

Abstract—The problem of proper identification of the color

space associated with digital luma and chroma data has been

widely reported by video processing professionals. The problem

arises from confusing, and sometimes conflicting, statements

regarding color space usage and description. Although

standards allow for the carriage of descriptive metadata

regarding color space, some applications do not require the

presence of such metadata. Those standards typically recite

assumptions on color space that should be followed in the

absence of embedded color space descriptors. The unfortunate

result of this approach is a state of confusion in the industry, and

consequently the possibility of errors in rendering the output of

decoded video and images. Our work represents the first known

attempt to determine color space directly from luma/chroma

pixel data, and provides an alternative to sole reliance on

potentially missing or incorrect metadata, or weakly followed

defaults. Although a color space is defined by many parameters,

such as primary chromaticity, transfer characteristics and

matrix coefficients, we chose to focus on determining which

standard for matrix coefficients had been used to create a given

luma/chroma image. We addressed the problem via deep

convolutional neural networks (DCNNs), trained on millions of

images. Our results are encouraging, and suggest that DCNNs

can be used to solve this ill-posed problem.

Index Terms—BT.601, BT.709, color space, convolutional,

neural network.

I. INTRODUCTION

The representation of color imagery via conversion from

intensities of red, green, and blue primaries, to luma plus two

chroma components, has been extensively applied in

consumer electronics and related imaging systems. Early

applications were in devices and systems related to

compatible color television [1], and current applications

abound in the areas of digital video and image compression

[2]. Standards have been developed for representing color

imagery to allow for interoperability between content

producers and consumers. Such standards generally cover at

least three areas: the chromaticity of primary color light

emitters, the (typically) non-linear transfer characteristic

between light intensity and represented intensity, and the

conversion matrix

coefficients. We use the term color space

as an aggregation of these three areas of standardization.

There are two standards for color space in common use, both

developed by the International Telecommunication Union -

Radiocommunication Sector (ITU -R), BT.601 [3]

and

Manuscript received March 13, 2019; revised June 19, 2019.

L. Pearlstein, S. Maxwell (email), A. Benasutti (email), M. Kilcher

(email), J. Bezold (email) are with Department of Electrical and Computer
Engineering, The College of New Jersey, Ewing, NJ, 08628 USA (e-mail:

BT.709

[4]. Following Poynton [2]

we refer to a digital

representation of color in terms of the non-linear mapping of

intensities of red, green and blue primaries as R'G'B', and the

results of matrix

conversion to luma plus chroma as Y'CbCr.

In addition, following general usage, we refer the process

whereby pixel sample values are converted from R'G'B' to

Y'CbCr as matrixing, and the inverse process as dematrixing.

Because matrixing and dematrixing are linear operations on

real vectors we use the generic term space

when convenient,

to refer to the set of R'G'B' values or Y'CbCr values.

Digital image and video compression systems typically

represent color components using the Y'CbCr space, and the

results of decompression must ultimately be converted to

R'G'B' space before reproduction by a display. In order to

perform the conversion, the video device or system must

determine whether the matrix specified by BT.601, or BT.709

was used to produce the Y'CbCr representation.

Unfortunately, in practice this determination is often made

with low confidence. The problem of proper identification of

the color space associated with Y'CbCr data has been widely

reported in online discussion boards, and arises from

confusing, and sometimes conflicting, statements regarding

color space usage and description. Although standards allow

for the carriage of descriptive metadata regarding color space,

some applications do not require the presence of such

metadata. Those standards typically recite assumptions on

color space that should be followed in the absence of

embedded color space descriptors. The lack of strict

requirements on

metadata usage and color space selection has

resulted in a state of confusion in the industry, and

consequently the possibility of errors in rendering decoded

video and images.

Our work represents the first known attempt to determine

color space directly from luma/chroma pixel data, and

provides an alternative to sole reliance on potentially missing

or incorrect metadata, or an algorithm for defaulting to a color

space standard based on pixel resolution or other factors. We

explored the use of deep convolutional neural networks

(DCNNs), trained on millions of images, for determining the

matrix coefficients directly from Y'CbCr pixel data. Our

results are encouraging, and suggest that a DCNN-based

approach can lead to improved decisions for dematrixing.

This paper is organized as follows. The history of color

space handling in JPEG, MPEG,

and ATSC is reviewed in

Section II. We present details of matrix conversion and

potential clipping of RGB values in Section III. Our

pearlstl@tcnj.edu, maxwels2@tcnj.edu, benasua1@tcnj.edu,

kilchm2@tcnj.edu, bezoldj1@tcnj.edu).

W. Seto was with Department of Electrical and Computer Engineering,
The College of New Jersey, Ewing, NJ, 08628 USA (e-mail

setow1@tcnj.edu).

Larry Pearlstein, Alexander Benasutti, Skyler Maxwell, Matthew Kilcher, Jake Bezold, and Warren

Seto

Retrieval of Color Space Conversion Matrix via

Convolutional Neural Network

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

393doi: 10.18178/ijmlc.2019.9.4.816

mailto:pearlstl@tcnj.edu
mailto:maxwels2@tcnj.edu
mailto:benasua1@tcnj.edu
mailto:kilchm2@tcnj.edu

experiments and results are described in Section IV and

conclusions are presented in Section V.

II. COLOR SPACE HANDLING IN JPEG, MPEG AND ATSC

The JPEG File Interchange Format (JFIF) was published in

1992 [5]. Its goal was to enhance JPEG interoperability, and

included a restriction that the color space conversion matrix

must be based on the BT.601 model. On the other hand, the

MPEG-1 standard for video compression, published in 1993

[6], did not include any means to specify color space

information, or guidance regarding color spaces. The original

MPEG-2 standard, ratified in 1995 [7], provided an option for

embedding color space metadata, and required the decoder to

assume BT.709 matrix coefficients if this metadata were not

included. However, the updated MPEG-2 standard (2000)

states that, in the absence of relevant metadata, “the matrix

coefficients are assumed to be implicitly defined by the

application” [8]. In 1995, the Advanced Television Systems

Committee (ATSC) Digital Television Standard [9] specified

that its application default color space should be assumed to

be BT.709.

In 1999, Charles Poynton presented the following at the

SMPTE Technical Conference [10]:

The coefficients of Rec. 601 are ubiquitous in conventional

525/59.94 video, 625/50 video, and computing. But

according to recently-adopted SMPTE and ATSC standards,

ATV and HDTV will use a new, different set: the luma

coefficients of SMPTE 240M (BT.709). This introduces a

huge problem: There will be one flavor of Y'CbCr for small

(SDTV) pictures, and another for big (HDTV) pictures.

In 2006, ATSC Recommended Practice A/54A stated that

“broadcasters should understand that some receivers will

display 480-line formats according to SMPTE 170M (BT.601)

colorimetry and 720- and 1080-line formats according to

SMPTE 274M (BT.709) colorimetry,” confirming Poynton's

concern [11].

III. MATRIX, DEMATRIX AND CLIPPING ANALYSIS

The process of matrixing from R'G'B' space to the Y'CbCr

can be represented as:

 𝑞𝑘 = 𝑀𝑘𝑝 (1)

where 𝑝3×1 represents an R'G'B' pixel, 𝑀𝑘 represents the

3 × 1 conversion matrix for system 𝑘 , and 𝑞3×1 represents

the pixel 𝑝 in luma/chroma space. For convenience, and

without loss of generality, we assume that the ranges of

values are as follows:

 [
0
0
0

] ≤ 𝑝 ≤ [
1
1
1

] (2a)

 [
0.0

−0.5
−0.5

] ≤ 𝑞𝑘 ≤ [
0.0
0.5
0.5

] (2b)

Based on these definitions, the conversion matrices

corresponding to Rec. BT.601 and Rec. BT.709 are:

 𝑀601 = [
0.2990 0.5870 0.1140

−0.1687 −0.3313 0.5000
0.5000 −0.4187 −0.0813

] (3a)

 𝑀709 = [
0.2126 0.7152 0.0722

−0.1146 −0.3854 0.5000
0.5000 −0.4542 −0.0458

] (3b)

respectively. The process of matrixing is illustrated in Fig. 1.

Fig. 1. Matrixing from R'G'B' to Y'CbCr spaces.

The matrices 𝑀601 and 𝑀709 are well-conditioned and

easily inverted. Clearly, the original R'G'B' values can be

recovered by dematrixing via application of the appropriate

matrix inverse. However, as outlined in Section I, there are

situations where one cannot determine with certainty which

set of matrix coefficients were used to generate an image in

Y'CbCr space. Thus, the incorrect matrix inverse may be

applied at times, as illustrated in Fig. 2.

Fig. 2. Improper dematrixing from Y'CbCr to R'G'B' spaces.

Mathematically we represent these scenarios as:

 �̂�76 = 𝑀709
−1 ⋅ 𝑀601 𝑝 = 𝑀76𝑝 (4a)

 �̂�67 = 𝑀601
−1 ⋅ 𝑀709 𝑝 = 𝑀67𝑝 (4b)

where 𝑀76 ≜ 𝑀709
−1 ⋅ 𝑀601 , and 𝑀67 ≜ 𝑀601

−1 ⋅ 𝑀709 , which

are the effective improper transformations from input R'G'B',

through Y'CbCr, to dematrixed R'G'B'.

Simple numerical analysis yields:

 𝑀67 = [
0.9136 0.0785 0.0079

−0.1050 1.1722 −0.0671
0.0096 0.0322 0.9582

] (5a)

 𝑀76 = [
1.0864 −0.0723 −0.0141
0.0965 0.8451 0.0584

−0.0141 −0.0277 1.0418
] (5b)

Examination of (5a,b) suggests that the differences

between the effective improper transformations and an

identity matrix are not insignificant. In particular, 𝑀67 boosts

saturated green colors, and reduces the intensities of saturated

reds, blues, and purples. The transformation 𝑀76 results in a

complementary set of errors. When 𝑝 = [𝑐 𝑐 𝑐]𝑡 , i.e., a

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

394

gray-shade pixel, then �̂�𝑘𝑙 = 𝑝, and no distortion is

introduced as a result of the incorrect choice of matrix inverse.

We observe that the transformations 𝑀67 and 𝑀76 can

result in a conversion to R'G'B' values that violate the range

constraints of (2a), even when the original R'G'B' values

satisfy these constraints. The upper range constraints can be

violated in cases of maximum intensity, highly saturated

colors that align with coefficients of 𝑀67 and 𝑀76 that are

greater than unity, and the lower range constraints can be

violated for any intensity of highly saturated colors that align

with the coefficients that are less than zero. In such cases

clipping will occur as part of the dematrixing process, due to

enforcement of the constraints. We further observe that, when

the proper matrix inverse is applied to 𝑞𝑘 with infinite

precision, the results will always satisfy the range constraints.

These observations suggests that, for images where

clipping would occur when the improper matrix inverse is

applied, one could test both matrix inverses, and simply

choose the one that does not produce R'G'B' values outside of

the legal range. We formulate the problem in terms of a

hypothesis test, where the hypotheses are:

 𝐻601: 𝑀𝑘 = 𝑀601 (6a)

 𝐻709: 𝑀𝑘 = 𝑀709 (6b)

Here we assign 𝐻601 to represent the hypothesis that the

matrix 𝑀𝑘 is based on BT.601 and 𝐻709 for the hypothesis

that the matrix is based on BT.709. We denote the hypothesis

test described above by 𝐻1 , which can be expressed more

formally as a function of a Y'CbCr image 𝐺 = 𝑞(𝑥, 𝑦) as:

 𝐻1[𝐶(𝐺)] = {
𝐻601, 𝐶 < 0
𝐻709, 𝐶 > 0

erasure, 𝐶 = 0
 (7)

where

𝐶(𝐺) = ∑ 𝐼 ([
0
0
0

] ≤ 𝑀709
−1 𝑞(𝑥, 𝑦) ≤ [

1
1
1

])

𝑥,𝑦

−

∑ 𝐼 ([
0
0
0

] ≤ 𝑀601
−1 𝑞(𝑥, 𝑦) ≤ [

1
1
1

])

𝑥,𝑦

and 𝐼(⋅) represents the Boolean indicator function. The

statistic 𝐶 is the difference between the counts of pixels that

remain in the legal range after conversion to R'G'B' when Rec.

BT.709 is assumed vs. when Rec. BT.601 is assumed. If the

pixels 𝑞(𝑥, 𝑦) were obtained directly via application of (1)

then at least one of these counts is equal to the total number

of pixels in the image. It is entirely possible that both counts

will be such, which would lead to 𝐶(𝐺) = 0 , and

𝐻1[𝐶(𝐺)] = erasure (no basis for decision).

The detector 𝐻1 has a serious weakness. It provides no

basis for a decision when there would be no clipping under

either hypothesis. As noted above, clipping to the upper limit

can only occur where there is both maximal intensity and

maximal saturation of certain colors. To study this possibility

we created modified versions of our datasets where the

contrast was artificially deflated by 0.9 to dramatically reduce,

or eliminate, this sort of clipping.

IV. DCNN

In recent years, deep convolutional neural networks

(DCNNs) have been widely applied to problems in computer

vision and image processing [12]. Most recently, there has

been work on addressing the color constancy problem via

DCNN [13]. In that work, Afifi used an architecture similar

to AlexNet [14], with an added input semantic mask, to

recover color constancy parameters. Considering the ability

of DCNNs to extract subtle information regarding ill-posed

color problems, it seems reasonable to ask whether a DCNN

can be used as the basis for a detector of the Y'CbCr

conversion matrix based on converted pixel data. In particular,

a DCNN detector might be able to use some semantic

understanding of a scene to be able to work effectively, even

when detector 𝐻1 would declare 'erasure'.

A wide variety of DCNN architectures have been proposed,

which vary in number of free parameters, computational

complexity, and effectiveness for computer vision

applications [15]. We selected some notable DCNN

architectures for exploration, as listed in Table I.

TABLE I: DCNN ARCHITECTURES USED FOR EXPLORATION

DCNN Network Architecture

AlexNet [14]

Inception [16]

Inception with Batch Norm. [17]

ResNet [18]

ResNext [19]

MobileNet [20]

Development of a DCNN generally involves the following:

1) Select/acquire a dataset. Perform data format conversion,

as necessary, according to the requirements of the tool-

chain used.

2) Randomly partition the dataset into a training subset, and

a validation subset.

3) Select a network architecture, which includes the

organization of layers of various types, and various

additional hyper-parameters, such as the number of

feature maps per layer, convolution kernel sizes, sizes of

fully connected layers, learning rates, number of epochs

for training and the loss function used.

4) Train the network by repeatedly applying the entire

training subset, in units of mini-batches, and allowing the

neuron weights to adapt based on gradient descent to

minimize the loss function.

5) Evaluate the quality of the trained network by applying

the validation subset, and measuring the quality of

network results on this previously unseen data.

6) If results are acceptable then stop, otherwise go to Step

(3).

Our DCNN work relating to each of these steps is

described further below.

A. Dataset and Partitioning

We used the popular ILSVRC 2012 portion of the

ImageNet dataset as the basis for training and validation [21].

We used the standard partitioning into a training set of

1,281,167 images and a validation set of 50,000 images,

although we made no use of any labels provided with the

datasets. For each image we cropped to the maximal centered

square sub-image, and then scaled to obtain a pixel resolution

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

395

256 × 256. Each formatted R'G'B' image was then converted

into Y'CbCr space via both 𝑀601 and 𝑀709, and the resulting

images were labeled according to the conversion matrix used.

Thus, our total training set contained about 2.5 million images,

and our validation set contained 100,000 images. The process

of data formatting is illustrated in Fig. 3.

Fig. 3. Block diagram of the formatting process applied to ImageNet data.

In our experiments, we represented image data components

using unsigned eight-bit integers, representing values in the

range [0,255]. It should be noted that it is common practice

to use the so-called studio range for Y'CbCr data, which is

defined as [16,235] for Y' data and [16,240] for Cb and Cr

data. We chose to use the full range instead, to attain a slight

reduction in quantization effects.

B. DCNN Architecture and Training

The DCNN architectures listed in TABLE were selected,

and modified to accommodate two output classes,

corresponding to the hypotheses 𝐻601 and 𝐻709. Our

experimental programming environment was based on the

OpenSource Apache MXNet framework [22]. We trained our

networks with 30 epochs of data, using mini-batches of 32

images, with the AdaDelta optimizer [23]. All experiments

were carried out under Ubuntu 16.04 on an AMD Ryzen

Threadripper 1900X 8-Core Processor, with dual NVidia

Titan V processing units. Training typically required about 2-

4 days of platform time for each network, but application of

a trained network could be performed at a rate of many tens

of frames per second.

C. Evaluation

Each DCNN studied was configured to have two, one-hot

encoded outputs from a softmax layer, as shown in Fig.. The

softmax converts neuron activation values into estimates of

the a posteriori probabilities of each class, i.e., 𝑃𝑟{𝐻𝑘|𝐺}.

The networks were trained to minimize a cross-entropy loss

function between the softmax output and the desired class.

Classification was accomplished based on which of the two

softmax outputs was larger. Since the softmax outputs must

be non-negative and sum to unity, this can be represented as:

 𝐻2{𝐺} = {
𝐻601, 𝑜(2) < 0.5

𝐻709, 𝑜(2) > 0.5
 (8)

For convenience we declare 𝐻709 when 𝑜(2) = 0.5, but in

practice this case rarely, if ever, arises.

During training, we monitored the evolution of the loss

function and classification accuracy over both the training

and validation sets of images. After selecting the best DCNN

based on validation data, we ran additional experiments on

new data, to test the ability of our network to transfer its

learning to classify data from completely unrelated sources.

Fig. 4. Block diagram of generic deep convolutional neural network,

highlighting Y'CbCr inputs and softmax output layer.

V. EXPERIMENTS AND RESULTS

The datasets used for evaluation and comparison of

detectors 𝐻1 and 𝐻2 are listed in Table II. We selected

datasets from a variety of sources. As mentioned above, for

each of the datasets we created an additional version of the

images where the contrast was artificially reduced by a factor

of 0.9, to explore the effect of reducing or eliminating the

possibility of exceeding the allowed maximum values in

R'G'B' space under either hypothesis, 𝐻601 or 𝐻709.

The ‘imgnet’ dataset was derived from the ILSVRC 2012

validation set, which includes images from an enormous

range of scenes. For illustration, some of the images from

‘imgnet’ are shown in Fig. 5.

Fig. 5. Representative subset from ‘imgnet’ dataset.

The ‘flow_gdn’ and ‘suzie’ datasets were derived from

publicly available moving picture sequences used by the

ISO/IEC WG11 SC29 standards body for evaluating MPEG

compression. For illustration, frame 60 from each of these

sequences is shown in Fig. 6. The ‘flow_gdn’ dataset contains

highly saturated colors due to bright flowers and leaves. The

dataset ‘suzie’ is a sequence of head-and-shoulders images of

a woman using a landline style telephone handset, which

contains a relatively narrow range of colors. The ‘suzie’

dataset proved to be particularly challenging.

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

396

Fig. 6. Example images from datasets derived from standard MPEG video
test sequences: frame 60 from ‘flow_gdn’ (left), and ‘suzie’ (right).

To further explore cases with foliage and flowers, we

downloaded a relevant clip from the YouTube-8M set of

public videos, and extracted frames to create the 'garden'

dataset. Example frames from garden are shown in Fig. 7.

Fig. 7. Example images from 'garden' dataset, derived from a selected

YouTube-8M video clip.

TABLE II: DATASETS USED FOR EVALUATION

Dataset

of

Images

Range

Scaling Source

imgnet 200 none ILSVRC 2012

imgnet_0.9 200 0.9 ILSVRC 2012

flow_gdn 360 none MPEG-2 std. tests

flow_gdn_0.9 360 0.9 MPEG-2 std. tests

suzie 150 none MPEG-2 std. tests

suzie_0.9 150 0.9 MPEG-2 std. tests

garden 100 none YouTube-8M vids.

garden_0.9 100 0.9 YouTube-8M vids.

A. Detector 𝐻1 – Clipping Analysis

We studied detector H1 by processing Y'CbCr images, and

counting the number of pixels that would have clipped, i.e.,

exceeded the allowed range of R'G'B' values, when converted

via the use of 𝑀601
−1 and 𝑀709

−1 . Since no clipping occurs when

the correct dematrixing transform is applied, we only tallied

the counts of clipped pixels if the incorrect transform were

applied. Images where there would have been no clipping

under either dematrixing transform were recorded as erasures.

The results from application of detector 𝐻1 are shown in

Table III.

Examination of Table III reveals that clipping is a common

occurrence, and would be a potentially powerful indicator for

detecting the conversion matrix. It also indicates that images

with reduced contrast may have a significantly lower rate of

clipping, as evidenced by the generally high proportion of

erasures for the datasets where contrast was scaled by 0.9.

B. Detector 𝐻2 – DCNN

Seven different DCNN architectures were trained using a

dataset based on the entire set of ILSVRC 2012 Training

images (about 1.25 million Y'CbCr training images for each

of 𝑀601 and 𝑀709). We trained for 30 epochs and computed

validation loss and accuracy after each epoch. For each

network, we selected the best epoch based on validation

accuracy, and validation accuracy values thus obtained are

shown in Table IV. The best network architecture was

ResNet34 [18], [24], and its learning curves are shown in Fig.

8. The ResNet approach permits very deep networks by

providing bypass paths that reduce the problem of vanishing

gradients during training. A ResNet has a first convolutional

layer followed by four convolutional stages, as shown in Fig.

9.
TABLE III: RESULTS FOR DETECTOR 𝐻1

Dataset Transf.=𝑀76 Transf.=𝑀67

Eras. Clip

Lo

Clip

Hi

Clip

Both

Clip

Lo

Clip

Hi

Clip

Both

imgnet 32% 79% 29% 65% 38% 29% 22%

imgnet_0.9 30% 2% 2% 64% 0% 0% 53%

flow_gdn 100% 100% 100% 100% 100% 100% 0%

flow_gdn_0.9 100% 0% 0% 100% 0% 0% 0%

suzie 0% 97% 0% 0% 0% 0% 51%

suzie_0.9 0% 0% 0% 0% 0% 0% 100%

garden 66% 100% 66% 100% 81% 81% 0%

garden_0.9 66% 0% 0% 100% 0% 0% 17%

Fig. 8. ResNet34 learning curves, training, and validation using datasets

based on entire training and validation sets from ILSVRC 2012. Accuracy

(top) and Cross-Entropy Loss (bottom) are shown.

Fig. 9. ResNet34 convolutional neural network architecture, which includes

33 convolutional layers plus one fully connected layer.

Referring to Fig. we see that the best validation accuracy

was obtained for Epoch 22, and the Epoch 22 parameter

values were used to obtain all of the ResNet34 results

described here. The relatively large fluctuations in validation

metrics are notable, and are indicative of the ill-posed nature

of the problem at hand, and the relatively little separation

between the decision classes.

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

397

We evaluated our ResNet34 over the eight datasets, and the

accuracy results are presented in Table V. The DCNN

performed excellently on all of the datasets without contrast

scaling, and fairly well on sets with contrast scaling. We

compared the performance of the ResNet34 DCNN

(hypothesis test 𝐻2), against hypothesis test 𝐻1, by plotting

𝐻1 erasures vs. 𝐻2 accuracy, as shown in Fig.. Note that

dashed red line in the figure represents the effective accuracy

that would be produced if 𝐻1 erasures were treated as having

50% accuracy. Results that are to the right of the line

correspond to datasets where the DCNN was superior, and

those to the left of the line are where 𝐻1 was superior.

TABLE IV: VALIDATION ACCURACY VS. DCNN ARCHITECTURE FOR

IMAGENET DATASET.

Network Validation Accuracy (Best Epoch)

MobileNetV1 66.2%

AlexNet 70.9%

ResNet18 75.0%

ResNext34 75.0%

Inception V1 75.4%

Inception BN 91.4%

ResNet34 97.3%

TABLE V: RESNET 34 ACCURACY RESULTS FOR VARIOUS DATASETS

Dataset

DCNN

Accuracy 𝑀𝑘 =
𝑀601

DCNN

Accuracy 𝑀𝑘 =
𝑀709

DCNN

Accuracy

Average

imgnet 98% 93% 95%

imgnet_0.9 99% 89% 94%

flow_gdn 100% 99% 99%

flow_gdn_0.9 77% 95% 86%

suzie 96% 92% 94%

suzie_0.9 100% 20% 60%

garden 100% 100% 100%

garden_0.9 98% 71% 84%

We see that the DCNN detector 𝐻2 was superior to

clipping-based detector 𝐻1 for four out of the eight datasets

considered. This suggests that the DCNN was able to take

advantage of semantic-level understanding of the pictures and

apply prior understanding of valid object colorization. The

internal working of deep networks are notoriously difficult to

understand, however certain types of visualizations can

produce satisfying insights into their operation [25], [26].

One avenue for gaining insight into the network is to look

for common characteristics among the images where the

network exhibits its extremes of high/low accuracy. High

accuracy is associated with cases where the output probability

corresponding to the correct class is high and low accuracy is

obtained where the output probability corresponding to the

incorrect class is high. We looked at the extremes of network

performance across all 100,000 validation images. Examples

of images producing the highest accuracy are shown in Fig.

11, and of those producing the lowest accuracy are shown in

Fig. 12. Referring to Fig. 11 we note some common themes

associated with high accuracy: blue sky, human flesh tones

and green plants. Each of these themes represent a particular

range of colors found in the natural world, and are related to

many examples found in the training data. On examination of

Fig. 12, we see some unusual blue tones which might be

incorrectly interpreted as sky, but also many images that are

dominated by tan or brown tones, especially foxes. We note

that foxes have a similar appearance to dogs, are much less

common, and have a coloration that is distinctly different

from that of most brownish-colored dogs.

Fig. 10. Comparison between hypothesis test 𝐻1 erasures and 𝐻2 (ResNet34

DCNN) accuracy. Note that dashed red line represents the effective accuracy

that would be produced if 𝐻1 erasures were treated as having 50% accuracy.

Results that are to the right of the line are where the DCNN was superior,

and those to the left of the line are where 𝐻1 was superior.

Fig. 11. Examples of the images where the DCNN output probability

corresponding to the correct class is maximized. Note some common color

themes -- blue sky, skin tones, green foliage.

Fig. 12. Examples of the images where the DCNN output probability

corresponding to the correct class is minimized. Note the unnatural or
uncommon blues and greens. Less obvious is any explanation for the large

number of tan and brown tones, especially foxes and dogs.

Another common approach for understanding DCNNs

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

398

involves identifying which images produce the maximum

activation values in various feature maps. Convolutional

layers closer to the input tend to extract simple features and,

in our ResNet34 DCNN, they respond very similarly to

images converted with either matrix. Examining activation

values in later stages we find increasing specificity for certain

types of content, responding very differently depending on

which matrix was used for conversion. By the final

convolutional layer, many of the feature maps are quite

specific detectors of conversion matrix.

Fig. 13. Sets of images producing the maximum activation values for four of

the 256 feature maps at the output of Stage 4. For each of the feature maps
the nine images producing the maximum activation values are shown. (Top-

left) Images contain browns and oranges. (Top-right) Images contain reds

and oranges. (Bottom-left) Images contain pinks and reds. (Bottom-right)
Images contain reds. The full-length red stripes at the right side of each box

indicate that the corresponding image was ultimately assigned a probability

of nearly unity at the output corresponding to the correct class.

For illustration, we present the findings relating to an

intermediate convolutional layer in Fig. 13. The figure shows

sets of images producing the maximum activation values for

four of the 256 feature maps at the output of Stage 4. For each

of the feature maps the nine images producing the maximum

activation values are shown. It appears that the nine images

at the top-left are distinguished by brown and orange colors.

The nine images at the top-right contain reds and oranges. At

the bottom-left, the nine images contain pinks and reds. At

the bottom-right, the images are distinguished by large red

regions. The full-length red stripes at the right side of each

box indicate that the corresponding image was ultimately

assigned a probability of nearly unity at the output

corresponding to the correct class.

The finding that a deep convolutional layer in our color

space detection network focuses on color swatches stands in

contrast to the behavior of typical networks, which are trained

for image classification according to objects. Deep

convolutional layers in networks trained for the latter task

tend to respond to specific types of patterns, e.g. snout-

looking patches of pixels, text-looking patches, flowery

patches, etc.

Referring to Table V we see that the one notable failure

was on the suzie_0.9 dataset, when the ground truth was the

Rec. 709 conversion matrix. For this particular case, the

accuracy was only 20%, which is far worse than a simple coin

flip, which would yield an accuracy of 50%. The first 144

frames of the suzie_0.9 dataset are shown in Fig. 14. Since all

150 frames of the suzie_0.9 dataset were very similar, we

examined the frame-by-frame output of the network on the

entire suzie dataset, when the ground truth was 𝐻709, to better

interpret the network's behavior. A plot of the network output

for each frame of suzie_0.9 is shown in Fig. 15. Here, frames

where the output value is above the reference line are decided

correctly, and those where the output value was below the

reference line were decided in error. We note that all of the

frames between Frame 45 and Frame 58 were decided

correctly. In these frames, the model is tilting her head, and

closing her eyes. Ultimately, however, we are unable to

determine the root cause for the failures on most of the Rec.

709 images for suzie_0.9, or why the networked performed

well on a certain subset of the frames.

Fig. 14. The first 144 frames of the suzie_0.9 dataset. Note that there are

very little frame-to-frame differences in colors or objects depicted.

Fig. 15. Per-frame output probabilities corresponding to 𝐻709 for suzie

dataset, restricted to the cases where the ground truth was 𝐻709. Frames

where the output value is above the reference line are decided correctly,

and those below the reference line were decided in error.

VI. DISCUSSION/CONCLUSION

We presented two novel approaches to determining the

color space conversion matrix directly from Y'CbCr pixel

data. The method of counting pixels that would result in

clipping after conversion can be effective in many cases, and

is very simple. The DCNN is more complex but it appears to

be capable of significantly better performance than the first

approach in many cases, and one can imagine modifications

to training that would produce even more robust behavior.

Although our work is only a first attempt at solving this

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

399

problem, we believe that the results obtained thus far suggest

that a DCNN could be used to implement a practical

improvement to current consumer electronics products and

professional video production tool-chains. Going forward, we

plan to train more advanced networks, and to expand our

training set to include a number of additional video sequences,

including popular television programs and theatrical films,

with the expectation that a DCNN could become even more

robust.

ACKNOWLEDGMENT

The authors would like to thank Charles Poynton for his

help in developing Section II.

REFERENCES

[1] DH Pritchard, “US color television fundamentals: A review,” SMPTE

Journal, vol. 86, no. 11, pp. 819–828, 1977.

[2] C. Poynton, Digital video and HD: Algorithms and Interfaces, Elsevier,

2012.

[3] International Telecommunication Union - Radiocommunication Sector,

“Studio encoding parameters of digital television for standard 4:3 and

wide screen 16:9 aspect ratios,” Recommendation ITU-R BT.601-7,

2011.

[4] International Telecommunication Union - Radiocommunication Sector,

“Parameter values for the HDTV standards for production and

international programme exchanges,” Recommendation ITU-R

BT.709-6, 2015.

[5] E. Hamilton, JPEG File Interchange Format, 2004.

[6] ISO/IEC 11172-2, “Information technology-coding of moving pictures

and associated audio for digital storage media up to about 1.5 Mbit/s:

Part 2 video,” 1993.

[7] ITU-T, “Rec. H.262-ISO/IEC 13818-2:1995 Information technology–

generic coding of moving pictures and associated audio: Video,” 1995.

[8] ITU-T, “Rec. H.262-ISO/IEC 13818-2:2000 Information technology–

generic coding of moving pictures and associated audio: Video,” 2000.

[9] Advanced Television Systems Committee, A/53: ATSC Digital

Television Standard, A/53, pp. 21–26, 1995.

[10] C. Poynton, “Color in 1080p24 and electronic cinema: Converting

between R’G’B’ and 4:2:2,” in Proc. 141st SMPTE Technical

Conference and Exhibition, 1999, pp. 1–8.

[11] Advanced Television Systems Committee, “Recommended practice:

Guide to the use of the ATSC digital television standard,” A/54A, 2006.

[12] Y. LeCun, Y. S. Bengio, and G. Hinton, “Deep learning,” Nature, vol.

521, no. 7553, p. 436, 2015.

[13] Mahmoud Afifi, “Semantic white balance: Semantic color constancy

using convolutional neural network,” arXiv preprint arXiv:1802.00153,

2018.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,” Advances in

Neural Information Processing Systems, pp. 1097–1105, 2012.

[15] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural

network models for practical applications,” arXiv preprint

arXiv:1605.07678, 2016.

[16] C. Szegedy, W. Liu, Y. Q. Jia et al., “Going deeper with convolutions,”

in Proc. CVPR, 2015.

[17] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.

[18] K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, “Identity mappings in

deep residual networks,” in Proc. European Conference on Computer

Vision, Springer, 2016, pp. 630–645.

[19] S. N. Xie, R. Girshick, P. Dolla ŕ, Z. W. Tu, and K. M. He, “Aggregated

residual transformations for deep neural networks,” in Proc. IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp.

5987–5995.

[20] A. G. Howard, B. Chen et al., “MobileNets: Efficient convolutional

neural networks for mobile vision applications,” arXiv preprint

arXiv:1704.04861, 2017.

[21] O. Russakovsky, J. Deng et al., “ImageNet large scale visual

recognition challenge,” International Journal of Computer Vision, vol.

115, no. 3, pp. 211–252, 2015.

[22] Apache MXNet: A flexible and efficient library for deep learning.

(2017). [Online]. Available: https://mxnet.apache.org

[23] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” arXiv

preprint arXiv:1212.5701, 2012.

[24] K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proc. the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 770–778.

[25] M. D. Zeiler and R. Fergus, “Visualizing and understanding

convolutional networks,” in Proc. European Conference on Computer

Vision, Springer, 2014, pp. 818–833.

[26] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,

“Understanding neural networks through deep visualization,” arXiv

preprint arXiv:1506.06579, 2015.

Larry Pearlstein received the BSEE from Drexel
University in 1982, and the Ph.D. degree in electrical

engineering from Princeton University in 1987. He

served as the chairperson of the Video Specialists
Group within the Advanced Television Systems

Committee (ATSC), and led the effort to document the

video compression portion of the ATSC Digital

Television Standard. While working for ATI, AMD,

and Broadcom, he architected video subsystems for

consumer electronics chips. He holds 71 US patents in the areas of digital
television and consumer electronic. He is currently an associate professor of

electrical and computer engineering at The College of New Jersey.

Alexander Benasutti is a sophomore in the Department of Electrical and

Computer Engineering at The College of New Jersey, and is an
undergraduate researcher. His current research interests involve deep

learning, software development, and digital design. He worked as a student

researcher for deep convolutional neural networks at The College of New
Jersey during the summer of 2018.

Skyler Maxwell is a junior in the Department of
Electrical and Computer Engineering at The College of

New Jersey. He is an undergraduate researcher at The

College of New Jersey and his research interests
include image and video processing, and deep

convolutional neural networks. He held a summer

internship at the US Air Force Research Laboratory,
Rome, NY in 2017.

Matthew Kilcher is a junior computer engineering

student at The College of New Jersey. He is a member

of the Tau Beta Pi honor society, and does
undergraduate research in the fields of computer vision

and image processing. He has previously worked at

Gatekeeper Intelligent Security in Newtown, PA, and
will be interning at AT&T as a part of their Technology

Development Program (TDP) in Los Angeles, CA for

summer 2019.

Jake Bezold is a computer engineer with major in the
Department of Electrical and Computer Engineering at

the College of New Jersey with an expected graduation

date of May 2020. He is an undergraduate student
researcher, and he worked as a researcher, applying

deep convolutional neural networks to the real world,

at the College of New Jersey during summer 2018.

Warren Seto received his bachelors of science in
computer engineering from The College of New

Jersey in 2018. After graduation, he joined Apple Inc

as a human interface device engineer and he is
working on the User Experiences Team. His interests

include low level systems programming and toying

with embedded and edge-computing devices.

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

400

