
 

Abstract—Microservices have recently gained a lot of 

attention in the software industry. Their modularity and 

smaller size offer flexibility advantageous to both development 

and operational teams. However, the bigger picture is still 

lacking despite numerous researches on microservices. There 

are few aspects of microservices that have never been discussed 

in depth despite being acknowledged repeatedly. The current 

research is the continuation of our previous paper, “A 

systematic mapping on microservices”. In the named paper we 

have identified the focus areas of microservices’ researches. 

Along with our previous findings we have spotted several 

crucial key points that require further discussions. These 

includes: definition of microservices, their sizes and boundaries. 

We have also explored the relationship of microservices with 

SOA and DDD. These are the two terms that are frequently 

associated with microservices. Finally, we have discussed 

DevOps, cloud and virtualization as three of the most essential 

factors in microservices ecosystem. We attempted to clarify the 

role of each of these factors. Based on our findings, there is still 

no standardized definition for microservices to-date. In absence 

of clear guidelines, SOA and DDD concepts are widely being 

used to develop microservices. DevOps practices together with 

the cloud environment are playing an important role in 

facilitating the implementation of microservices. We have also 

identified containerization as an effective method to overcome 

the hardware limitation besides speeding up the delivery 

process. 

 
Index Terms—Microservices, definition, SOA, DDD, 

DevOps. 

 

I. INTRODUCTION 

Previously, applications were developed using monolithic 

approaches. This means a single code-base was used to run an 

entire application. Designing a monolithic application has 

been known to be less complicated compared to the more 

distributed approaches. Running them on the other hand is 

not without challenges. Monolithic applications lack some 

cardinal features, namely scalability and flexibility [1]. The 

fact that monolithic applications are developed as one piece 

makes it difficult to alter. The difficulty arises from the high 

coupling nature of these applications. Scaling monolithic 

applications is another major obstacle due to their larger size. 

A monolithic application needs to be scaled in its entirety 

when only a certain segment of it needs to be scaled. These 

issues in addition to the rise of the new technologies has led 

 
 
 

 

 
Manuscript received October 12, 2018; revised March 15, 2019.  

Mohammad Sadegh Hamzehloui, Shamsul Sahibuddin, Ardavan Ashabi 

are with University Technology Malaysia, Malaysia (e-mail: 

ardavan.ashabi@gmail.com). 

the software industry to search for alternatives. 

Microservices are one of the solutions that addresses many of 

the aforementioned issues. Microservices are a set of services 

designed to work together to form an application. Each 

service is built to execute a single task [2]. Their smaller sizes 

ease the process of deployment and replacement. This enable 

companies to accomplish tasks that would have been 

otherwise difficult if not impossible, with the monolithic 

applications. A single service with a higher incoming traffic 

can be scaled while the rest of services are left at the same 

size. This will tremendously help the industries to reduce the 

cost of running services. Microservices are also compatible 

with the new DevOps (Development and Operations) culture. 

DevOps is emphasizing on shortening time from 

development to deployment by following practices such as 

automation, CD (Continuous delivery) and CI (Continuous 

Integration). Since microservices are relatively new in the 

software industry, there are many researches being conducted 

to improve its current understanding. There are wide range of 

papers that are focused on different aspect of microservices. 

Categorizing and analyzing these researches’ findings will 

assist in grasping the bigger picture. This will also help to 

improve understanding the current state of the development 

of microservices. The current research is the continuation of 

our previous paper that was a systematic mapping on 

microservices [3]. In the previous paper, we attempted to 

identify the main areas of focus in researches conducted on 

microservices. In this paper we have summarized additional 

findings which we could not include in the previous paper 

due to word limitations.  

We have organized this paper as the following: Section II 

is an overview of our previous paper. Section III lists down 

our research questions. Section IV explains the findings of 

the related papers. Section V is the main body of the paper. It 

discusses the areas of debate. Section VI is the conclusion. 

 

II. BACKGROUND 

Our previous research [3] was a systematic mapping on 

microservices. We have selected 38 papers from three 

resources: IEEE, ACM and Scopus. The selected papers were 

subsequently categorized into three: 

 Infrastructure  

 Deployment and Management  

 Software 

In previous paper we have concluded that majority of the 

selected papers were in the infrastructure category. Within 

the infrastructure category, DevOps practices were among 

the highest covered topics. Architecture and cloud were the 

two most frequently used terms.  

A Study on the Most Prominent Areas of Research in 

Microservices 

Mohammad Sadegh Hamzehloui, Shamsul Sahibuddin, and Ardavan Ashabi 

International Journal of Machine Learning and Computing, Vol. 9, No. 2, April 2019

242doi: 10.18178/ijmlc.2019.9.2.793



We went through numerous researches to write our 

previous paper. Many of those papers attempted to provide an 

overview of the current trends and focus areas in 

microservices. From our primary research it was clear that a 

set of tools and concepts are closely related to microservice. 

But many of these tools and concepts were very superficially 

discussed. Given the fact that microservices are a new 

concept in software engineering, we felt the need to further 

elaborate some of these concepts. More importantly, we 

believe that explaining the relationship between these 

concepts and how they each fit into microservices’ ecosystem 

will provide further clarity. This current paper is the 

extension of our previous paper, due to restriction in the word 

count and the specificity of the topic. 

 

III. RESEARCH QUESTIONS 

Q1. What are the most prevalent areas of debate 

surrounding microservices?  

Answering this question will cover most of the undergoing 

research. By narrowing down the important areas of debate, 

we are hoping to establish a foundation for upcoming 

researches. We are attempting to concentrate more on 

concepts we found ambiguous. 

Q2. What are the common technologies/practices used in 

developing and running microservices? 

Answering this question will provide a generic overview 

for anyone who is conducting a research on microservices. 

This will also be helpful for industries that are planning to use 

microservices in assisting them to be familiar with the current 

trends of microservices. Although there have been researches 

addressing similar questions, it is necessary to conduct these 

researches on a regular basis in order to keep up with the 

latest updates given that microservices are still evolving. 

 

IV. RELATED WORKS 

In our previous paper we have briefly covered 5 similar 

researches. Three of which were in form of systematic 

mapping. One of them was a literature review and the last one 

a taxonomy of microservices. Since we have changed the 

scope of the research, additional 2 papers will be discussed as 

related works. It is important to mention that most of 

researches we found were published after the year of 2014. 

This indicates that microservices started to become a trend 

after 2014. This is also similarly reflected by the findings of 

the other two systematic mappings [4], [5].  

The first systematic mapping is this paper [6] which 

conducted its research on 21 selected papers was published 

between 2014 and 2015. Their research indicated that the 

most common type of research was solution proposal. The 

validation researches were at the second place, followed by 

experiment and evaluations papers. Their results are quite 

similar to our findings with the exception of evaluation 

researches. Based on our findings, the number of evaluation 

and validation researches were equal. Increasing the number 

of evaluation papers can be an indication that microservices 

and their related technologies are now more commonly 

implemented in practice. Fig. 1 demonstrates the results of 

our findings on the research types of selected papers. They 

also concluded that microservices’ migration, autonomous 

healing, DevOps and autoscaling are some of the common 

trends. 

The next systematic mapping was on microservices’ 

architecture[4]. They selected 33 articles to conduct their 

research including papers from the year of 2016. Based on 

their findings, evaluation researches followed by solution 

proposals were the most frequent research types. Their 

findings suggest that modularity, scalability, and 

maintainability are among the most discussed attributes. 

They also highlight security as one of the least discussed 

attributes. Concurring with the previous paper, they believe 

that DevOps practices are the future trends. 

The next related paper was a systematic mapping with a 

focus on trends in microservices’ architecture [5]. They 

included 71 papers including many from 2016. Based on their 

findings, solution proposals were the most common type of 

researches. Validation and opinion papers were second and 

third. Evaluation researches were the least common. They 

suggested that this implies lack of papers written on 

real-world industrial experiments. They argued that 

complexity is the most recurrent problem that have been 

discussed. Low flexibility followed by management and 

service composition are the next frequently discussed topics. 

They also pointed out that security is still a topic that is not 

covered by many researches. Listed below are some of their 

other findings: 

 A close relation between microservices architecture, 

DevOps and cloud 

 Containerization and virtualization are the key enabling 

technologies 
 

 
Fig. 1. Research types [3]. 

 Performance efficiency, maintainability and security are 

the at the top of quality metrics 

 Monitoring, system-level management and service 

orchestration are the top three main infrastructural related 

discussions. 

Another paper that provides a valuable insight into 

microservices is a taxonomy of microservices conducted by 

Martin Garriga [7]. They did a thorough study on different 

aspects of microservices by providing a great overview of 

different aspects of microservices. Their research was 

significant in explaining the relationship between different 

aspects of microservices. They came out with a sequence of 

tables that demonstrates the main categories and 

subcategories of the microservices’ related topics. They 

covered 28 papers published up to 2016. Below is a list of 

some of the key points from their paper: 

 Security is a topic that is not covered extensively. 

International Journal of Machine Learning and Computing, Vol. 9, No. 2, April 2019

243



 Design practices and patterns are not adequately 

discussed. 

 Finding the right granularity level for microservices is still 

an issue. 

 RESTful HTTP is the most common method of 

communication 

The next paper is a systematic literature review conducted 

on microservices [8]. They conducted their research on 37 

papers. There were a few interesting key points in their 

research. They attempted to list down the characteristics of 

microservices. Lack of a standardized definition for 

microservices is a known problem in the software community, 

which we will discuss in the next section. Hence their attempt 

can be viewed as a good starting point in forming a standard 

definition for microservices. They listed some of the 

emerging technologies. REST topped the list followed by 

swagger. They have also come out with the list of the most 

common technologies that are currently being used. Docker 

is at the top of this list with Node.js and MySQL being the 

second and third. 

Microservice Design for Container based Multi-cloud 

Deployment [9] is another paper that attempted to explain 

different aspects of microservices. In their attempt to bring 

standardization to microservices, they managed to provide a 

comprehensive explanation on microservices’ architecture. 

They have discussed some of the pros and cons of using 

microservices and explained some of the microservices’ 

design patterns. What grabbed our attention was their 

inclusive list and explanation of the microservices 

characteristics provided. They listed down seven 

characteristics of microservices. We will be discussing some 

of them in the next section. 

The last paper that we found relevant to our topic is this 

paper [10]. The significance of this papers is the comparison 

that they made between microservices’ architecture and SOA. 

SOA and microservices have been discussed in numerous 

papers. The distinction between the two however, have rarely 

been discussed explicitly. Another significance of this paper 

is their attempt to define microservices. Although such 

attempts might have been made in other papers, it is the depth 

of the discussion, that distinguishes the paper.  

 

V. AREAS OF DEBATE 

Since microservices are a relatively new technology, there 

are still many debates surrounding them. These ranges from 

design perspectives to quality and performance metrics to 

implementation and maintenance. After going through many 

papers we found that certain areas are more frequently 

debated than others. This may be caused by both their 

importance and existing ambiguity surrounding them.  

A. Definition of Microservices’ Architecture 

Microservices’ architecture have been the topic of many 

researches, and yet they lack a precise definition [11], [12]. 

“Building microservices” was one of the first books written 

on the topic of microservices. Sam Newman in his book 

attempted to define microservices. He described them as: 

 

“Microservices are small, autonomous services that work 

together.”[13]  

 

Another attempt was made by the authors of microservice 

architecture book [14]: 

 

“A microservice is an independently deployable 

component of bounded scope that sup‐ ports interoperability 

through message-based communication. Microservice 

architecture is a style of engineering highly automated, 

evolvable software systems made up of capability-aligned 

microservices.” 

 

To overcome the issue of defining microservices, some 

researchers attempted to identify and categorize their 

common architectural characteristics.  

Although there are occasional differences in their listed 

characteristics, majority of papers have identified similar 

attributes. Some of the most used terms to describe the 

microservices architecture are: 

 Small in size [4] , [12], [13]  

 Single-responsibility [9], [15]  

 Loosely coupled  [6], [9], [16], [17],  

 Explicitly published interfaces [9], [18] 

 Lightweight [6] 

 Communicating via REST and HTTP [9], [19] 

Communicating via REST and HTTP are listed by many 

papers as one of the microservices’ characteristics, however 

that is not always the case. REST APIs are indeed one of the 

most widely used technologies in microservices, but there are 

other alternatives to REST, such as RPCs. 

B. Identifying the Size and Boundaries  

Defining the right size and boundaries for microservices is 

another debatable area. Few metrics have been used to 

measure the size of microservices. Some of them are [20]: 

 The number lines of the codes used to develop 

microservices 

 Being able to rewrite a microservice within 2-6 weeks 

period 

 Having a two-pizza team (Enough to feed the whole team) 

[13] 

These measures are clearly crude methods for defining the 

size of microservices. For instance, different programming 

languages may use more or less lines of codes to execute the 

same task, or the complexity of a service may change its 

refactoring time. Considering the fact that the size of 

microservices can greatly affect some aspects like 

performance, it is crucial to define new measures [20].  

It is also important to define the boundaries of 

microservices. This means that there should be a clear 

division of which services implementing what functionalities. 

Defining these boundaries requires a set of tools and 

experience that we currently lack [21], [22]. This is probably 

the reason that DDD and SOA are gaining popularity. DDD 

due to its ability to define bounded contexts that can be 

correlated to  microservices [23], and SOA due to its 

modularity and implementation similarities with 

microservices.  

International Journal of Machine Learning and Computing, Vol. 9, No. 2, April 2019

244



C. SOA and DDD 

 The term microservices have been repeatedly associated 

with two other terms, SOA and DDD. SOA or Service 

Oriented Architecture is a design approach where multiple 

services together provide a set of capabilities. SOA was 

initially developed as a solution to overcome the issues with 

monolithic applications [13]. Reusability [24] and loose 

coupling are the fundamental principles of SOA [25]. SOA is 

made of several components. The main ones are: 

 SOA services 

 EBS or Enterprise Service Bus 

 Service management and monitoring 

Sam Newman in his book [13] describes the problems of  

SOAs as: 

 communication protocols  

 vendor middleware 

 lack of guidance about service granularity  

He also believes that microservices are the result of our 

better understanding of SOA, so we should think of them as a 

specific approach for SOA. Some other papers on the other 

hand describe microservices as a broader area of SOA with 

focus on some of its specific aspects, such as agile and 

DevOps practices [5]. Despite the similarities between 

microservices and SOA there are differences between the two. 

Microservices eliminate the need for ESB (Enterprise Service 

Bus) by using “smart end-points”  [24]. Independence is the 

key characteristic of microservices [25]. A microservice 

should be independently deployable. Microservices 

architecture promote the idea of share-nothing philosophy, 

whereas SOA promotes the idea 

of share-as-much-as-you-can [5]. SOAs are designed to be 

loosely-coupled as oppose to microservices that are 

un-coupled. While SOAs are designed to be cohesive, 

microservices are designed to independent. Finally, SOAs are 

following a centralized governance design. On the other hand,  

microservices’ governance is decentralized [25]. 

DDD a software development approach with a focus on 

application domains and their relationship has gained more 

popularity with the emergence of microservices [26]. This 

approach has been adopted by many who are trying to 

implement microservices. This is mostly due to its 

well-established set of practices that enables modeling 

complex systems [14]. DDD introduces the concept of 

bounded context. Each component in the system only exists 

within its bounded context. They can also represent business 

domains. Following the concept of bounded contexts [27] is a 

good way to start with designing microservices. This ensure 

that the designed microservices are loosely coupled [13], 

[14]. 

D. DevOps 

DevOps is another term that is used often with 

microservices. DevOps is a set of techniques that aims to 

unify software development techniques with deployment and 

operations [28]. DevOps and microservices are partially 

dependent on each-other.  They are both relying heavily on 

cloud and virtualization [29].  

There are many challenges that DevOps is trying to 

address, some of them are listed below [28]: 

 Scaling 

 Automation  

 Continuous delivery  

 Dealing with cloud technologies 

 Monitoring  

 Resource efficiency  

But how microservices and DevOps are related? 

Microservices are the solution to some of these problems, 

namely continuous delivery and scaling. Due to their smaller 

size, they shorten the delivery process and make scaling less 

challenging [21]. On the other hand, to use microservices, a 

highly automated system with an advanced monitoring 

capability is required [19], [30]. A such system is advocated 

by DevOps. Cloud is an environment that ease the processes 

of implementing a system with these characteristics.  

E. Cloud 

Cloud provides many of the functionalities required to 

implement microservices. It is also an ideal environment to 

apply DevOps practices. It is built based on a set of loosely 

coupled components. This makes microservices’ structure fit 

perfectly to the elasticity of the cloud. Cloud services provide 

dynamic and scalable solutions with more efficient resource 

usage. These features make the cloud a more prominent 

environment to run microservices [31]. Having a wide range 

of configurations enables cloud users to configure their 

infrastructure exactly according to their applications’ 

requirements [28]. Cloud services are readily accessible via 

web, and that makes them universally available. This enables 

its users to manage them from any geographical location 

[32].  

Many cloud services are providing features such as IaaS 

(Infrastructure as a Service), PaaS (Platform as a Service), 

SaaS (Software as a Service). These features enable 

developers to customize their infrastructure and platform 

mostly by coding. And lastly, cloud platforms allow to pay 

on-demand. This will provide a great flexibility to add the 

required hardware as the application scales up or down. This 

can help the users to minimize the running cost [33]. Cloud 

providers are also offering a set of tools to enhance 

monitoring, and automation processes. This will ease the 

process of implementing DevOps practices. Cloud services 

are using virtualization to provide isolated environments and 

overcome hardware limitations. 

F. Virtualization 

Virtualization platforms allow us to provision and resize 

our machines at will, with infrastructure automation giving us 

a way to handle these machines at scale [13].  

Virtualization is a common solution to tackle hardware 

limitations. It is also the way that cloud services provide 

scalable solutions to their clients. Besides scalability, 

isolation is another reason for using virtualization. A lot of 

the software companies are using some type of virtualization 

to separate different development environments. This 

separation makes it easier to do the development, testing and 

SQA (software quality assurance). Virtualization is also 

helpful to implement continuous development and DevOps 

(Development and Operations), which are the critical parts of 

deploying microservices. There are two main virtualization 

types commonly used by industries when it comes to 

International Journal of Machine Learning and Computing, Vol. 9, No. 2, April 2019

245



microservices; VMwares and containers. VMwares are the 

traditional method of virtualization that have been around for 

years. Containers on the other hand, are a new trend despite 

being around for a long time. Their recent popularity is due to 

the new software named Docker.  

Docker is a new software that is taking advantage of the 

Linux containerization feature to create an isolated 

environment. Using a Unix built-in feature makes Docker 

superior to traditional VMware when it comes to 

performance. As Stubbs, Walter, Dooley [34], explained it: 

 

“While virtual machines provide an abstraction at the 

hardware level, the container model virtualizes operating 

system calls so that typically many containers share the same 

kernel instance. This key difference makes for a much more 

lightweight virtualization package that can be built, modified, 

rebuilt and shared far more rapidly than its hypervisor-based 

predecessor. “ 

 

There are different architectural designs for implementing 

microservices. In some of these designs, different services 

are required to work on the same machine but acting as an 

independent service. Virtualization tools such like Docker 

are amongst the best solutions to implement these 

architectures. This is attributed to their light weight and the 

level of isolation that they provide [1]. 

G. Docker 

Docker is currently the most popular container solution 

[14], [35]. There are a lot of different technologies built 

around Docker [36]. This makes Docker a viable option for 

companies that decided to use containers to run 

microservices. They are known to facilitate processes like 

rolling updates and automated scaling [37]. 

Docker comes with its own ecosystem [36]. In fact, many 

of the cloud service provides are offering Docker as a part of 

their implementational system. Listed below are some of the 

main characteristics of Docker that makes it a popular tool for 

running microservices: 

1) Light weight 

The small size of containers helps to reduce resource 

consumption. The smaller size also accelerates the automated 

processes and continuous delivery [1].   

2) Dockerfile  

Dockerfiles are the list of required commands to build 

Docker images. They can be stored in the form of a single 

text file. This makes it possible to version control them.  

3) Docker images 

Docker images are built based on the instructions in the 

Dockerfiles. They can be shared within the community using 

Docker repositories. These repositories can be both public 

and private. 

4) Docker ecosystem 

There are many applications built around Dockers. They 

range from monitoring tools to management and repositories. 

 

VI. CONCLUSION  

In this paper we attempted to identify and discuss the main 

areas of debate in microservices. We have also tried to 

identify the main technologies and practices involved in 

running microservices. The identified areas were based on 

our previous experience and the detailed systematic mapping 

that we have recently conducted. The definition of 

microservices and identifying the boundaries of them are the 

two areas requiring further research. In the absence of a 

standardized definition, we listed down few of the main 

characteristics of microservices based on the literatures 

available. We have also concluded that new metrics are 

required to design microservices. These metrics should 

address the issue of the size and boundaries of microservices. 

The absence of such metrics is probably the reason that many 

are using the other existing approaches to fill this gap. SOA 

and DDD are currently the closest software styles to 

microservices. Many are using their concepts to develop 

microservices. Although they are a good place to start with, 

specialized solutions should be designed with the focus on 

microservices.  

We have also discussed DevOps, cloud and virtualization 

and their relationship with microservices. We believe that 

these three components are essentials for implementing 

microservices and vice versa with the exception of 

virtualization. Although microservices might not be 

dependent on them, but they will unleash the true power of 

microservices. Practices like DevOps might be very difficult 

to follow using traditional application development methods. 

Using clouds’ distributed components will be much easier 

while taking advantage of microservices. 

REFERENCES 

[1] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices 

architecture by using Docker technology,” SoutheastCon, 2016.  

[2] A. D. Camargo, I. Salvadori, R. Mello, S. Dos, and F. Siqueira, “An 

architecture to automate performance tests on microservices,” in Proc. 

18th Int. Conf. Inf. Integr. Web-based Appl. Serv, 2016.  

[3] M. S. Hamzehloui, S. Sahibuddin, and K. Salah, “A systematic 
mapping study on technical debt,” in Proc. 3rd International 

Conference of Reliable Information and Communication Technology, 

pp. 1–12, 2018. 
[4] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in 

microservice architecture,” in Proc. 2016 IEEE 9th International 
Conference on Service-Oriented Computing and Applications (SOCA), 

2016, pp. 44–51. 

[5] D. P. Francesco, I. Malavolta, and P. Lago, “Research on architecting 
microservices: Trends, focus, and potential for industrial adoption,” in 

Proc. 2017 IEEE Int. Conf. Softw. Archit, 2017. 

[6] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study,” 
in Proc. 6th Int. Conf. Cloud Comput. Serv. Sci., 2016, pp. 137–146.  

[7] M. Garriga, “Towards a taxonomy of microservices architectures,” 

Springer, 2018. 
[8] H. Vural, M. Koyuncu, and S. Guney, “A systematic literature review 

on microservices,” Int. Conf. Comput. Sci. Its Appl., 2017.  

[9] K. Y. B. Jambunathan, “Microservice design for container based multi- 
cloud deployment microservice design for container based multi-cloud 

deployment,” Jour Adv Res. Dyn. Control Syst, 2017. 

[10] D. Shadija, M. Rezai, and R. Hill, “Towards an understanding of 
microservices,” in Proc. 2017 23rd IEEE Int. Conf. Autom. Comput. 

Addressing Glob. Challenges through Autom. Comput, 2017, pp. 7–8.  

[11] M. F. J. Lewis. Microservices, a definition of this new architectural 
term. [Online]. Available: 

https://martinfowler.com/articles/microservices.html 

[12] T. Asik and Y. E. Selcuk, “Policy enforcement upon software based on 
microservice architecture,” in Proc. 2017 15th IEEE/ACIS Int. Conf. 

Softw. Eng. Res. Manag. Appl., 2017.  

[13] S. Newman, Building Microservices, Sam Newman, 2015. 
[14] I. Nadareishvili and R. M. M Mitra, Microservice Architecture, 2016. 

[15] M. Ahmadvand and A. Ibrahim, “Requirements reconciliation for 

scalable and secure microservice (de)composition,” in Proc. 2016 
IEEE 24th Int. Requir. Eng. Conf. Work., 2016.  

[16] A. R. Sampaio, H. Kadiyala, B. Hu, J. Steinbacher, T. Erwin, N. Rosa, 

I. Beschastnikh, and J. Rubin, “Supporting microservice evolution,” in 

Proc. 2017 IEEE Int. Conf. Softw. Maint. Evol, 2017.  

International Journal of Machine Learning and Computing, Vol. 9, No. 2, April 2019

246



[17] P. Wizenty, J. Sorgalla, F. Rademacher, S. Sachweh, Archit. 

Companion, 2017. 

[18] S.  Haselbock and R. Weinreich, “Decision guidance models for 
microservice monitoring,” in Proc. 2017 IEEE Int. Conf. Softw. Archit. 

Work., pp. 54–61, 2017.  

[19] N. Ashikhmin, G. Radchenko, and A. Tchernykh, “RAML-based mock 
service generator for microservice applications testing,” Commun. 

Comput. Inf. Sci., vol. 793, pp. 456–467, 2017.  

[20] S. Klock, V. D. Werf, J. M. E. M. Guelen, and J. P. S. Jansen, 
“Workload-based clustering of coherent feature sets in microservice 

architectures,” in Proc. 2017 IEEE Int. Conf. Softw. Archit, 2017. 

[21] L. Chen, “Microservices: architecting for continuous delivery and 
devops,” in Proc. 2018 IEEE Int. Conf. Softw. Archit., 2018, pp. 

39–397.  

[22] S. Hassan, N. Ali, and R. Bahsoon, “Microservice ambients: An 
architectural meta-modelling approach for microservice granularity,” 

in Proc. 2017 IEEE Int. Conf. Softw. Archit., 2017. , pp. 1–10  

[23] E. Schäffer, H. Leibinger, A. Stamm, M. Brossog, and J. Franke, 
“Configuration based process and knowledge management by 

structuring the software landscape of global operating industrial 

enterprises with Microservices,” Procedia Manuf., vol. 24, pp. 86–93, 
2018.  

[24] Y. Yu, H. Silveira, M. Sundaram, Y. Yale, H.  Silveira, and M. 

Sundaram, “A microservice based reference architecture model in the 
context of enterprise architecture,” in Proc. 2016 IEEE Adv. Inf. 

Manag. Commun. Electron. Autom. Control Conf., 2016, pp. 

1856–1860.  
[25] Z. Xiao, I. Wijegunaratne, and X. Qiang, “Reflections on SOA and 

microservices,” in Proc. 4th Int. Conf. Enterp. Syst. Adv. Enterp. Syst, 

2016, pp. 60–67.  
[26] F. Rademacher, S. Sachweh, and A. Zündorf, “Towards a UML profile 

for domain-driven design of microservice architectures,” LNCS, pp. 

230–245, 2018.  
[27] J. Bonér, Reactive Microservices Architecture, 2016. 

[28] H. Kang, M. Le, and S. Tao, “Container and microservice driven 

design for cloud infrastructure devops,” in Proc. 2016 IEEE Int. Conf. 
Cloud Eng., 2016, pp. 202–211.  

[29] C. Barna, H. Khazaei, M. Fokaefs, and M. Litoiu, “Delivering elastic 

containerized cloud applications to enable devops,” in Proc. 2017 
IEEE/ACM 12th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst., 

2017, pp. 65–75.  
[30] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for 

microservices: A systematic mapping study,” in Proc. 8th Int. Conf. 

Cloud Comput. Serv. Sci., 2018, pp. 221–232.  
[31] E.Christian and A. Castiglione, Challenges in Delivering Software in 

the Cloud as Microservices, 2016. 

[32] S. Suram, N. A. MacCarty, and K. M. Bryden,” Engineering design 
analysis utilizing a cloud platform,” Adv. Eng. Softw., vol. 115, pp. 

374–385, 2018.  

[33] M. Miglierina, “Application deployment and management in the cloud,” 

in Proc. 2014 16th Int. Symp. Symb. Numer. Algorithms Sci. Comput., 

2014, vol. 7, pp. 422–428.  
[34] J. Stubbs, W. Moreira, and R. Dooley, “Distributed systems of 

microservices using docker and serfnode,” in Proc. 7th Int. Work. Sci. 

Gateways, 2015. 
[35] T. Hunter, Advanced Microservices, 2017. 

[36] D. Liu, H. Zhu, C. Xu, I. Bayley, D. Lightfoot, M. Green, and P. 

Marshall, “An integrated development environment for microservices,” 
in Proc. 2016 IEEE Int. Conf. Serv. Comput. CIDE, 2016. 

[37] R. Heinrich, A. V. Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl, S. 

Schulte, and J. Wettinger, “Performance engineering for microservices: 
Research challenges and directions,” in Proc. 8th ACM/SPEC Int. Conf. 

Perform. Eng. Companion, 2017, pp. 223–226.  

 
 

Mohammad Sadegh Hamzehloui holds a bachelor of 

computer security and a MSc in software engineering 
from University of Staffordshire. He is currently 

pursuing his Ph.D at University of Technology 

Malaysia. His research interests are software 
architecture and design, distributed systems and cloud 

native applications.  

 
 

Shamsul Sahibuddin is currently a professor at 
Universiti Teknologi Malaysia (UTM). Prof. Dr. 

Shamsul is the dean of Advanced Informatics School 

at Universiti Teknologi Malaysia, Malaysia. He 
graduated from Aston University, United Kingdom 

with a Ph.D. in computer science. 

 
 

 

 

Ardavan Ashabi has been a PhD student in computer 

science at University Technology Malaysia (UTM) 

since 2014 focusing on big data analysis algorithms. 
He obtained his MSc in computer science from 

Advanced Informatics School (AIS) at UTM in 2013 

focusing on, system architecture and algorithm design. 
He got his degree in 2008 in software engineering. He 

has conducted research on big data, algorithm design, 

system architecture and cloud computing. 
 

 

 
 

Author’s formal 
photo 

 
 

Author’s formal 
photo 

International Journal of Machine Learning and Computing, Vol. 9, No. 2, April 2019

247


