
  

Abstract—The problem of proper identification of the color 

space associated with digital luma and chroma data has been 

widely reported by video processing professionals. The problem 

arises from confusing, and sometimes conflicting, statements 

regarding color space usage and description. Although 

standards allow for the carriage of descriptive metadata 

regarding color space, some applications do not require the 

presence of such metadata. Those standards typically recite 

assumptions on color space that should be followed in the 

absence of embedded color space descriptors. The unfortunate 

result of this approach is a state of confusion in the industry, and 

consequently the possibility of errors in rendering the output of 

decoded video and images. Our work represents the first known 

attempt to determine color space directly from luma/chroma 

pixel data, and provides an alternative to sole reliance on 

potentially missing or incorrect metadata, or weakly followed 

defaults. Although a color space is defined by many parameters, 

such as primary chromaticity, transfer characteristics and 

matrix coefficients, we chose to focus on determining which 

standard for matrix coefficients had been used to create a given 

luma/chroma image. We addressed the problem via deep 

convolutional neural networks (DCNNs), trained on millions of 

images. Our results are encouraging, and suggest that DCNNs 

can be used to solve this ill-posed problem. 

 
Index Terms—BT.601, BT.709, color space, convolutional, 

neural network. 

 

I. INTRODUCTION 

The representation of color imagery via conversion from 

intensities of red, green, and blue primaries, to luma plus two 

chroma components, has been extensively applied in 

consumer electronics and related imaging systems. Early 

applications were in devices and systems related to 

compatible color television [1], and current applications 

abound in the areas of digital video and image compression 

[2]. Standards have been developed for representing color 

imagery to allow for interoperability between content 

producers and consumers. Such standards generally cover at 

least three areas: the chromaticity of primary color light 

emitters, the (typically) non-linear transfer characteristic 

between light intensity and represented intensity, and the 

conversion matrix

 

coefficients. We use the term color space

 

as an aggregation of these three areas of standardization. 

There are two standards for color space in common use, both 

developed by the International Telecommunication Union -

 

Radiocommunication Sector (ITU -R), BT.601 [3]

 

and 
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BT.709

 

[4]. Following Poynton [2]

 

we refer to a digital 

representation of color in terms of the non-linear mapping of 

intensities of red, green and blue primaries as R'G'B', and the 

results of matrix

 

conversion to luma plus chroma as Y'CbCr. 

In addition, following general usage, we refer the process 

whereby pixel sample values are converted from R'G'B' to 

Y'CbCr as matrixing, and the inverse process as dematrixing. 

Because matrixing and dematrixing are linear operations on 

real vectors we use the generic term space

 

when convenient, 

to refer to the set of R'G'B' values or Y'CbCr values.

 

Digital image and video compression systems typically 

represent color components using the Y'CbCr space, and the 

results of decompression must ultimately be converted to 

R'G'B' space before reproduction by a display. In order to 

perform the conversion, the video device or system must 

determine whether the matrix specified by BT.601, or BT.709 

was used to produce the Y'CbCr representation. 

Unfortunately, in practice this determination is often made 

with low confidence. The problem of proper identification of 

the color space associated with Y'CbCr data has been widely 

reported in online discussion boards, and arises from 

confusing, and sometimes conflicting, statements regarding 

color space usage and description. Although standards allow 

for the carriage of descriptive metadata regarding color space, 

some applications do not require the presence of such 

metadata. Those standards typically recite assumptions on 

color space that should be followed in the absence of 

embedded color space descriptors. The lack of strict 

requirements on

 

metadata usage and color space selection has 

resulted in a state of confusion in the industry, and 

consequently the possibility of errors in rendering decoded 

video and images. 

 

Our work represents the first known attempt to determine 

color space directly from luma/chroma pixel data, and 

provides an alternative to sole reliance on potentially missing 

or incorrect metadata, or an algorithm for defaulting to a color 

space standard based on pixel resolution or other factors. We 

explored the use of deep convolutional neural networks 

(DCNNs), trained on millions of images, for determining the 

matrix coefficients directly from Y'CbCr pixel data. Our 

results are encouraging, and suggest that a DCNN-based 

approach can lead to improved decisions for dematrixing.

 

This paper is organized as follows. The history of color 

space handling in JPEG, MPEG,

 

and ATSC is reviewed in 

Section II. We present details of matrix conversion and 

potential clipping of RGB values in Section III. Our 
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experiments and results are described in Section IV and 

conclusions are presented in Section V. 

 

II. COLOR SPACE HANDLING IN JPEG, MPEG AND ATSC 

The JPEG File Interchange Format (JFIF) was published in 

1992 [5]. Its goal was to enhance JPEG interoperability, and 

included a restriction that the color space conversion matrix 

must be based on the BT.601 model. On the other hand, the 

MPEG-1 standard for video compression, published in 1993 

[6], did not include any means to specify color space 

information, or guidance regarding color spaces. The original 

MPEG-2 standard, ratified in 1995 [7], provided an option for 

embedding color space metadata, and required the decoder to 

assume BT.709 matrix coefficients if this metadata were not 

included. However, the updated MPEG-2 standard (2000) 

states that, in the absence of relevant metadata, “the matrix 

coefficients are assumed to be implicitly defined by the 

application” [8]. In 1995, the Advanced Television Systems 

Committee (ATSC) Digital Television Standard [9] specified 

that its application default color space should be assumed to 

be BT.709. 

In 1999, Charles Poynton presented the following at the 

SMPTE Technical Conference [10]: 

The coefficients of Rec. 601 are ubiquitous in conventional 

525/59.94 video, 625/50 video, and computing. But 

according to recently-adopted SMPTE and ATSC standards, 

ATV and HDTV will use a new, different set: the luma 

coefficients of SMPTE 240M (BT.709). This introduces a 

huge problem: There will be one flavor of Y'CbCr for small 

(SDTV) pictures, and another for big (HDTV) pictures. 

In 2006, ATSC Recommended Practice A/54A stated that 

“broadcasters should understand that some receivers will 

display 480-line formats according to SMPTE 170M (BT.601) 

colorimetry and 720- and 1080-line formats according to 

SMPTE 274M (BT.709) colorimetry,” confirming Poynton's 

concern [11]. 

 

III. MATRIX, DEMATRIX AND CLIPPING ANALYSIS 

The process of matrixing from R'G'B' space to the Y'CbCr 

can be represented as: 

 𝑞𝑘 = 𝑀𝑘𝑝                                   (1) 

where 𝑝3×1  represents an R'G'B' pixel, 𝑀𝑘  represents the 

3 × 1 conversion matrix for system 𝑘 , and 𝑞3×1  represents 

the pixel 𝑝  in luma/chroma space. For convenience, and 

without loss of generality, we assume that the ranges of 

values are as follows: 

 [
0
0
0

] ≤ 𝑝 ≤ [
1
1
1

]                                  (2a) 

 

 [
0.0

−0.5
−0.5

] ≤ 𝑞𝑘 ≤ [
0.0
0.5
0.5

]                            (2b) 

 

Based on these definitions, the conversion matrices 

corresponding to Rec. BT.601 and Rec. BT.709 are: 

 𝑀601 = [
0.2990 0.5870 0.1140

−0.1687 −0.3313 0.5000
0.5000 −0.4187 −0.0813

]           (3a) 

 

 𝑀709 = [
0.2126 0.7152 0.0722

−0.1146 −0.3854 0.5000
0.5000 −0.4542 −0.0458

]           (3b) 

 

respectively. The process of matrixing is illustrated in Fig. 1. 

 

 
Fig. 1. Matrixing from R'G'B' to Y'CbCr spaces. 

The matrices 𝑀601  and 𝑀709  are well-conditioned and 

easily inverted. Clearly, the original R'G'B' values can be 

recovered by dematrixing via application of the appropriate 

matrix inverse. However, as outlined in Section I, there are 

situations where one cannot determine with certainty which 

set of matrix coefficients were used to generate an image in 

Y'CbCr space. Thus, the incorrect matrix inverse may be 

applied at times, as illustrated in Fig. 2. 

 

 
Fig. 2. Improper dematrixing from Y'CbCr to R'G'B' spaces. 

 

Mathematically we represent these scenarios as: 

 

 �̂�76 = 𝑀709
−1 ⋅ 𝑀601 𝑝 = 𝑀76𝑝                        (4a) 

 

 �̂�67 = 𝑀601
−1 ⋅ 𝑀709 𝑝 = 𝑀67𝑝                        (4b) 

 

where 𝑀76 ≜ 𝑀709
−1 ⋅ 𝑀601 , and 𝑀67 ≜ 𝑀601

−1 ⋅ 𝑀709 , which 

are the effective improper transformations from input R'G'B', 

through Y'CbCr, to dematrixed R'G'B'. 

Simple numerical analysis yields: 

 

 𝑀67 = [
0.9136 0.0785 0.0079

−0.1050 1.1722 −0.0671
0.0096 0.0322 0.9582

]               (5a) 

 

 𝑀76 = [
1.0864 −0.0723 −0.0141
0.0965 0.8451 0.0584

−0.0141 −0.0277 1.0418
]             (5b) 

 

Examination of (5a,b) suggests that the differences 

between the effective improper transformations and an 

identity matrix are not insignificant. In particular, 𝑀67 boosts 

saturated green colors, and reduces the intensities of saturated 

reds, blues, and purples. The transformation 𝑀76 results in a 

complementary set of errors. When 𝑝 = [𝑐 𝑐 𝑐]𝑡 , i.e., a 
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gray-shade pixel, then �̂�𝑘𝑙 = 𝑝,  and no distortion is 

introduced as a result of the incorrect choice of matrix inverse.  

We observe that the transformations 𝑀67  and 𝑀76  can 

result in a conversion to R'G'B' values that violate the range 

constraints of (2a), even when the original R'G'B' values 

satisfy these constraints. The upper range constraints can be 

violated in cases of maximum intensity, highly saturated 

colors that align with coefficients of 𝑀67  and 𝑀76  that are 

greater than unity, and the lower range constraints can be 

violated for any intensity of highly saturated colors that align 

with the coefficients that are less than zero. In such cases 

clipping will occur as part of the dematrixing process, due to 

enforcement of the constraints. We further observe that, when 

the proper matrix inverse is applied to 𝑞𝑘  with infinite 

precision, the results will always satisfy the range constraints.  

These observations suggests that, for images where 

clipping would occur when the improper matrix inverse is 

applied, one could test both matrix inverses, and simply 

choose the one that does not produce R'G'B' values outside of 

the legal range. We formulate the problem in terms of a 

hypothesis test, where the hypotheses are: 

 

 𝐻601: 𝑀𝑘 = 𝑀601                             (6a) 

 

 𝐻709: 𝑀𝑘 = 𝑀709                              (6b) 

 

Here we assign 𝐻601 to represent the hypothesis that the 

matrix 𝑀𝑘  is based on BT.601 and 𝐻709  for the hypothesis 

that the matrix is based on BT.709. We denote the hypothesis 

test described above by 𝐻1 , which can be expressed more 

formally as a function of a Y'CbCr image 𝐺 = 𝑞(𝑥, 𝑦) as: 

 

 𝐻1[𝐶(𝐺)] = {
𝐻601, 𝐶 < 0
𝐻709, 𝐶 > 0

erasure, 𝐶 = 0
                         (7) 

 

where 

𝐶(𝐺) = ∑ 𝐼 ([
0
0
0

] ≤ 𝑀709
−1 𝑞(𝑥, 𝑦) ≤ [

1
1
1

])

𝑥,𝑦

− 

 

∑ 𝐼 ([
0
0
0

] ≤ 𝑀601
−1 𝑞(𝑥, 𝑦) ≤ [

1
1
1

])

𝑥,𝑦

 

 

and 𝐼(⋅) represents the Boolean indicator function. The 

statistic 𝐶 is the difference between the counts of pixels that 

remain in the legal range after conversion to R'G'B' when Rec. 

BT.709 is assumed vs. when Rec. BT.601 is assumed. If the 

pixels 𝑞(𝑥, 𝑦) were obtained directly via application of (1) 

then at least one of these counts is equal to the total number 

of pixels in the image. It is entirely possible that both counts 

will be such, which would lead to 𝐶(𝐺) = 0 , and 

𝐻1[𝐶(𝐺)] = erasure (no basis for decision). 

The detector 𝐻1  has a serious weakness. It provides no 

basis for a decision when there would be no clipping under 

either hypothesis. As noted above, clipping to the upper limit 

can only occur where there is both maximal intensity and 

maximal saturation of certain colors. To study this possibility 

we created modified versions of our datasets where the 

contrast was artificially deflated by 0.9 to dramatically reduce, 

or eliminate, this sort of clipping. 

IV. DCNN 

In recent years, deep convolutional neural networks 

(DCNNs) have been widely applied to problems in computer 

vision and image processing [12]. Most recently, there has 

been work on addressing the color constancy problem via 

DCNN [13]. In that work, Afifi used an architecture similar 

to AlexNet [14], with an added input semantic mask, to 

recover color constancy parameters. Considering the ability 

of DCNNs to extract subtle information regarding ill-posed 

color problems, it seems reasonable to ask whether a DCNN 

can be used as the basis for a detector of the Y'CbCr 

conversion matrix based on converted pixel data. In particular, 

a DCNN detector might be able to use some semantic 

understanding of a scene to be able to work effectively, even 

when detector 𝐻1 would declare 'erasure'. 

A wide variety of DCNN architectures have been proposed, 

which vary in number of free parameters, computational 

complexity, and effectiveness for computer vision 

applications [15]. We selected some notable DCNN 

architectures for exploration, as listed in Table I. 

 
TABLE I: DCNN ARCHITECTURES USED FOR EXPLORATION 

DCNN Network Architecture 

AlexNet [14] 

Inception [16] 

Inception with Batch Norm. [17] 

ResNet [18] 

ResNext [19] 

MobileNet [20] 

 

Development of a DCNN generally involves the following: 

1) Select/acquire a dataset. Perform data format conversion, 

as necessary, according to the requirements of the tool-

chain used. 

2) Randomly partition the dataset into a training subset, and 

a validation subset. 

3) Select a network architecture, which includes the 

organization of layers of various types, and various 

additional hyper-parameters, such as the number of 

feature maps per layer, convolution kernel sizes, sizes of 

fully connected layers, learning rates, number of epochs 

for training and the loss function used. 

4) Train the network by repeatedly applying the entire 

training subset, in units of mini-batches, and allowing the 

neuron weights to adapt based on gradient descent to 

minimize the loss function. 

5) Evaluate the quality of the trained network by applying 

the validation subset, and measuring the quality of 

network results on this previously unseen data. 

6) If results are acceptable then stop, otherwise go to Step 

(3). 

Our DCNN work relating to each of these steps is 

described further below. 

A. Dataset and Partitioning 

We used the popular ILSVRC 2012 portion of the 

ImageNet dataset as the basis for training and validation [21]. 

We used the standard partitioning into a training set of 

1,281,167 images and a validation set of 50,000 images, 

although we made no use of any labels provided with the 

datasets. For each image we cropped to the maximal centered 

square sub-image, and then scaled to obtain a pixel resolution 
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256 × 256. Each formatted R'G'B' image was then converted 

into Y'CbCr space via both 𝑀601 and 𝑀709, and the resulting 

images were labeled according to the conversion matrix used. 

Thus, our total training set contained about 2.5 million images, 

and our validation set contained 100,000 images. The process 

of data formatting is illustrated in Fig. 3. 

 
Fig. 3. Block diagram of the formatting process applied to ImageNet data. 

 

In our experiments, we represented image data components 

using unsigned eight-bit integers, representing values in the 

range [0,255]. It should be noted that it is common practice 

to use the so-called studio range for Y'CbCr data, which is 

defined as [16,235] for Y' data and [16,240] for Cb and Cr 

data. We chose to use the full range instead, to attain a slight 

reduction in quantization effects. 

B. DCNN Architecture and Training 

The DCNN architectures listed in TABLE were selected, 

and modified to accommodate two output classes, 

corresponding to the hypotheses 𝐻601  and 𝐻709.  Our 

experimental programming environment was based on the 

OpenSource Apache MXNet framework [22]. We trained our 

networks with 30 epochs of data, using mini-batches of 32 

images, with the AdaDelta optimizer [23]. All experiments 

were carried out under Ubuntu 16.04 on an AMD Ryzen 

Threadripper 1900X 8-Core Processor, with dual NVidia 

Titan V processing units. Training typically required about 2-

4 days of platform time for each network, but application of 

a trained network could be performed at a rate of many tens 

of frames per second. 

C. Evaluation 

Each DCNN studied was configured to have two, one-hot 

encoded outputs from a softmax layer, as shown in Fig.. The 

softmax converts neuron activation values into estimates of 

the a posteriori probabilities of each class, i.e., 𝑃𝑟{𝐻𝑘|𝐺}. 

The networks were trained to minimize a cross-entropy loss 

function between the softmax output and the desired class. 

Classification was accomplished based on which of the two 

softmax outputs was larger. Since the softmax outputs must 

be non-negative and sum to unity, this can be represented as: 

 𝐻2{𝐺} = {
𝐻601, 𝑜(2) < 0.5

𝐻709, 𝑜(2) > 0.5
                         (8) 

For convenience we declare 𝐻709 when 𝑜(2) = 0.5, but in 

practice this case rarely, if ever, arises. 

During training, we monitored the evolution of the loss 

function and classification accuracy over both the training 

and validation sets of images. After selecting the best DCNN 

based on validation data, we ran additional experiments on 

new data, to test the ability of our network to transfer its 

learning to classify data from completely unrelated sources. 

 

 
Fig. 4. Block diagram of generic deep convolutional neural network, 

highlighting Y'CbCr inputs and softmax output layer. 

 

V. EXPERIMENTS AND RESULTS 

The datasets used for evaluation and comparison of 

detectors 𝐻1  and 𝐻2  are listed in Table II. We selected 

datasets from a variety of sources. As mentioned above, for 

each of the datasets we created an additional version of the 

images where the contrast was artificially reduced by a factor 

of 0.9, to explore the effect of reducing or eliminating the 

possibility of exceeding the allowed maximum values in 

R'G'B' space under either hypothesis, 𝐻601 or 𝐻709. 

The ‘imgnet’ dataset was derived from the ILSVRC 2012 

validation set, which includes images from an enormous 

range of scenes. For illustration, some of the images from 

‘imgnet’ are shown in Fig. 5.  

 

 
Fig. 5. Representative subset from ‘imgnet’ dataset. 

 

The ‘flow_gdn’ and ‘suzie’ datasets were derived from 

publicly available moving picture sequences used by the 

ISO/IEC WG11 SC29 standards body for evaluating MPEG 

compression. For illustration, frame 60 from each of these 

sequences is shown in Fig. 6. The ‘flow_gdn’ dataset contains 

highly saturated colors due to bright flowers and leaves. The 

dataset ‘suzie’ is a sequence of head-and-shoulders images of 

a woman using a landline style telephone handset, which 

contains a relatively narrow range of colors. The ‘suzie’ 

dataset proved to be particularly challenging. 
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Fig. 6. Example images from datasets derived from standard MPEG video 
test sequences: frame 60 from ‘flow_gdn’ (left), and ‘suzie’ (right). 

 

To further explore cases with foliage and flowers, we 

downloaded a relevant clip from the YouTube-8M set of 

public videos, and extracted frames to create the 'garden' 

dataset. Example frames from garden are shown in Fig. 7. 

 

 
Fig. 7. Example images from 'garden' dataset, derived from a selected 

YouTube-8M video clip. 

 
TABLE II: DATASETS USED FOR EVALUATION 

Dataset 

# of 

Images 

Range 

Scaling Source 

imgnet 200 none ILSVRC 2012 

imgnet_0.9 200 0.9 ILSVRC 2012 

flow_gdn 360 none MPEG-2 std. tests 

flow_gdn_0.9 360 0.9 MPEG-2 std. tests 

suzie 150 none MPEG-2 std. tests 

suzie_0.9 150 0.9 MPEG-2 std. tests 

garden 100 none YouTube-8M vids. 

garden_0.9 100 0.9 YouTube-8M vids. 

A. Detector 𝐻1 – Clipping Analysis 

We studied detector H1 by processing Y'CbCr images, and 

counting the number of pixels that would have clipped, i.e., 

exceeded the allowed range of R'G'B' values, when converted 

via the use of 𝑀601
−1  and 𝑀709

−1 . Since no clipping occurs when 

the correct dematrixing transform is applied, we only tallied 

the counts of clipped pixels if the incorrect transform were 

applied. Images where there would have been no clipping 

under either dematrixing transform were recorded as erasures. 

The results from application of detector 𝐻1  are shown in 

Table III. 

Examination of Table III reveals that clipping is a common 

occurrence, and would be a potentially powerful indicator for 

detecting the conversion matrix. It also indicates that images 

with reduced contrast may have a significantly lower rate of 

clipping, as evidenced by the generally high proportion of 

erasures for the datasets where contrast was scaled by 0.9. 

B. Detector 𝐻2 – DCNN 

Seven different DCNN architectures were trained using a 

dataset based on the entire set of ILSVRC 2012 Training 

images (about 1.25 million Y'CbCr training images for each 

of 𝑀601 and 𝑀709). We trained for 30 epochs and computed 

validation loss and accuracy after each epoch. For each 

network, we selected the best epoch based on validation 

accuracy, and validation accuracy values thus obtained are 

shown in Table IV. The best network architecture was 

ResNet34 [18], [24], and its learning curves are shown in Fig. 

8. The ResNet approach permits very deep networks by 

providing bypass paths that reduce the problem of vanishing 

gradients during training. A ResNet has a first convolutional 

layer followed by four convolutional stages, as shown in Fig. 

9. 
TABLE III: RESULTS FOR DETECTOR 𝐻1 

Dataset Transf.=𝑀76 Transf.=𝑀67 

Eras. Clip 

Lo 

Clip 

Hi 

Clip 

Both 

Clip 

Lo 

Clip 

Hi 

Clip 

Both 

imgnet 32% 79% 29% 65% 38% 29% 22% 

imgnet_0.9 30% 2% 2% 64% 0% 0% 53% 

flow_gdn 100% 100% 100% 100% 100% 100% 0% 

flow_gdn_0.9 100% 0% 0% 100% 0% 0% 0% 

suzie 0% 97% 0% 0% 0% 0% 51% 

suzie_0.9 0% 0% 0% 0% 0% 0% 100% 

garden 66% 100% 66% 100% 81% 81% 0% 

garden_0.9 66% 0% 0% 100% 0% 0% 17% 

 

 
Fig. 8. ResNet34 learning curves, training, and validation using datasets 

based on entire training and validation sets from ILSVRC 2012.  Accuracy 

(top) and Cross-Entropy Loss (bottom) are shown. 

 

 
Fig. 9. ResNet34 convolutional neural network architecture, which includes 

33 convolutional layers plus one fully connected layer. 

 

Referring to Fig. we see that the best validation accuracy 

was obtained for Epoch 22, and the Epoch 22 parameter 

values were used to obtain all of the ResNet34 results 

described here. The relatively large fluctuations in validation 

metrics are notable, and are indicative of the ill-posed nature 

of the problem at hand, and the relatively little separation 

between the decision classes. 
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We evaluated our ResNet34 over the eight datasets, and the 

accuracy results are presented in Table V. The DCNN 

performed excellently on all of the datasets without contrast 

scaling, and fairly well on sets with contrast scaling. We 

compared the performance of the ResNet34 DCNN 

(hypothesis test 𝐻2), against hypothesis test 𝐻1, by plotting 

𝐻1  erasures vs. 𝐻2 accuracy, as shown in Fig.. Note that 

dashed red line in the figure represents the effective accuracy 

that would be produced if 𝐻1 erasures were treated as having 

50% accuracy. Results that are to the right of the line 

correspond to datasets where the DCNN was superior, and 

those to the left of the line are where 𝐻1 was superior. 

 
TABLE IV: VALIDATION ACCURACY VS. DCNN ARCHITECTURE FOR 

IMAGENET DATASET. 

Network Validation Accuracy (Best Epoch) 

MobileNetV1 66.2% 

AlexNet 70.9% 

ResNet18 75.0% 

ResNext34 75.0% 

Inception V1 75.4% 

Inception BN 91.4% 

ResNet34 97.3% 

 
TABLE V: RESNET 34 ACCURACY RESULTS FOR VARIOUS DATASETS 

Dataset 

DCNN 

Accuracy 𝑀𝑘 =
𝑀601 

DCNN 

Accuracy 𝑀𝑘 =
𝑀709 

DCNN 

Accuracy 

Average 

imgnet 98% 93% 95% 

imgnet_0.9 99% 89% 94% 

flow_gdn 100% 99% 99% 

flow_gdn_0.9 77% 95% 86% 

suzie 96% 92% 94% 

suzie_0.9 100% 20% 60% 

garden 100% 100% 100% 

garden_0.9 98% 71% 84% 

 

We see that the DCNN detector 𝐻2  was superior to 

clipping-based detector 𝐻1 for four out of the eight datasets 

considered. This suggests that the DCNN was able to take 

advantage of semantic-level understanding of the pictures and 

apply prior understanding of valid object colorization. The 

internal working of deep networks are notoriously difficult to 

understand, however certain types of visualizations can 

produce satisfying insights into their operation [25], [26]. 

One avenue for gaining insight into the network is to look 

for common characteristics among the images where the 

network exhibits its extremes of high/low accuracy. High 

accuracy is associated with cases where the output probability 

corresponding to the correct class is high and low accuracy is 

obtained where the output probability corresponding to the 

incorrect class is high. We looked at the extremes of network 

performance across all 100,000 validation images. Examples 

of images producing the highest accuracy are shown in Fig. 

11, and of those producing the lowest accuracy are shown in 

Fig. 12. Referring to Fig. 11 we note some common themes 

associated with high accuracy: blue sky, human flesh tones 

and green plants. Each of these themes represent a particular 

range of colors found in the natural world, and are related to 

many examples found in the training data. On examination of 

Fig. 12, we see some unusual blue tones which might be 

incorrectly interpreted as sky, but also many images that are 

dominated by tan or brown tones, especially foxes. We note 

that foxes have a similar appearance to dogs, are much less 

common, and have a coloration that is distinctly different 

from that of most brownish-colored dogs. 

 

 
Fig. 10. Comparison between hypothesis test 𝐻1 erasures and 𝐻2 (ResNet34 

DCNN) accuracy. Note that dashed red line represents the effective accuracy 

that would be produced if 𝐻1 erasures were treated as having 50% accuracy. 

Results that are to the right of the line are where the DCNN was superior, 

and those to the left of the line are where 𝐻1 was superior. 

 

 
Fig. 11. Examples of the images where the DCNN output probability 

corresponding to the correct class is maximized. Note some common color 

themes -- blue sky, skin tones, green foliage. 

 

 
Fig. 12. Examples of the images where the DCNN output probability 

corresponding to the correct class is minimized. Note the unnatural or 
uncommon blues and greens. Less obvious is any explanation for the large 

number of tan and brown tones, especially foxes and dogs. 

 

Another common approach for understanding DCNNs 
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involves identifying which images produce the maximum 

activation values in various feature maps. Convolutional 

layers closer to the input tend to extract simple features and, 

in our ResNet34 DCNN, they respond very similarly to 

images converted with either matrix. Examining activation 

values in later stages we find increasing specificity for certain 

types of content, responding very differently depending on 

which matrix was used for conversion. By the final 

convolutional layer, many of the feature maps are quite 

specific detectors of conversion matrix.  

 

 
Fig. 13. Sets of images producing the maximum activation values for four of 

the 256 feature maps at the output of Stage 4. For each of the feature maps 
the nine images producing the maximum activation values are shown. (Top-

left) Images contain browns and oranges. (Top-right) Images contain reds 

and oranges. (Bottom-left) Images contain pinks and reds. (Bottom-right) 
Images contain reds. The full-length red stripes at the right side of each box 

indicate that the corresponding image was ultimately assigned a probability 

of nearly unity at the output corresponding to the correct class. 

 

For illustration, we present the findings relating to an 

intermediate convolutional layer in Fig. 13. The figure shows 

sets of images producing the maximum activation values for 

four of the 256 feature maps at the output of Stage 4. For each 

of the feature maps the nine images producing the maximum 

activation values are shown. It appears that the nine images 

at the top-left are distinguished by brown and orange colors. 

The nine images at the top-right contain reds and oranges. At 

the bottom-left, the nine images contain pinks and reds. At 

the bottom-right, the images are distinguished by large red 

regions. The full-length red stripes at the right side of each 

box indicate that the corresponding image was ultimately 

assigned a probability of nearly unity at the output 

corresponding to the correct class.  

The finding that a deep convolutional layer in our color 

space detection network focuses on color swatches stands in 

contrast to the behavior of typical networks, which are trained 

for image classification according to objects. Deep 

convolutional layers in networks trained for the latter task 

tend to respond to specific types of patterns, e.g. snout-

looking patches of pixels, text-looking patches, flowery 

patches, etc. 

Referring to Table V we see that the one notable failure 

was on the suzie_0.9 dataset, when the ground truth was the 

Rec. 709 conversion matrix. For this particular case, the 

accuracy was only 20%, which is far worse than a simple coin 

flip, which would yield an accuracy of 50%. The first 144 

frames of the suzie_0.9 dataset are shown in Fig. 14. Since all 

150 frames of the suzie_0.9 dataset were very similar, we 

examined the frame-by-frame output of the network on the 

entire suzie dataset, when the ground truth was 𝐻709, to better 

interpret the network's behavior. A plot of the network output 

for each frame of suzie_0.9 is shown in Fig. 15. Here, frames 

where the output value is above the reference line are decided 

correctly, and those where the output value was below the 

reference line were decided in error. We note that all of the 

frames between Frame 45 and Frame 58 were decided 

correctly. In these frames, the model is tilting her head, and 

closing her eyes. Ultimately, however, we are unable to 

determine the root cause for the failures on most of the Rec. 

709 images for suzie_0.9, or why the networked performed 

well on a certain subset of the frames. 

 

 
Fig. 14. The first 144 frames of the suzie_0.9 dataset. Note that there are 

very little frame-to-frame differences in colors or objects depicted. 

 

 
Fig. 15. Per-frame output probabilities corresponding to 𝐻709 for suzie 

dataset, restricted to the cases where the ground truth was 𝐻709. Frames 

where the output value is above the reference line are decided correctly, 

and those below the reference line were decided in error. 

 

VI. DISCUSSION/CONCLUSION 

We presented two novel approaches to determining the 

color space conversion matrix directly from Y'CbCr pixel 

data. The method of counting pixels that would result in 

clipping after conversion can be effective in many cases, and 

is very simple. The DCNN is more complex but it appears to 

be capable of significantly better performance than the first 

approach in many cases, and one can imagine modifications 

to training that would produce even more robust behavior. 

Although our work is only a first attempt at solving this 
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problem, we believe that the results obtained thus far suggest 

that a DCNN could be used to implement a practical 

improvement to current consumer electronics products and 

professional video production tool-chains. Going forward, we 

plan to train more advanced networks, and to expand our 

training set to include a number of additional video sequences, 

including popular television programs and theatrical films, 

with the expectation that a DCNN could become even more 

robust.  
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