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Abstract—The encounter of vortices generated by a leading 

aircraft during takeoff or landing can be a source of hazard to a 

following aircraft. In spite of airport efforts to keep safe 

separation distances between aircrafts, a number of them 

encounter severe vortices each year. It has been challenging to 

accurately identify those encounters by manual approaches. To 

mitigate the impact of vortex encounters on an aircraft, it is 

important that more reliable identification techniques be 

developed. This research is a contribution towards the 

automatic identification of vortex encounters using artificial 

neural networks. Multilayer feedforward neural networks are 

trained using the back-propagation learning algorithm to 

classify flight events into either vortex encounters or other 

events. Using salient inputs such as aircraft roll angle, normal 

acceleration and lateral acceleration, the neural networks are 

able to achieve an overall average identification rate of about 

88%. These results confirm the authors’ earlier assumption on 

using a reduced set of critical inputs to properly classify aircraft 

vortex encounters. 

 
Index Terms—Vortex encounter, flight data recorder (FDR), 

neural networks (NN), multilayer feed-forward (MLFF) 

network. 

 

I. INTRODUCTION 

Aircraft encounter various types of turbulences during a 

flight. One of the most hazardous turbulence is caused by the 

wing tip vortices. This type of turbulence is critical to flight 

safety as its decay is slow and can produce a significant 

rotational airflow that severely influence a following aircraft. 

In fact, aircraft safety is greatly affected by wake vortices 

generated by a leading aircraft.  

An aircraft wake vortex [1] is naturally produced by all 

types of aircraft. The severity of vortex encounter can vary 

depending on parameters such as the type of leading and 

following aircraft, the flight phase, the aircraft weight, the 

wing size, the configuration, and the weather conditions. 

Encountering a vortex can be hazardous during flight, in 

particular, at landing and takeoff flight phases, where the 

aircraft are required to fly within confined flight paths, which 

makes vortex encounter avoidance and recovery more 

difficult. 

In fact, the wake vortex hazard is one of the main factors 
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defining safe separation minima between two aircrafts. The 

international wake vortex separation rules are based upon the 

aircraft weight categorization whether it is Heavy, Medium 

or Light. However, such categorization has become 

inappropriate which led some countries to introduce their 

local separation standards [2]. Moreover, the vortex 

separations sometime unnecessarily reduce airports capacity. 

In fact, for any vortex separation modifications, there is a 

need for comprehensive relevant investigations to ensure 

safety and appropriateness. For this reason, it is necessary to 

examine and accurately identify actual vortex encounters. 

The identification of vortex encounters has been 

conducted manually in most cases. Very often, pilots are 

requested to report any vortex encounters, hence providing 

vital information to vortex analysis. The complete analysis 

report is supplemented by radar and meteorological 

information. Consequently, a flight data recording (FDR) 

analyst carries out a manual analysis of flight data to confirm 

the vortex encounters. Nevertheless, the manual analysis 

agreement with pilot reporting of vortex encounters is 

appoximately in the range of 55 to 70% [3]. 

In some studies, however, the focus has been on the 

automatic identification. Various modeling and classification 

approches were used to better capture uncertainties and 

complexities in data and also to reduce subjective human 

judgment errors. In [4], the authors reconstructed FDRs time 

histories using neural networks and established the concept 

of virtual flight data recorder. In [5], the authors evaluated 

the performance of neural networks and fuzzy logic 

re-constructors for the development of a virtual flight data 

recorder. They stated that the main drawback of their method 

was that specific flight data at each flight phase were needed 

for effective training of the neural network. 

More recent studies have shown more potential in using 

soft-computing approaches in the identification of vortex 

encounters. In [6], the authors use fuzzy logic (FL) to model 

and identify vortex encounters. FL tolerates data imprecision 

and cope well with complexities in modeling the vortex 

encounters. Fuzzy linguistic variables were used to model 

FDR data. The fuzzy rules were derived from a collection of 

54 pilot reports of vortex encounters and 210 records of flight 

events from FDRs. An average success rate of identification 

of 83.7% was obtained. In [7], a neuro-fuzzy identification 

system was used to classify vortex encounters. Artificial 

neural networks integrated with fuzzy systems have been 

used as a solution in the automatic tuning of the membership 

functions of fuzzy linguistic variables and applied to various 

problems. The authors used a hybrid Adaptive Neuro-Fuzzy 

Inference System (ANFIS) to automatically tune the 

parameters of the fuzzy membership functions. They 

investigated various neuro-fuzzy models having different 
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sets of parameters and factors, and they achieved an average 

identification accuracy of 84.2%. 

This paper builds on the previous results achieved in the 

automatic identification of aircraft vortex encounters with 

pure fuzzy logic (FL) and neuro-fuzzy ANFIS approaches, 

respectively. The authors continue to investigate machine 

learning by using in this case a supervised multilayer 

feedforward (MLFF) neural network. The MLFF is 

constructed based on a reduced set of parameters collected 

from flight data recorders and pilot reports, and which are 

related to vortex encounters. The same number of salient 

inputs has been identified and tested with classifiers based on 

pure FL and ANFIS approaches. 

The remaining of the paper is structured as follows: 

Section II is an overview of neural networks with a focus on 

MLFF type of supervised networks. Section III describes the 

vortex encounters and the training data, including the data 

preprocessing and normalization, and the selection of the 

main parameters for the MLFF. Section IV presents the 

structure of the MLFF classifier and presents the simulation 

results obtained using the NN toolbox on MATLAB. Section 

V discusses the optimization of obtained results. Section VI 

contrasts the obtained results with those achieved with pure 

Fuzzy Logic and Neuro-Fuzzy approaches. Finally, Section 

VII presents the research conclusions. 

 

II. OVERVIEW OF FEEDFORWARD NEURAL NETWORKS 

Artificial Neural networks (ANNs) [8] are powerful 

computational models that have been inspired by the human 

brain and the biological neurons. The main objective of using 

an artificial neural network is to mimic human brain 

functioning in building systems that are capable of 

understanding the underlying behavior of complex systems. 

ANNs have found important applications in various domains 

and diverse areas including finance, medicine, and 

engineering. In the aerospace field, ANNs have been used in 

aircraft fault detection, control system, autopilot 

development and many other areas [9]-[11]. 

The basic element in any artificial neural network is the 

neuron which is often called node or unit. ANNs are made of 

a number of these simplified computational models, which 

are arranged in various layers. A node receives input from 

other nodes or from an external source and generates an 

output. The neuron associates a weight to the input assigned 

based on the input’s relative importance to other inputs. The 

node then applies a transformation function (activation 

function) to the weighted sum of inputs. There are many 

types of activation functions and their proper choice depends 

on the particular problem under consideration. 

The architecture of a network consists of a description of 

how many layers the network has, the number of neurons in 

each layer, the transfer functions in a node, and how the 

layers are connected to each other. The best architecture to 

consider depends on the type of problem under consideration 

[12], [13].  

In most applications of ANNs, a commonly maximum 

number of three layers is used [14]. In the feedforward type 

of neural networks (FFNN), the information flows in one 

direction. Fig. 1 depicts a three-layer feedforward neural 

network. 
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Fig. 1. Multiple layers feedforward neural network. 

 

ANNs can be trained to perform a particular task through 

the adjustment of weights and biases, which can be carried 

out in a variety of ways. Supervised neural network carry out 

this adjustment based on a comparison of the output and the 

desired target. Hence, there are many kinds of ANNs design 

and learning techniques that can be used. However, the 

proper choice of an ANN type or learning algorithm is 

problem dependent and hard to verify without testing [12], 

[13]. The focus in this research is on FFNN. The 

back-propagation learning algorithm, which looks for the 

minimum in the error function in weight space using the 

method of the gradient descent, is applied in this case [15]. 

Properly trained backpropagation networks give 

acceptable accuracies when presented with unknown inputs. 

This generalization property makes it possible to get good 

results from an ANN by using only a representative set of 

training data. The following sections present the research 

results obtained when applying FFNN to the identification of 

aircraft vortex encounters. 

 

III. VORTEX ENCOUNTERS AND DATA COLLECTION 

A. Aircraft Vortex Encounters 

Aircraft safety is usually influenced by a number of flight 

events such as turbulences, wind shear, hard landing, and 

especially wake vortex. Aircraft wake vortex [1], which is the 

focus of this investigation, is produced by virtue of aircraft 

lift generation due to pressure difference between the upper 

and lower wing surfaces. A turbulent air layer is generated 

behind the wing that rolls up and forms two counter-rotating 

vortices, as shown in Fig. 2. Aircraft vortices may persist for 

several minutes depending on its strength and the 

atmospheric conditions. These vortices are able to impose 

significant forces on a following aircraft causing a 

considerable threat. 
 

 
Fig. 2. Pressure difference causing wingtip vortices (source: 

http://controle-aerien.chakram.info/turbulence-de-sillage/). 
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Encountering vortex can be hazardous during flight, in 

particular at landing and takeoff flight phases. During these 

pahses, aircrafts are required to fly within confined flight 

paths and pilots are required to fly by a set of very restricted 

rules in a close proximity to the ground, which makes vortex 

encounter avoidance and recovery more difficult. The 

increase of encounter probability in ground vicinity is 

confirmed through analysis of collected pilots’ vortex 

encounter reports [6], [7]. 

The separation minima required by the International Civil 

Aviation Organization sometimes unnecessarily limit 

airspace and airport capacity and, therefore, requires revision 

based on thorough investigations and flight data analysis to 

avoid negatively affecting flight safety and to ensure 

appropriateness. The investigation of the automatic 

identification of vortex encounters by artificial neural 

network techniques is conducted to help contribute 

reasonable solutions to this end. 

B. Data Collection 

Pilot reports and flight data recorders (FDRs) are the main 

source of data used in investigating any flight events. The 

FDRs are used in most aircraft to record data reflecting 

mainly aircraft operation and performance. This research is 

conducted using data obtained from an airline’s FDRs. A 

total of 181 records of vortex encounters and other 29 records 

of flight events are analyzed as shown in Table I. The FDRs 

contain over one thousand parameters, but only eight are 

found to be relevant to the investigation of vortex encounters. 

Table II lists the salient parameters used as inputs in this 

investigation. 

C. Data Normalization 

 

TABLE I: COLLECTED FLIGHT DATA RECORDS 

Reported Events Number of Records 

Wake Vortex 181 

Wind Shear 5 

Atmospheric Turbulence 12 

Hard Landing 3 

Go Around 1 

Unknown 8 

Total 210 

 

TABLE II: INPUT PARAMETERS RELEVANT TO VORTEX ENCOUNTERS 

# INPUTS 

1 Normal Acceleration 

2 Lateral Acceleration 

3 Derived Normal Acc. Rate 

4 Roll Angle 

5 Derived Roll Rate 

6 Control Wheel 

7 Derived G-Time 

8 Derived Roll Time 

 

Data normalization is performed on the inputs and outputs 

data before training is conducted. One of the normalization 

techniques used in this research is to scale the inputs to fall 

within the [-1, 1] range. Normalized vectors derived by using 

this technique are referred to as Vn. Another approach for 

scaling network inputs is to normalize the inputs and targets 

to have zero mean and unity standard deviation. Normalized 

vectors derived by using this technique are referred to as Vs. 

The appropriateness of these normalization techniques 

depends greatly on the type of neural network and the data. 

However, it is noted that squeezing the data range between 

[-1, 1] or eliminating a high percentage of principal 

components sometimes reduces the variation between the 

input vectors. 

 

IV. IDENTIFICATION OF VORTEX ENCOUNTERS USING MLFF 

NETWORK 

In this research, three different model classes are 

considered: Class 1 indicating a vortex encounter, Class 2 

pointing to a possible vortex encounter, and Class 3 

representing a non-vortex encounter with probability values 

of 1.0, 0.5 and 0, respectively. The evaluation of the 

classification capability is based on two values, which are 

deduced as follows:  

 

Re
% 100%

Re

NumberOf cordsCorrectlyClassifiedInClassN
ClassN

Total cordsInClassN
 

  
(1)

 

 

Re
% 100%

Re

NumberOf cordsCorrectlyClassifiedFromAllClasses
Overall

TotalNumberOf cords
 

 
(2)

 

 

where N=1, 2, 3. 

A three-layer feedforward neural network (MLFF) is 

constructed and then trained to classify input-output data into 

one of the above specified classes. Various factors affecting 

the output of the MLFF network are investigated including 

the epoch number, the number of units in the middle layer, 

the type of activation function, and the learning rate. The 

simulation is conducted using the Mathworks MATLAB 

Neural Networks Toolbox [16]. 

Fig. 3 and 4 show the effect of epoch number on the 

classification accuracy. Here, it is clear that the two classes 

based model gives higher accuracy than the 3-class based 

model. The investigation reveals that the accuracy increases 

until a certain epoch and then it either degrades or remains 

the same. These findings can be clarified using Fig. 5, which 

shows that the highest overall training data accuracy is about 

96% at 100,000 epochs and 84% at 150,000 epochs for the 

2-class and 3-class models respectively. 

The number of neurons in the first layer is also 

investigated. In fact, the classification accuracy increases for 

both classes (Class 1, Class 3) up to 32 neurons then it starts 

decreasing for Class 3 of the testing set, hence, 32 neurons 

are taken to be the optimal number as shown in Fig. 6. 
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Fig. 3. Effect of epoch on modelling accuracy using MLFF: 3-class model. 
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Fig. 4. Effect of epoch on modelling accuracy using MLFF: 2-class model. 
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Fig. 5. Training set classification accuracy versus epochs. 

 

 

 
Fig. 6. Effect of number of neurons on classification of the 2-class model. 

 

Neural networks depend greatly on the type of activation 

functions. Therefore, this factor is also investigated and the 

results of investigations are depicted in Fig. 7. According to 

these results, the tan-sigmoidal and log-sigmoidal activation 

functions are the most suitable for the first and second layers, 

respectively. Another factor which can influence the ANN is 

the he learning rate. Fig. 8 shows that a value of 0.5 best 

satisfied both the training and the testing data.  

The impact of other factors on the identification accuracy 

is also studied. This includes a comparison of the various 

normalization approaches, an investigation on the type of 

learning algorithm where the testing of two optimization 

techniques are carried out inlcuding the the gradient-descent 

(learngd) vs. the gradient descent momentum (learngdm), 

and studying ways to address generalization i.e. 

regularization (msereg) vs. stopped training (mse).  

 

 
Fig. 7. Effect of activation functions on classification accuracy. 
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Fig. 8. Effect of learning rate on classification accuracy. 

 

V. INVESTIGATION OF THE OPTIMAL MLFF NETWORK 

To optimize the outputs of the MLFF, the value of various 

network parameters such as the number of inputs, the type of 

inputs, and the number of trials are all investigated. It is 

found that the optimal neural network performance occurs at 

various combinations of parameters and not necessarily at the 

collection of individually optimized parameters. 

A. Various Investigation Trials Using Single Input 

The simulation results shown in the previous sections and 

hereafter relate to a network having a single input, which is 

the roll angle. From over 300 trials carried out, only 50 and 

37 trials for the 2-class and 3-class models, respectively, are 

selected to represent the results of MLFF neural network 

investigation. Fig. 9 and Fig.10 depict a summary of the 
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MLFF networks investigation for the 2-class and the 3-class 

models, respectively.  

With respect to the 2-class model shown in Fig. 9, trials 39 

and 44 have the best results for the training data with 

accuracies of 98.1% and 92.2%, respectively. As for the 

testing data of the 2-class model, the best results are obtained 

from trial 23 and 42 with accuracy of 82.9%. However, trial 

23 best satisfies both the training and the testing data with an 

overall average accuracy of 85.6%. The results of 

investigation of the 3-class model shows, on the other hand, 

that the only satisfying training data classification results are 

obtained at trial 25 with an overall training accuracy of 

97.4%. The testing data accuracy is very low for all trials of 

this modeling class. 

Tables III and Table IV show the selected parameters and 

the percentages of correct classification of the best four trials. 

These results confirm that the MLFF gives very good 

classification results when applied for the identification of 

aircraft vortex encounters. 
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Fig. 9. Summary of the MLFF networks investigation for the 2-class model. 
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Fig. 10. Summary of the MLFF networks investigation for the 3-class model. 

 

Furthermore, the 2-class model is more appropriate to use 

than the 3-class model. The MLFF technique is further 

investigated by using a multi-input (parameter) neural 

network, which includes three identification parameters as 

shown in the following section. 

B. Multi-parameter (Input) MLFF Network 

The training and testing is now conducted using three input 

parameters namely: the roll angle, the normal acceleration, 

and the lateral acceleration. This network is investigated by 

using the data corresponding to all five trials shown in Table 

III. Seven combinations of the three identification parameters 

are considered. The simulation results are depicted in Fig. 11. 

These results show that the accuracy of 1-paramter model 

is the highest when using the roll angle followed by the 

results based on the lateral acceleration. This is in agreement 

with the fact that most of the vortex encounters are parallel 

since they happen in the vicinity of airports, hence the roll 

angle is more affected than the normal acceleration. As for 

the lateral acceleration, the results show consistent 

fluctuation pattern in the majority of FDR vortex records.  

Fig. 10 also indicates that training data is less affected by 

the selection of parameters since the network is able to adjust 

its weights and biases to achieve high accuracies by 

comparison with the desired targets. The testing data 

accuracy, on the other hand, shows greater dependence on the 

selection of parameters. Using the roll angle and any of the 

other two parameters (points 4 and 5 along the x-axis) gave 

the best results. The relative low performance using all three 

parameters (point 7 compared to point 4 and 5) happened 

because sometimes the effect of increasing the number of 

parameters causes the network to track the training data 

rigidly and increase its accuracy while greatly decreasing the 

testing data accuracy. 
 

TABLE III: SELECTED PARAMETERS OF THE BEST TRIALS OF THE MLFF 

NETWORK INVESTIGATION 

Parameters 2-Class model  3-Class 

model 

Trial 

23 

Trial 

39 

Trial 

42 

Trial 

44 

Trial 

25 

Normalization Vs Vs Vs Vs Vs 

Layer 1 neurons 8 32 32 32 32 

Layer 2 neurons 1 1 1 1 1 

Learning rate 0.5 NA NA NA NA 

Layer1transfer 

function 

tansig tansig tansig tansig tansig 

Layer transfer 

function 

logsig logsig logsig logsig logsig 

Learning function learngd

m 

learngd

m 

learngd

m 

learngd

m 

learngd

m 

Performance 

function 

mse mse msereg msereg mse 

Epoch 4000 1673 67 1859 2182 

Goal 0.1 0 0.1 0.1 0 

Momentum 

coefficient 

NA NA NA NA NA 

Performance ratio 

  

NA NA 1 0.85 NA 

 

TABLE IV: RESULTS OF THE BEST TRIALS OF THE MLFF NETWORK 

Results 2-Class model 3-Class 

model 

Tria

l 23 

Trial 

39 

Trial 

42 

Trial 

44 

Trial 25 

Training time [s] 63.6

6 

135.3

9 

6.48 156.8

1 

160.11 

%Class1 

accuracy/training 

85.1 98.9 81.7 89.1 100 

%Class1 

accuracy/testing 

75 83.3 75 83.3 30 

% Class 2 

accuracy/training 

NA NA NA NA 88.6 

% Class 2 

accuracy/testing 

NA NA NA NA 12.5 

% Class 3 

accuracy/training 

92.5 97.0 91.0 96.2 100 

% Class 3 

accuracy/testing 

86.2 58.6 86.2 72.4 65.2 

% Overall 

accuracy/training 

88.3 98.1 85.7 92.2 97.4 

% Overall 

accuracy/testing 

82.9 65.8 82.9 75.6 46.3 

Overall average 

accuracy 

85.6 81.9 84.3 83.9 71.9 

 

The combination of the roll angle and the normal 

acceleration while using the parameters of trial 39 in Table 
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III gives the highest accuracy of about 88%. This finding 

confirms that roll angle and normal acceleration are the 

primary parameters that complement each other and are the 

most relevant inputs to the challenge of vortex encounters. 

Hence, any vortex encounter identification technique should 

be based on at least these two input parameters. 
 

T

rial 23

50

60

70

80

90

100

1 2 3 4 5 6 7P

arameters

%

 Corre
ct clas

sificat
ion

T

rial 39

50

60

70

80

90

100

110

1 2 3 4 5 6 7P

arameters

%

 Corre
ct clas

sificat
ion

T

rial 42

50

60

70

80

90

100

1 2 3 4 5 6 7P

arameters

%

 Corre
ct clas

sificat
ion

T

rial 44

50

60

70

80

90

1

00

1

10

1 2 3 4 5 6 7P

arameters

%

 Corre
ct clas

sificat
ion

T

rial 25

0

20

40

60

80

1

00

1 2 3 4 5 6 7P

arameters

%

 Corre
ct clas

sificat
ion

1 5

C

lass 1/ training

C

lass 1/ testing

C

lass 3/ training

C

lass 3/ testing

O

verall/ training

O

verall/ testing

O

verall average

C

lass 2/ training

C

lass 2/ testing

x

-axis

1

=RA  2=NA 3=LA 4=RA & NA5=RA & LA 6=NA & LA  7=RA & NA & LA

RA = Roll angle

N

A = Normal acceleration

L

A = Lateral acceleration

T

rial numbers refer to theparameters used in table 5.3

Trial 23

50

60

70

80

90

100

1 2 3 4 5 6 7

Parameters

%
 C

o
rr

e
c
t 

c
la

ss
if

ic
a
ti

o
n

T rial 39

50

60

70

80

90

100

110

1 2 3 4 5 6 7

Parameters

%
 C

o
rr

e
c
t 

c
la

ss
if

ic
a
ti

o
n

T rial 42

50

60

70

80

90

100

1 2 3 4 5 6 7

Parameters

%
 C

o
rr

e
c
t 

c
la

ss
if

ic
a
ti

o
n

T rial 44

50

60

70

80

90

100

110

1 2 3 4 5 6 7
Parameters

%
 C

o
rr

e
c
t 

c
la

ss
if

ic
a
ti

o
n

T rial 25

0

20

40

60

80

100

1 2 3 4 5 6 7

Parameters

%
 C

o
rr

e
c
t 

c
la

ss
if

ic
a
ti

o
n

Class 1/ training Class 1/ testing Class 3/ training

Class 3/ testing Overall/ training Overall/ testing

Overall average Class 2/ training Class 2/ testing

x-axis

1=RA  

2=NA 

3=LA 

4=RA & NA

5=RA & LA 

6=NA & LA  

7=RA & NA & LA

RA = Roll angle

NA = Normal acceleration

LA = Lateral acceleration

Trial numbers refer to the

parameters used in table 5.3  
Fig. 11. Results of the multi-parameter neural network. 

 

VI. COMPARING PURE FFNN TO PURE FL AND ANFIS 

In earlier research work, the authors conducted 

investigations of vortex encounter identification using other 

types of machine learning. Pure Fuzzy Logic (FL) [17] and 

ANFIS [18] type of classifiers were used in setting up models 

that can capture data imprecision and complexities of the 

problem.  

In [6], the authors demonstrated that FL and fuzzy 

linguistic variables [19] are powerful tools to model certain 

FDR inputs that could not be easily represented by crisp sets. 

Initially the authors started with a large number of parameters 

affecting vortex encounters, then, this number was reduced to 

only seven critical inputs. These paramters are the same ones 

used in this research except for the Lateral Acceleration. 

These parameters were used in the fuzzy rule base and fuzzy 

inference. The modeling of these inputs by FL allowed to 

capture any imprecision and addressed ay inherent 

complexities in the system. The FL-based vortex encounters 

identifier achieved an average classification rate of 83.7%. 

The authors discovered that the tuning of the fuzzy 

membership functions (MFs) represented a challenge. It 

could only be achieved manually through an ad hoc tuning 

procedure that was not based on historical data and the 

system performance. 

In [7], the authors proposed a hybrid Adaptive 

Neuro-Fuzzy Inference System (ANFIS) [18], [20], [21] to 

automatically tune the seven parameters of the fuzzy 

membership functions in the classification of aircraft vortex 

encounters (the same parameters used in this research except 

for the Lateral Acceleration). While the system dynamics are 

still captured through a set of fuzzy rules that are created 

based on data from pilot reports and flight recorders (FDR’s), 

the tuning of the fuzzy membership functions was conducted 

thorough the use of artificial neural networks. The 

neuro-fuzzy system is then trained based on historical data 

while the parameters of the fuzzy membership functions are 

automatically tuned to obtain better identification results. 

The authors investigated various neuro-fuzzy models having 

different sets of parameters and factors, and the achieved 

average identification accuracy was around 84.2%. 

The proposed pure MLFF approach in this paper is based 

on the same seven salient inputs in addition to the Lateral 

Acceleration parameter. The achieved average classification 

resulted are slightly higher. However, these results confirm 

the assumption that the 7+1 critical input variables (those 

depicted in Table II) are the ones to consider in an effective 

aircraft vortex encounter identification system. 

 

VII. CONCLUSIONS 

The main source of data in the study of aircraft vortex 

encounters is mainly based on subjective pilot reports 

highlighting any potential threats as well as flight data 

recorders (FDRs) which are data reflecting mainly the 

aircraft operation and performance. On one hand, there are an 

overwelmaingly large number of variables involved in these 

reports and FDR records. The investigation in this research, 

which was conducted using data obtained from an airline’s 

FDRs, led to a focus on a reduced number of parameters 

found to be hihgly relevant to any vortex encounter’s study. 

Using these critical parameters, such as an aircraft roll angle, 

its normal acceleration and its lateral acceleration as inputs in 

a classifier such as the proposed feedforward neural networks, 

led to the achievement of a high identification rate of about 

88%. In fact, these results confirmed the outcomes of 

investigation obtained by the authors when using other types 

of soft-computing approaches also focused on almost the 

same type of critical inputs. On the other hand, researchers 

worldwide [22], [23] focusing on the study of vortex 

encounters by simulating their dynamics in order to define 

vortex encounter hazards, are urgently seeking answers to 

redefine safety measures, such as separation schemes. The 

expectation is to allow air traffic to increase airport capacities 

by revising the existing schemes while not compromising 

safety. The work presented in this paper can help these 

researchers create simplified models of the inherent 

complexities of vortex encounters while only focusing on the 

most important parameters that greatly impact them. The 

future research work of the authors will investigate this 

research problem while attempting to model and understand 

the vortex behavior during decay and their impact on a 

trailing aircraft. 
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