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Abstract—Epipolar geometry is a key point in computer 

vision and the fundamental matrix estimation. The relational 

view can be obtained from the fundamental matrix. In this way, 

we interest to calculate an exact matrix based from 

characteristics unequally distributed in complex scene images. 

This paper presents a method based on the detection of points 

by the Harris detector, after we develop a new modification of 

the multi-level function related to the M-estimator algorithm. 

The experimental comparisons were conducted by a simulation 

between RANSAC, LMeds, and M-Estimator in order to 

estimate the projection error. As a result, the proposed method 

gives a significant improvement and performance with a low 

projection error compared to other methods. 

 
Index Terms—Epipolar geometry, fundamental matrix, 

weighting function, projection error, Harris detector. 

 

I. INTRODUCTION 

Epipolar geometry makes it possible to establish a 

geometrical relationship between two images taken from two 

different angles of view [1]. The epipolar geometry is mainly 

used in projective geometry, photogrammetry, and artificial 

vision and the main purpose of his application is the analysis 

of correspondences between two different views of the same 

image [2]. 

Many methods for estimating the fundamental matrix exist 

and almost all use only image point matches as data. These 

methods are distinguished by the parameterization of ‘F’ as 

well as by the optimization method. The estimation of the 

fundamental matrix is based on the knowledge of a certain 

number of pairs of points in correspondence.  

Recently, many researchers have studied a several 

methods for estimating the fundamental matrix. For instance 

we found Zhang [3], Xavier and Joaquim [4] and Hartley [5], 

who they are interested in this area, these methods can be 

classified into linear and iterative or robust methods.  

The results of the previous works of the linear method 

have shown two major defects related to the absence of rank 

constraint of the fundamental matrix and to the absence of 

normalization. To defeat this defect, non-linear methods are 

proposed to improve the accuracy of estimation of the 

fundamental matrix by minimizing the distance between the 

points and their epipolar lines [6], [7] , moreover  to reduce 

the effect of potential aberrant values and to have greater 
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tolerance in data noise [6], [8]-[10].  

The first technique M-Estimator [11] leads to a good result 

in the presence of noise Gaussian at the selected points of the 

image, but it is limited in the ability to take outliers into 

account. Two other techniques are classified as robust 

methods and they are similar: the Random Sampling 

Consensus (RANSAC) method [12], and the median least 

squares method (LMeds) [6]. These two disadvantages 

consist in randomly selecting all the points used for the 

approximation of the fundamental matrix. The experiments 

have shown that the LMeds technique gives a better result 

than the RANSAC method in terms of accuracy [13].  

In this paper, we develop a robust and efficient method that 

depends on the correspondence of characteristics to estimate 

the fundamental matrix. We detonate the points of interest by 

using the Harris method [14]-[19]. After detecting matched 

characteristics, we calculate the fundamental matrix directly 

using both RANSAC and M-Estimator methods. The purpose 

of calculating the 'F’ is to determine the projection error. Our 

work is projected on the modification of the weighting 

function at the level of the M-Estimator method. This new 

proposition makes it possible not only to estimate the matrix 

F but also to precise and identify the different aberrant level 

values from the set of point correspondences. The 

simulations results of the real images show that the proposed 

method is more robust than the other methods in terms of the 

level of the projection error. 

 

II. FEATURE EXTRACTION 

A. Harris Corner Detection 

Harris detector is a method that is based on a function of 

auto-correlation of the signal, that is to say on the changes of 

the signal in several directions [14], [15]. The Fig. 1 below 

shows the different steps of the Harris detector. 
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That we can develop with Taylor's formula for writing: 
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For small displacements we can neglect the term o(x², 

y²)² from where 
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In order to reduce the noise in the window used, Harris 

detector proposes the use of a Gaussian window: 
 

 
Fig. 1. Detection of points of interest by the Harris detector method. 

 

Harris Detector to find points of interest, the Harris 

detector calculated for each pixel, the auto-correlation matrix 

from the two components of the gradient vectors of this 

image. Then, the response matrix of the detector is obtained 

from these matrices. Finally, the points of interest, marked 

above with a green cross, are located on the basis of this 

answer. 

Finally to take into account the general behavior of the 

function E locally, one can write:      

 

( , ) ( , ) ( , )TE x y x y M x y                     (4) 
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The matrix M characterizes the local behavior of the 

function ( , )E x y  and. The eigenvalues of this matrix 

correspond in fact to the main curvatures associated 

wit ( , )E x y .  Ongoing back to the three case. If both curves 

are low eigenvalues, then the region under consideration has 

an approximately constant intensity. If one of the curvatures 

is of very strong eigenvalues so while the other is low then 

the region contains an outline. And if both curvatures are 

strong eigenvalues then the intensity varies greatly in all 

directions, which characterizes a wedge. 

Harris offers a metric to detect corners and edges at the 

same time  

 

 
2( ) ( ( ))R Det M K trace M                        (5) 

As.
2( )Det M AB C    and ( )Trace M A B   
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Consider the following inspired formulation for the corner 

response    

 

   
2

1 2 1 2( )R k                            (6) 

 

K: Harris parameter. 0.04<k< 0.25 According to several 

authors, the experiment shows that an optimal number of 

points is obtained for a value of the order of 0.04k    

Knowing that if λ1 and λ2 are the eigenvalues of the matrix 

M. R is positive in the corner region, negative in the edge 

regions, and small in Hit flat region. From the new answer R 

we do window scanning to extract local maxima. 

 

III. EPIPOLAR GEOMETRY AND FUNDAMENTAL MATRIX 

A. Epipolar Geometry  

The epipolar geometry defines the set of relations existing 

between two different image views of the same scene 

captured using a camera. The Fig. (2) presents a stereoscopic 

system composed of two image sensors arranged at positions 

lo  and ro  in the scene. A point M of space is projected 

respectively into 'P  and ''P  in both left and right images. 

The point M and the two optical centers form a plane π, called 

the epipolar plane, which intersects the two image planes 

according to two straight lines 
l

I  and  rI  called epipolar 

lines. These lines cut the baseline lo  ol and lo , a constant of 

the device if it is assumed that the arrangement of the two 

sensors is rigid, respectively at two points le  and re , called 

epipoles. These two points are therefore also constants of the 

stereoscopic system. 
 

 
Fig. 2. Epipolar geometry of stereo images. 

 

The relationship between the points ( ro , lo , M , 'P , 

''P ), which is expressed from two left and right images to 

calculate the fundamental matrix of rank equal to 2 and the 
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points ''P , 'P , Equation. 

 
' '' 0TP FP                                     (7) 

 

B. Fundamental Matrix  

The estimation of the fundamental matrix relies on the 

knowledge of a certain number of corresponding pairs of 

points. This estimation can be represented as the following 

equation (7). 

 Where ‘F’ is a matrix of dimension 3x3 and of rank-2, and 

determined from ‘F’ and zero, the equation is the relationship 

which relies the points of the left image 

noted ' ( ,? 1)T

li liP u v and points of the right image 

noted. '' ( ,? 1)T

ri riP u v  . This equation can be rewritten in 

the following linear form: 

 

         
     0牋Af 

                                  
(8) 

 

With: 

 

 
 

 
 

It can be noted from the decomposition of the equation (8) 

that there are 9 unknown and 7 independent parameters. But 

it is still possible to estimate this matrix from only 7 pairs of 

points [6], [20]. The major advantage of this method consists 

on his simplicity and speed. However, the quality of the 

results deteriorates rapidly when a few points are poorly 

localized. Moreover, the solution is not always unique and 

the result depends on the choice of the 7 points detected by 

Harris detector in the set of available correspondences. This 

approach has been improved [16]. This author has proposed 

also a more robust algorithm called eight standardized point. 

This approach greatly improves the result of the seven-point 

method. In this work, we took the last algorithm of Hartely 

(eight standardized point).  

The equation (8) is a starting point for most methods of 

determining the fundamental matrix. Which can be solved for 

up to a scale factor if N = 8, and if N is greater than that, it 

will be solved uniquely in a way that minimizes equation (8). 

In general, to solve for N equations, the singular value 

decomposition (SVD) of A is taken so that [21]. 

C. Estimation of the Fundamental Matrix and Multilevel 

Weighting Function  

We present three nonlinear methods: RANSAC, LMeds, 

and M-Estimator. The first method, for its part, calculates for 

each value of ‘F’ the number of points that may be suitable 

(inliers). The matrix ‘F’ chosen is that which maximizes this 

number. Once the aberrant points are eliminated, the matrix 

‘F’ is recalculated to obtain a better estimate. The LMeds 

method calculates for each estimation of ‘F’ the Euclidean 

distance between the points and the epipolar lines, and the 

choice of ‘F’ corresponds to the minimization of this 

distance.  

Although, M-Estimatoris inspired by the two preceding 

methods, it consists in dividing the detected points into two 

sets: inilers and quasi-inliers. The latter method is based on 

solving the following expression: 

 
2

F imin w i

i

r                                       (9) 

 

iw : Is the weighting function. 

M-estimator considers the residual of each point on the 

epipolar line and affects it for each outlier. Suppose that the 

ir is the residual of   Where  
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Huber [22]. Has proposed the following expression for iw     
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             (11) 

 

According to [6] the robust standard deviation   can be 

expressed as: 

 

( )imedian r



  

 

Experiments have shown that the technique LMed gives 

better result than RANSAC method in terms of accuracy [13]. 

LMeds and RANSAC are considered similar, they consist to 

select randomly the set of points used for the approximation 

of the fundamental matrix. The difference exist between this 

two methods in the way use to determinate the chosen ‘F’. 

LMeds calculate the ‘F’ from the distance between the points 

and the epipolar lines where it seeks to minimize the median. 

RANSAC calculate the matrix ‘F’ from the number of inliers. 

However, M-Estimator leads to a good result in the presence 

of a Gaussian noise at the selected points of the image, the 

robustness of this method is manifested in the reduction of 

aberrant values.   
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D. Modification of the Multi-level Weighting Function  

In the literature [23], it exists two conditions to minimize 

the equation (9), one is detailed in [21] and another formula 

will be used to evaluate Sampson error, it should be noted 

that this error is calculated using an accurate matrix ‘F’. 

 
' ''

' 2 '' 2 ''

1

2

1 2

2

2

' 2

( )

( ) ( ) ( ) ( )

Tn

sampson i T T
i i i i i

P FP
E w

FP FP F P F P

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   

(12) 

 

where: 

iw : weighting function  

' 2( )i jFP  , J=1, 2 the square of the jth entry for the vector 

'( )iFP  According to Liqiang Wang  and  referring to the 

documentation [16], we choose to use the weighting function 

which makes it possible to calculate the weight of each point, 

we clarify that this function aims to improve the precision of 

the fundamental matrix. 

The weighting function is given in equation (13) [24], 

[25]. 
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    Factor to ensure the boundary of the inliers [25], and 

quasi-inliers; 
( )imedian r




   Scale of the error and 

total number of points detec
 

ted

inlier
   

 : Proportional factor whose scope is (0, 1); φ and λ 

Constants Torr [11]. 

This new weighting function (12) clearly shows that the 

weight of the corresponding points must be updated in four 

cases. Regarding three sets of dense cloud points: inliers for 

ir  , quasi-inliers for  i   and outliers for 

ir   .  

In our case study, we found 70 inliers in the set of 

correspondences of 300 points when the fundamental matrix 

was estimated for the first time. So, from the next iteration, 

the limiting factor has become 0.23  . 

 

IV. RESULTS AND DISCUSSIONS  

In this section, experiments were performed on two real 

images (Fig. 3) from two different positions by the same 

camera. First, we apply the Harris detector to detect the 

characteristic point see (Fig. 4). Then, we identify the 

correspondences between the images of the scene (Fig. 5), 

whose goal is to determine the fundamental matrix and 

calculate the projection error. 
 

 
Fig. 3. Original left and right stereo images of 350x400 pixels. 

 

 
Fig. 4.Harris stereo images detector left and right. 

 

 
Fig. 5. The points of correspondence. 

 

In this section, we present some results of our 

experimentations. We compare the methods: RANSAC, 

LMeds and M-Estimator from the simulation data of the real 

images when we vary the Gaussian noise from 0 to 1. We can 

define a vector (a, b) which means that the random noise 

added at the points of correspondence are a Gaussian 

distribution N (0, a). 

We apply this case study in our experimentations to test 

the robustness of our proposed method and the others two 

methods. The graph below shows the simulation results. 
 

 
Fig. 6. Comparison of the proposed method projection error as a function of 

Gaussian noise. 
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V. CONCLUSIONS  

In this article, we present a calculation of the fundamental 

matrix using the weighting function to improve the precision 

of this matrix for the interest of reducing the projection error. 

Then, we compare the proposed modification with the 

methods that already exist in the literature under the name of 

RANSAC method and traditional LMeds. Our modification 

of the weighting function is based on the distribution of the 

pairs of points detected by the Harris detector method in 

different inlier, quasi-inlier and outlier sets. 

We have two added values in this work: in the first place, 

eliminate the descriptors of low contrast and bad 

correspondence correlated to the epipolar line. Secondly, 

insert a weighting function to plan the outliers increases the 

clarity of the fundamental matrix and thus increases the 

calculation of the projection error. 

The experimental results on all the simulation data applied 

to the real images show that our proposed modification gives 

a better performance for the estimation of the fundamental 

matrix and the calculation of the projection error compared to 

the other methods 
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