
  

  

Abstract—Research on non-volatile memory has advanced in 

recent years. Non-volatile memory is not installed on practical 

computers; however, it will appear in the near future. This study 

proposes a new executable file format to enable a virtual 

memory system to support program execution on a volatile and 

non-volatile memory-mixed computer. To be more precise, this 

study proposes OFF2F: a new object file format consisting of 2 

files, which leverages the characteristics of volatile and 

non-volatile memories. OFF2F focuses on access form when a 

program is loaded into memory at program execution. This 

paper presents evaluation results in terms of reduction of page 

fault processing time. 

 
Index Terms—Volatile memory, executable file format, 

virtual memory system, demand paging, page fault. 

 

I. INTRODUCTION 

By assuming the change of data manipulation form or 

storage mechanisms for non-volatile memories, advanced 

research treats memories as non-volatile [1], [2]. Yamauchi et 

al. proposed an operating system structure for non-volatile 

main memory [1]. Koshiba et al. proposed a light-weight 

emulator considering asymmetric read/write latency for 

analyzing behavior of applications running on non-volatile 

memory environment [2]. As many researchers proposing 

new techniques for non-volatile memories, researches on 

software treating memories as non-volatile has accelerated.  

In recent years, thanks to advances in hardware technology, 

types of non-volatile memory have been released. Software 

technologies that leverage non-volatile memory have also 

begun to be developed. One study proposed a method for 

leveraging non-volatile memory by using it for the storage of 

metadata on a file system [3][4]. Another study proposed a 

method that uses non-volatile memory as a write cache [5]. 

Automated tiered storage with fast memory and slow flash 

storage (ATSMF) is a tiered storage system for leveraging 

non-volatile memory to reduce its response time [6]. Xue et al. 

proposed a log-structured file system achieves high 

performance and strong consistency guarantees by exploiting 

 
 

 

 

 

 

Manuscript received March 3, 2019; revised June 15, 2019. This work 

was partially supported by JSPS KAKENHI Grant Number JP18K11244 and 

FUJITSU LABORATORIES LTD. 

The authors are with Okayama University, Okayama, 7008530 Japan 

(e-mail: sato@cs.okayama-u.ac.jp, tani@cs.okayama-u.ac.jp).  

characteristics of volatile/non-volatile mixed system [7]. 

Poremba et al. analyzed the effect of non-volatile and volatile 

memory instrument rate on performance and power 

consumption in high performance computing [8]. Yoon et al. 

conducted research where they treated non-volatile memory 

as one part of a memory hierarchy [9]. Guo et al. proposed a 

method of treating non-volatile memory as a language with 

various properties [10]. 

In this paper, we propose a new file format for executable 

programs that enables virtual memory systems to support 

program execution. This new file format leverages the 

characteristics of a memory mixed computer that employs 

both volatile and non-volatile memory. More precisely, we 

propose OFF2F, which is a new object file format consisting 

of 2 files; it focuses on access form when a program is loaded 

into memory when a program is executed. In this paper, we 

also present the results of our study on the reduction of the 

processing time of page faults. 

The rest of the paper is organized as follows. Section II 

presents features of volatile/non-volatile memories and their 

mixed environments. Section III introduces existing file 

formats and Section IV presents a new executable file format: 

OFF2F. Section V describes a virtual memory system using 

OFF2F. Section VI shows evaluations with OFF2F. Finally, 

Section VII presents the conclusion and future challenges. 

 

II. VOLATILE/NON-VOLATILE MEMORY MIXED 

ENVIRONMENT 

In conventional computers, all memory is volatile. 

However, recently, non-volatile memory, which can 

continuously hold data when a computer is switched off, has 

emerged. The performance and functions of non-volatile 

memory, including access speed, capacity, power 

consumption, durability, and pricing, are rapidly improving. 

Non-volatile memory is used taking advantage of its features 

(e.g. building a file system into non-volatile memory for 

personal digital assistants). 

Volatile memory has a high-access speed. Its capacity is 

large and it is low-priced due to the current advances in 

technology. Compared to volatile memory, the access speed 

of non-volatile memory is low (especially for writes); this is 

because of the structure of hardware and its energy efficiency. 

In addition, its capacity is low and its price is high. For this 

reason, it is expected that in the future, not all memory will be 

replaced with non-volatile memory, but it will be partially 

replaced. As stated in [11], non-volatile memories are unable 

to meet various requirements for future systems. Therefore, 

OFF2F: A New Object File Format for Virtual Memory 

Systems to Support Volatile/non-Volatile Memory-Mixed 

Environment 

Masaya Sato and Hideo Taniguchi 

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

387doi: 10.18178/ijmlc.2019.9.4.815

mailto:sato@cs.okayama-u.ac.jp


  

future mainstream technology is expected to leverage a 

volatile/non-volatile memory-mixed processor environment. 

 

Volatile memory

Non-volatile

Memory

Processor

External

storage device
 

Fig. 1. An example of system construction. 
 

The main difference between non-volatile external devices 

and non-volatile memory is the access unit. External devices 

are block-accessible, whereas non-volatile memories are 

byte-accessible. In addition, magnetic disk devices (DKs) and 

solid state drives (SSDs) have the properties of large capacity, 

low price, and high durability. 

Fig. 1 shows the system configuration of future computers. 

Non-volatile and volatile memory each construct memories in 

a similar way. Address continuity between volatile and 

non-volatile memories is not required. External devices are 

connected by a bus and treated as input/output (I/O) devices. 

We consider the building of a file system in non-volatile 

memory as an example of how a system utilizes the 

construction shown in Fig. 1. Collaboration between 

non-volatile memory file systems (NVM-FS) and 

conventional external device file systems (nFS) is efficient. 

 

III. EXECUTABLE FILE FORMAT 

A. Format 

The form of an executable program is regulated through the 

combination of a compiler and an operating system. Whether 

the compiler outputs based on the demand from operating 

system or the operating system supports outputs from the 

compiler, there is a deep relationship between the two. In any 

case, executable programs consist of the following content: 

1) Program text region: enumeration of instructions 

2) Program data region: area for data with initial values 

3) Related information region: information about 

external variables 

4) Header region: this field holds the position of the 

above information 

To store these information as file format, 4) is required. Fig. 

2 shows the format of an executable file. 

 

Header region

Program text region

Related information 

region

Program data region

 
Fig. 2. An example of file format of executable program. 

 

Examples of conventional executable file formats are the 

a.out format in UNIX, the Common Object File Format 

known as COFF, and Executable and Linkable Format (ELF). 

Both of these formats store the above-listed information in 

one file. 

B. Problems with Program Execution 

Because a conventional executable program is stored in 

one file, program execution using the on-demand paging of a 

virtual memory system incurs the following problems: 

1) Page loading (page in) takes a long time if an executable 

program is stored in external storage devices (e.g. disk). 

Page out also takes a long time. An SSD can be used as an 

external device but the time for page out and page in is longer 

compared to memory copying. 

2) The time that page in takes will be extremely low if an 

executable program is stored in a virtual memory system on 

non-volatile memory. This is because page in is made by a 

memory copy from non-volatile memory to volatile memory. 

However, this method requires a large amount of non-volatile 

memory to store all executable programs, and a large amount 

of non-volatile memory is too expensive. 

 

IV. NEW EXECUTABLE FILE FORMAT: OFF2F 

A. Basic Concept 

Reading from and writing to volatile memory is fast. 

Reading from non-volatile memory is also fast and byte unit 

accessible, but writing to non-volatile memory is slow. 

Therefore, demand paging time can be reduced if read-only 

data are stored in non-volatile memory and mapped directly 

by a virtual memory system. 

As mentioned earlier, an executable file consists of four 

regions: program text region, program data region, related 

information region, and header region. From the perspective 

of access patterns, these regions can be divided into two 

categories: read-only regions, which are program text region, 

related information region, and header region, and read and 

write regions, which is just the program data region. 

Our aim was to create a new file format consisting of 

multiple files. Because an executable program consists of four 

regions, it can be divided into four files. However, we decided 

that the number of files should be kept minimal to prevent 

complications and to suppress the volume of the file system. 

Therefore, we propose OFF2F—a new object file format 

consisting of 2 files (OFF2F). 

B. Format and Comparison 

OFF2F can be constructed in various ways, but from the 

perspective of access patterns the construction can be divided 

into two cases. Fig. 3 demonstrates these two cases. 

In Type A, header region, program data region, and related 

information region are stored in one file, and program text 

region is stored in the other file. Thus, the parts that are 

frequently read at program execution stored in a separate file. 

In Type B, header region, program text region, and related 

information region are stored in one file, and program data 

region is stored in the other file. Thus, the parts that are 

frequently read and written at program execution are stored in 

a separate file. Type A places the file XYZ on non-volatile 

memory and Type B places the file ABC on non-volatile 

memory. As a result of the following reasons, Type A is more 

suitable. 

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

388



  

1) Conventional procedure is reusable because the name of 

the executable program is the name of the file ABC, which 

holds the header region, and it is stored in an external 

storage device. This mechanism is explained in detail in the 

next section. 

2) The existence of non-volatile memory is not effective in 

Type B because the file XYZ is not always stored in 

non-volatile memory. 

Compared to conventional executable file formats 

including a.out, COFF, and ELF, OFF2F can utilize 

non-volatile memory efficiently thanks to the isolation of 

program text region from other regions. File loading of 

conventional executable file formats can be fast by placing 

executables onto non-volatile memory. However, 

non-volatile memory would be more expensive than volatile 

memory. Thus, moving existing executables onto non-volatile 

memory wastes the expensive part. Contrary to this, only text 

region of OFF2F is stored onto non-volatile memory. Thereby, 

OFF2F can save non-volatile memory and speeding up 

program loading. 

 

Header region

Program text region

Information of file XYZ

Related information 

region

Header region

Program text region

Information of file XYZ

Related information 

region

Program data region

Program data region

File name:

ABC

File name:

ABC

File name:

XYZ

File name:

XYZ

(B) Type B(A) Type A
 

Fig. 1. OFF2F format. 

 

V. VIRTUAL MEMORY SYSTEM USING OFF2F 

A. Usage 

This section describes the usage of OFF2F Type A on a 

virtual memory system. The file ABC is stored on the external 

storage device and the file XYZ is stored on the non-volatile 

memory. The process for the allocation of program text and 

program data to virtual memory space using the file ABC can 

be seen as a flow diagram in Fig. 4 and is described in full 

below. 

1) Load the header region of the file ABC from the external 

storage device. 

2) Recognize the program text region is stored in the 

non-volatile memory based on the information from the 

header region. 

3) Register each page of the program text region on the 

non-volatile memory to the mapping table. 

4) Recognize the program data region is stored in the 

external storage device based on the information from the 

header region. 

5) Allocate memory and load the program data region from 

the external storage device. 

6) Register each page of memory to the mapping table. 

Consequently, I/O for the program text region is reduced by 

Step 3 compared to the case where the program text region is 

stored in the external storage device. Moreover, memory copy 

is reduced compared to the case where the program text 

region is stored in the non-volatile memory. Furthermore, 

OFF2F does not require a large amount of non-volatile 

memory. 

When an operating system has a demand paging system, 

steps 3 and 6 manipulate a page fault flag, and in this case, 

Step 5 is not required. 

Load a file ABC

Program text region exists in 

memory

Register NV memory to 

mapping table

Program data region exists in 

an external storage device

Memory allocation and loading of 

program data region

Register memory to mapping 

table

 
Fig. 4. A flow to create virtual memory space. 

 

B. Processing of Page Faults 

Fig. 5 shows the processing of a page fault with a demand 

paging system. 

As shown in Fig. 5, if a page fault occurred at the text area 

on non-volatile memory, the paging system simply registers 

the page to a mapping table. Thus, I/O for page in and page 

out is not required. In addition, memory allocation and 

inter-memory copying can also be reduced. 

C. Formulation of Time for Page Faults 

Based on the flow for a page fault shown in Fig. 5, this 

section formulates the time for page faults. 

 (Conventional) All programs are stored in the external 

storage device. 

(Proposal) Program text should be stored in non-volatile 

memory and program data should be stored in an external 

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

389



  

device. Page faults are handled by OFF2F (a memory page in 

the non-volatile memory is registered to the mapping table). 

Time for each procedure is denoted as follows: 

t1: allocation of memory 

t2: load of one page (4 KB) from the external storage device 

t3: registration of the memory to the mapping table 

t4: registration of the page of non-volatile memory to the 

mapping table 

In addition, sizes and rates are assumed as follows: 

P: the size of the program (text + data) 

S: the rate of text for the program 

Load data from 

an external

storage device

Allocate memory

Register a page on NV 

memory to the 

mapping table

Page fault for data on 

NV memory?

yes

no

Register the 

memory to the 

mapping table

 
Fig 5. A flow of page in. 

 

In each case, sum of the time for page faults of the whole 

program, which is the total time of page faults for all pages of 

text and data regions, is given by Equation (1) for the 

conventional case and by Equation (2) for our proposed case. 

(Conventional) (t1 + t2 + t3) P                        (1) 

(Proposal)         (t1 + t2 + t3) P (1 - S) + t4 PS           (2) 

 

VI. EVALUATION 

A. Point of View 

It can be expected that the processing time for page faults in 

an on-demand paging (ODP) function with OFF2F will be 

reduced. This section demonstrates the efficiency of OFF2F 

by predicting basic performance on the FreeBSD operating 

system focusing on the size of text and data area. 

B. Basic Performance 

We measured the time taken for a 4 KB random read of 1 

GB of data in the following environment: 

• Operating system: FreeBSD 6.3-R 

• Processor: Intel Core i7-2600 (3.4 GHz) 

• DK: Seagate ST400DM002 (7,200 rpm) 

• SSD: Intel SSD 540s Series 

The results showed that the mean time for read is 

approximately 6.22 milliseconds for the DK and 93.70 

microseconds for the SSD. Accordingly, we assume the time 

of read (t2) from DK to be 6 milliseconds and from SSD to be 

0.1 millisecond. Fig. 6 shows the sum of the time for page 

faults based on Equations (1) and (2). The horizontal axis 

shows the rate of text for the program. The size of the program 

(P) was set to 100 pages. The time of procedures other than t2 

was set to 0.001 milliseconds. 

1) Fig. 6(A) shows that the time for page faults is constant 

for the conventional method (Conventional). This is because 

the procedure for page faults for the text and data regions is 

the same despite of the rate of the text region for the whole 

program. Incidentally, the gap of time between DK and SSD 

is due to the read performance. The time for read from DK is 

sixteen times longer than that from SSD.  For this reason, 

even in the conventional method, the time for page faults can 

be greatly reduced by using an SSD instead of a DK. 

2) Fig. 6(A) shows that the time for page faults is reduced 

for the proposed method (Proposal). This is because the 

number of read from the external device would be reduced as 

the rate of text for the whole program increases. 

3) Fig. 6(B) shows that the time for page faults with the 

proposed method on the DK (Proposal (DK)) becomes 

shorter than that the conventional method on the SSD 

(Conventional (SSD)). Consequently, if the rate of text region 

for the whole program is high (over than 98.3%), Proposal 

can reduce the time for page faults more by replacing DK by 

SSD. 

 

(A) Rate of text region (0.1 – 1.0).

(B) Rate of text region (0.9 – 1.0).

0

100

200

300

400

500

600

700

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
m

 o
f 

ti
m

e 
fo

r 
p

ag
e 

fa
u
lt

 (
m

s)
.

Rate of text region account for program.

Conventional (DK)

Conventional (SSD)

Proposal (DK)

Proposal (SSD)

0

10

20

30

40

50

60

70

0.9 1

S
u
m

 o
f 

ti
m

e 
fo

r 
p

ag
e 

fa
u
lt

 (
m

s)
.

Rate of text region account for program.

Conventional (SSD)

Proposal (DK)

Proposal (SSD)

 
Fig. 6. Sum of time for page faults for all programs. 

(t2(DK): 6 ms, t2(SSD): 0.1 ms, others are set to 0.001 ms) 

 

C. Prediction of Effect on FreeBSD 

1) Analysis of executable program 

We analyzed executable programs in /bin and /sbin of 

FreeBSD 11.0-RELEASE. We found that files in /bin and 

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

390



  

/sbin have similar properties; thus, the following describes 

files in /bin. Fig. 7 shows files sizes of executable programs in 

/bin. As shown in Fig. 7, the size of program text is 

approximately twenty times larger than that of program data 

for many files. For all programs, forty-four files are stored in 

/bin. In addition, the total size of program text is 1,518,784 

bytes and the total size of program data is 80,136 bytes. 

Therefore, the size of program text is twenty times larger than 

that of program data. 
 

1

10

100

1000

10000

1 100 10000 1000000

T
h

e 
si

z
e 

o
f 

p
ro

gr
am

 d
at

a 
(b

y
te

, l
o

ga
ri

th
m

ic
).

The size of program text (byte, logarithmic).  
Fig. 7. The size of each program in /bin of FreeBSD 11.0-RELEASE. 

 

2) Comparison 

Here, we compare the time for page faults between the 

conventional method and the proposed method based on the 

total time for page faults of all programs under /bin assuming 

they all are started just once. 

As shown in Fig. 8, we assume the access (read/write) form 

for the execution of each program. To be more precise, we 

define the following: 

x: rate of program text certainly accessed 

y: rate of program data certainly accessed 

In addition, we assume the following for each program: 

The parts of (1 – x) of the program text are accessed at 

random rate . 

The parts of (1 - y) of the program data are accessed at 

random rate . 

Consequently, when program i is executed and run as a 

process, the number of page faults is the sum of the following 

formulae: 

The number of page faults of program text is 

(Ti * x + Ti (1 – x) * ) / (page size) + 1            (3) 

The number of page faults of program data is 

(Di * y + Di (1 – y) * ) / (page size) + 1            (4) 

where Ti and Di are the size of program text and program data 

of program i, respectively. 

 
Text region Data region

The part accessed certainly

The part accessed random rate

x α y β

 
Fig. 8. Access form at program execution. 

 

0

500

1000

1500

2000

2500

3000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
m

 o
f 

ti
m

e 
fo

r 
p

ag
e 

fa
u
lt

s 
(m

s)
.

Rate for certainly accessed for text region.

(The case when rate for certainly accessed for data: 1.0）

Conventional (DK)

Conventional (SSD)

Proposal (DK)

Proposal (SSD)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ed

u
ct

io
n
 r

at
e 

o
f 

ti
m

e 
fo

r 
p

ag
e 

fa
u
lt

.

Rate for certainly accessed for text area.

(The case when rate for certainly accessed for data: 1.0)

Conventional (SSD)

Proposal (DK)

Proposal (SSD)

0.017

0.002

0.118

(A) Sum of time for page faults.
(B) Reduction of time for page faults.

(The case when conventional(DK) is set to 1.0)  
Fig. 9. Sum of time for page faults of programs under /bin in FreeBSD 11.0-RELEASE. 

 

The sum of time for page faults of the programs under /bin 

in the conventional method and the proposed method are 

calculated by applying Equations (3) and (4) to each program 

and using Equations (1) and (2). Fig. 9 shows the sum for 

programs under /bin. Fig. 9(A) shows the sum of the time for 

page faults and Fig. 9(B) shows the relative time of the 

proposed method compared to that of the conventional 

method. Relative time refers to the reduction rate of the 

conventional method. Here, t1, t2, t3, and t4 were set to the 

same values as mentioned earlier (t2(DK) was 6 ms, t2(SSD) 

was 0.1 ms, and all others were 0.001 ms). The rate accessed 

certainly in program data (y) was set to 1.0. Even when the 

rate was set to 0.5, the sum of the time for page faults is almost 

the same; this is due to two reasons: the size of program data is 

much smaller than that of program text and the size based on 

page granularity is one mostly because the size of program 

data is small. More precisely, the sum of the number of 

accessed pages for program data is 52 pages when y is 

between 0.6 and 1.0 and 51 pages when y is between 0.1 and 

0.5. 

Fig. 9 demonstrates the following results. 

1) Fig. 9(A) shows that the sum of page time for page faults 

increases in most cases. This is because an increase in the 

access rate for program text is equivalent to an increase in 

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

391



  

the number of page faults. Although the increase for the 

conventional method with a DK is remarkable, the increase 

in all other cases is small. Consequently, as confirmed in Fig. 

9(B), as the access rate to the program text increases, 

reduction of time for page faults increases—especially on the 

proposed method with a DK. 

2) Fig. 9(B) shows that the performance of the procedure for 

page faults in comparison to the conventional method with a 

DK can be improved 60 fold for the conventional method with 

an SSD, 8 fold for the proposed method with a DK, and 500 

fold for the proposed method with an SSD. 

 

VII.   CONCLUSION 

This paper proposed a new file format called OFF2F 

(Object File Format consisting of 2 Files) to accelerate 

program execution based on a virtual memory system on a 

volatile and non-volatile memory mixed computer. This paper 

also showed the processing flow of a page fault with OFF2F. 

We formulated the processing time of page faults by 

focusing on the rate of the sizes of the text and data areas. 

Evaluations by prediction showed that the time for page fault 

with OFF2F is eight times faster than the time of the existing 

method. We also described that OFF2F is effective not only 

on a DK but also on an SSD. 

In our future work, we plan to implement and evaluate 

OFF2F. 

REFERENCES 

[1] T. Yamauchi, Y. Yamamoto, K. Nagai, T. Matono, S. Inamoto, M. 

Ichikawa, M. Goto, and H Taniguchi, “Plate: Persistent memory 

management for nonvolatile main memory,” in Proc. 31st ACM 

Symposium on Applied Computing, Apr. 2016, pp. 1885–1892. 

[2] A. Koshiba, T. Hirofuchi, S. Akiyama, R. Takano, and M. Namiki, 

“Towards write-back aware software emulator for non-volatile 

memory,” in Proc. 2017 IEEE 6th Non-Volatile Memory Systems and 

Applications Symposium (NVMSA), Aug. 2017, pp. 1–6. 

[3] Q. Wei, J. Chen, and C. Chen, “Accelerating file system metadata 

access with byte-addressable nonvolatile memory,” ACM Transactions 

on Storage, vol. 11, issue 3, pp. 1–28, Jul. 2015.  

[4] Q. Wei, C. Wang, C. Chen, Y. Yang, J. Yang, and M. Xue, 

“Transactional NVM cache with hight performance and crash 

recovery,” in Proc. the International Conference for High 

Performance Computing, Networking, Storage and Analysis, 2017, pp. 

1–12. 

[5] E. Lee, J. Kim, H. Bahn, S. Lee, and S. H. Noh, “Reducing write 

amplification of flash storage through cooperative data management 

with NVM,” ACM Transactions on Storage (TOS) – Special Issue on 

MSST 2016 and Regular Papers, vol. 13, issue 2, Jun. 2017. 

[6] K. Oe, M. Sato, and T. Nanri, “Automated tiered storage system 

consisting of memory and flash storage to improve response time with 

input-output (IO) concentration workloads,” in Proc. 2017 Fifth 

International Symposium on Computing and Networking (CANDAR), 

Nov. 2017, pp. 311–317. 

[7] J. Xue and S. Swanson, “NOVA: A log-structured file system for 

hybrid volatile/non-volatile main memories,” in Proc. the 14th 

USENIX Conference on File and Storage Technologies (FAST ’16), 

Feb. 2016, pp. 323–338. 

[8] M. Poremba, I. Akgun, J. Yin, O. Kayiran, Y. Xie, and G. H. Loh, 

“There and back again: Optimizing the interconnect in networks of 

memory cubes,” in Proc. the 44th Annual International Symposium on 

Computer Architecture, Jun. 2017, pp. 678–690. 

[9] D. H. Yoon, T. Gonzalez, P. Ranganathan, and R. S. Schreiber, 

“Exploring latency-power tradeoffs in deep nonvolatile memory 

hierarchies,” in Proc. the 9th conference on Computing Frontiers, 

May 2012, pp. 95–102. 

[10] X. Guo, A. Shrivastave, M. Spear, and G. Tan, “Languages must 

expose memory heterogeneity,” in Proc. the Second International 

Symposium on Memory Systems, Oct. 2016, pp. 251–256. 

[11] S. Mittal and J. S. Vetter, “A survey of software techniques for using 

non-volatile memories for storage and main memory systems,” IEEE 

Transactions on Parallel and Distributed Systems, vol. 27, no. 5, pp. 

1537–1550, May 2016. 

 

 

Masaya Sato received his B.E., M.E. and Ph.D. 

degrees from Okayama University, Japan in 2010, 

2012 and 2014, respectively. In 2013 and 2014 he was 

a research fellow of the Japan Society for the 

Promotion of Science. He has been an assistant 

professor of Graduate School of Natural Science and 

Technology at Okayama University. His research 

interests include computer security and virtualization 

technology.  

 

 

Hideo Taniguchi received a B.E. degree in 1978, a 

M.E. degree in 1980 and a Ph.D. degree in 1991, all 

from Kyushu University, Fukuoka, Japan. In 1980, he 

joined NTT Electrical Communication Laboratories. 

In 1988, he moved to Research and Development 

Headquarters, NTT DATA Communications Systems 

Corporation. He has been an associate professor of 

computer science at Kyushu University since 1993, a 

professor of the Faculty of Engineering at Okayama 

University since 2003. He has been a dean of Faculty of Engineering from 

April 2010 to March 2014 and a vice president from April 2014 to March 

2017 at Okayama University. His research interests include operating 

system, real-time processing and distributed processing.. 

 

 

 

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

392


