  and   can be trainable parameters of the model, where 

the model would learn some estimate of the optimal weighing 

w and  . The final unsupervised denoising cost function 

dC  is thus 

2

0 0 1

|| ( ) ( ) ||
L L N l

l ll
Nd l d

t l nl

C C z n z n
Nm




= = =

= = −       (3) 

where ml is the layer’s width, n the number of training samples, 

and the hyperparameter l  a layer-wise multiplier 

determining the importance of the denoising cost. 
 

 

Fig. 6. Operation of an error regression term. 
 

B. Error Regression Term 

Initially, the input image sequence enters the model and the 

local estimation of this input is made Fig. 6. This estimated 

input is subtracted from the actual input and passed along to 

the next layer. The network takes the difference from the input 

iP  and the estimated hand ( )lP , and output an error 

regression ( )lE  which splits into rectified positive and 

negative error populations. The error 
lE , is then passed 

y  
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forward through convolutional layer to become the input of 

the next layer 
1iP+

. The representation layer ( )lR receives 

the copy of error signal 
lE , together with the top-down input 

from the representation layer of the next level layer of the 

network 
1iR +

.To improve the accuracy of the location 

estimates of the hand joints, this step is iterated several times 

while forwarding an error to the input and allow the network 

to learn from its previous mistakes. 
 

IV. EXPERIMENT 

This section describes the experiments which were 

conducted to validate the proposed hand pose estimation 

system. Prior to the discussion of the experiments, a brief 

description of the used hand pose datasets is given. Two of 

them are publicly available and one was collected by the 

authors. 

A. Dataset Creation 

Herein we consider three datasets which are used in the 

experiments. Two of these datasets are publicly available and 

have been used by many recent research works. Therefore, a 

thorough comparison with other bodies of work will be 

conducted on these two datasets to evaluate the performance 

of our system. The third dataset is generated by the authors, it 

contains 10 participants with different hand shapes (6 male, 4 

females, aged between 20 to 30. In the experiment, we 

collected a sequence from 10 different subjects with the 

varying hand sizes by allowing each subject to make various 

hand poses with an illustration of 29 different postures. The 

hand shape has 21 joints position rotating with 29 degrees of 

freedom. Each sequence is sampled at 3fps generating a total 

of 20K images with 96x96 pixels in size. We use 1.6K images 

for both validation and testing. Estimations generated by 

PredNet are presented in Fig. 10.  

B. Training 

We first trained the network using synthetic images since 

for these we have access to the underlying generative model 

and all the latent parameters. The input for the network is the 

cropped hand shape using ground truth joint location. As 

stated in Section IV.A, images were 96×96 in size and in 

grayscale with values normalized between 0 and 1. Focusing 

on image sequence data, for layer zero, the target is set to the 

actual sequence itself i.e. 
0

t

tP x t=  . The target for higher 

layers t

lP  for 0l  , are computed by the convolution through 

the error unit from the layer below, 
1

t

lP−
 , succeeding by 

rectified linear units ReLU activation and the max-pooling. 

Therefore, the targets will generate an abstraction of features 

as the error propagates up the network. Specifically, a 

convolutional LSTM unit is used as it can replace a dense 

multiplication matrix in a standard LSTM with a sparse 

convolutional matrix. As in the case of [24], the hidden state 
t

lR  is updated according to 1t

lR −  , 1t

lE − , and 
1

t

lR +
 so its spatial 

dimension is up-sampled by the pooling effect present in the 

feedforward path. The estimations t

lP  at a later time t are 

made through convolution of the t

lR  stack followed by a 

ReLU non-linearity. For pixel layer zero, t

lP  is also passed 

through a saturating non-linearity set at a maximum pixel 

level. The error term 
t

lE  is then calculated from the 

difference between t

lP  and t

iP , then splits by 

ReLU-activation into positive and negative estimation errors, 

which are concatenated along the feature dimension. The 

model is trained to minimize the weighted sum error. These 

error units consist of subtraction of an input and estimated 

output followed by ReLU activation which corresponds to 
1L  

error estimation. The model was trained to estimate hand joint 

position post learning its previous position. The loss was 

taken as the sum of the firing rates of the error neurons in the 

zeroth pixel layer at time step 2-10. A random hyperparameter 

search was conducted over fourth- and fifth-layer models. The 

model is chosen with respect to the performance on the 

validation test.  

Our network model consists of 5 layers with 2×2 filter sizes 

for all convolutions and stack size per layer of 

(1,24,48,96,192). Model weight was optimized using Adam 

algorithm [25] with all parameters set to default values. The 

PredNet Model was implemented with python library using 

Theano [26] and Keras and is trained on a desktop computer 

with python 3.4 on window platform. 

 

V. EVALUATION 

We evaluate our approach on the two public benchmark 

datasets for hand pose estimation. The NYU datasets and 

ICVL datasets. For comparison with other methods, we focus 

on the works that are published recently to compare the 

state-of-the-art with our method. Different evaluation metrics 

have been used in the literature for hand pose estimation. We 

report the values stated in papers or measured from graphs if 

provided, and or plot-relevant graphs for comparison.  

A. Evaluation Metrics 

We employ two different commonly used metrics to 

evaluate accuracy. 

• The fraction of sample error distance within a threshold. 

Here we measure the fraction of success frames whose 

error distance for each joint is less than a certain threshold. 

This is the most challenging evaluation criterion since a 

single mistaken joint may cause the entire hand pose 

judgment to be considered a failure. 

• Mean error distance of different joints and their average. 

This is the most commonly used criteria in the literature 

of hand pose estimation because of its simplicity of 

evaluation; using it allows comparison with many 

contending baselines. 

B.  Quantitative Evaluation with the NYU Dataset 

We compare our method to four state-of-the-art methods: 

Oberweger et al. [18], Deng et al. [27], Zhou et al. [28] and 

Tompson et al. [15]. The results of testing examples using 

max joint error below the threshold are shown in Fig. 7 and 

the values are presented in Table I. Depicted from the figure, 

our proposed method outperformed all other approaches. The 

performance is nearly comparable to [18] when the threshold 

is very high i.e. the requirements for estimation quality are 

low. However, when the requirement for estimation accuracy 
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is very tough i.e. a low threshold, our method performed 

better than all the contending methods. The error distances of 

different joints are shown in Fig. 8. And the quantitative 

results of the average error distance are shown in Table II. It 

shows that our method has less error in the average of all 

joints than all other approaches. 

 
TABLE I: PERCENTAGE OF FRAMES IN TEST EXAMPLES OVER DIFFERENT 

THRESHOLDS ON NYU DATASETS 

Threshold(mm)   20   50 

Ours 35% 90% 

Deng et al. [27] 20% 75% 

Oberweger et al. [18] 12% 65% 

Zhou et al. [28] 10% 59% 

Tompson et al. [15] 5% 51% 

 

TABLE II: QUANTITATIVE ERROR JOINT RESULTS OF DIFFERENT METHODS 

ON NYU DATASETS 

Method Avg. error distance 

Oberweger et al. [18] 19.8 

Tang et al. [13] 18.5 

Deng et al. [27] 17.6 

Zhou et al. [28] 16.9 

Ours  12.2 

 

Fig. 7. Comparison with the state-of-the-art on NYU dataset: Percentage of 

success frames in the test examples error threshold. 

 

 

Fig. 8. Comparison with the state-of-the-art on NYU dataset: Mean error 

distance for each joint across all the test examples.  

C. Quantitative Evaluation with ICVL Datasets  

The ICVL dataset is a public dataset released by Imperial 

College Vision Lab (ICVL) and captured by an Intel Creative 

Interactive Gesture Camera. The ICVL dataset contains a 

training set of about 180k depth frames having various hand 

poses recorded from 10 different subjects. The test set 

contains two sequences with approximately 700 frames each. 

Each hand pose has 16 annotations of joints. In contrast to the 

traditional structured light camera, this camera can capture 

depth image with a low noise level via the advanced 

time-of-flight component. The depth images have high quality 

with no or very few missing depth values and sharp outlines 

with an only slight noise. Hence this dataset is very 

appropriate for hand pose estimation systems. However, the 

pose variability of this dataset is limited as reported in [18] 

and other publications have reported inaccurate annotations 

as discussed in [31]. 

 
TABLE III: PERCENTAGE OF FRAMES IN THE TEST EXAMPLES OVER 

DIFFERENT THRESHOLDS ON ICVL DATASETS 

Threshold (mm)  20   50 

Ours 70% 98% 

Deep prior++ [19] 68% 95% 

Zhou et al [28] 62% 96% 

Deng et al [27] 55% 97% 

Tang et al [14] 50% 91% 

Guo et al [16] 20% 85% 

 

 

Fig. 9. Comparison with the state-of-the-art on ICVL dataset.: Percentage of 

success test frames in the test examples error threshold. 

 

We compare our experimental results on the ICVL hand 

posture dataset with five state-of-the-art techniques: Deep 

prior ++ [19], Tang et al. 2014[13], Zhou et al. [28], Deng et 

al. [27], and Guo et al. [16]. Fig. 7 illustrates the results, 

showing our method achieves consistent improvement overall 

error thresholds compared to other methods using the first 

evaluation criteria. For example, if we require all the error 

distance of joints to be below an error threshold of 50mm, the 

yield of our approach is almost 98% while other contending 

approaches achieve only 80% or even less with the exception 

of deep prior. The results affirm that our system is robust and 

practical for real-time human-computer interaction 

applications. We also present results using the error distance 

of different joints and their average on the ICVL hand posture 

dataset as shown in Fig. 9 with quantitative results listed in 

Table IV. It should be noted that we only compare the mean 

error distance for 11 joints in our second evaluation criteria 

since many published works [19], Tang et al. [14] only 

provide the results for 11 joints. The results show the 

supremacy of our system by producing the lowest error for 15 

joints out of 16 joints, achieving 7.5mm average error 
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distance. Some of the results in the list are not shown in the 

graph due to limited space. The results of deep prior++ [19] 

are obtained from their paper; their results and our results are 

quite close using both the first and second evaluation criteria. 

However, when considering each joint individually, our 

method is better for most joints. Although our data for a few 

joints is the same as the deep prior+ [19] results, our results 

have a better average mean error distance than all other 

techniques, thereby indicating that the combination of deep 

learning and predictive coding can greatly improve the 

performance of hand pose estimation systems. 
 

 

Fig. 10. Comparison with the state-of-the-art on ICVL dataset: Mean error 

distance for each joint across all the test examples. 

 

TABLE IV: QUANTITATIVE ERROR JOINT RESULTS OF DIFFERENT METHODS 

ON ICVL DATASETS 

Method AVG error distance 

Tang et al. [14] 8.9 

Deng et al. [27] 8.7 

Deep prior ++ [19] 8.4 

Zhou et al. [28] 8.2 

Guo et al. [16] 9.0 

Ours 7.5 

 

TABLE V: EFFICIENCY COMPARISON OF CONTENDING APPROACHES 

SHOWING THE DEVICE USED FOR COMPUTATION AND THE FRAME RATE OF 

EACH METHOD 

Method Time(fps) Device used 

PredNet 63.5 CPU 

Tang et al [14] 63 CPU 

Melax et al [10] 60 CPU 

Sharp et al [29] 30 GPU 

Qian et al [9] 25 CPU 

Xu et al [30] 12 CPU 

 

II. QUALITATIVE ANALYSIS  

We present qualitative results for hand pose estimation 

produced by our network trained on real data in Fig. 11. We 

also present the visualization comparison with the state-of-art 

methods on NYU datasets on Fig. 12. We report some failed 

cases caused by the wrong hand joint location in the second 

row which represents our method. However, it can be 

observed in the fail cases that despite the wrong location of 

some joint positions, the kinematic structure of the hand is 

preserved. Furthermore, our method outperformed all other 

methods in terms of efficiency and estimation accuracy. We 

present the efficiency performance of our approach in 

comparison of the state of art approaches in Table V.  

 

Fig. 11. Visualization of estimated hand skeletons produced by our network 

trained on real data. 

 

III. CONCLUSIONS 

In this paper, we propose a novel approach for a 3D-hand 

pose estimation system which can accurately estimate hand 

poses. The experimental results show that our system can 

estimate human hand pose with over 90% accuracy and 

achieve about 7.5mm of an average error distance. This 

achievement is attributed to the following features.  

 

 
Fig 12. Visual comparison of the estimated hand skeletons of our system and 

the comparison with state-of-art-works on the NYU hand pose dataset. The 

first row is the Ground truth, the second row is Our method, the third row is 

Deng et al., and the last row is for Oberweger et al.  
 

Firstly, a powerful model architecture, the PredNet which 

is capable of learning the latent hand features underlying a 

given image and estimate hand joints location with much 

more perfection. 

Secondly, we present an unsupervised learning paradigm to 

expand the utility of deep learning on human hand pose 

estimation by incorporating an unsupervised error term as a 

part of the recurrent architecture, the predictive coding 

portion of the network was trained without the supervision of 

image sequences.  

Thirdly, in order to improve the estimation accuracy, our 

networks perform feed-forward generation of estimation 

errors after every local estimation which is used as input to the 

subsequent network layer. This allows the network to learn 

from its own previous mistakes and correct them 

automatically and therefore increases accuracy. 

In the future, we plan to further improve estimation 

accuracy, develop a deeper network to accommodate a larger 

amount of training data with many more learned features and 

extend our architecture to allow for more complex hand 

configurations. Our system can be integrated with some 
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advanced applications for human-computer interaction to 

provide the most natural way of interaction between users and 

cyberspace to achieve a better user experience. 
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