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Abstract—This paper proposes a group-based very fast 

simulated annealing (GB-VFSA) algorithm to achieve 

higher-quality placement in a shorter CPU time. We first 

introduce a temperature-dependent perturbation model based 

on Cauchy distribution to generate new solutions. Then, we put 

high-connected blocks into one group and use a group as a unit 

for placement. In order to avoid premature convergence of the 

algorithm, multiple potential solutions are used to search the 

solution space at the same time. The idea “pheromone” which 

comes from ant colony optimization is used to realize the 

communication between multiple potential solutions.  

Experimental results using MCNC beachmarks show that 

GB-VFSA achieved 23% reduction in CPU time and 3.6% 

improvement in maximal time delay over traditional simulating 

annealing algorithm. 

 
Index Terms—Placement, simulating annealing, island style 

FPGAs, block group, potential solution group. 

 

I. INTRODUCTION 

Field-programmable gate arrays (FPGAs) embrace 

enormous advantages such as low non-recurring engineering 

costs, shorter design cycle, high fault tolerance and 

outstanding parallel performance [1], which enables FPGAs 

to become a popular research topic in microelectronics and 

computer science. Also, the development of FPGAs-based 

high-level synthesis tools, such as Quartus II or Vivado, has 

brought great convenience to the FPGAs-based design. Those 

high-level synthesis tools have drastically reduced the R&D 

cycle without affecting the performance of the circuit. 

Currently, the development of FPGAs shows the following 

trends: 1) The structure of FPGAs become more complex. 

Due to the development of IP core technology, more and more 

FPGA manufacturers embed IP cores (multipliers, block 

RAMs, phase-locked loops, etc.) into FPGA to help realize 

more complex system-on-chip design. 2) Logic resources 

included on the FPGA continue to increase. Introduced in 

2013 by Xilinx, Virtex UltraScale series FPGAs utilize a 

20nm TSMC process with up to four million logic cells. 3) 

FPGAs become more and more energy efficient by lowering 

core voltage, using gating clock technology and reducing 

leakage. 

Placement is a critical stage in the FPGA design flow. It 

determines how circuit blocks (including I/O blocks and logic 

blocks) are mapped on the physical locations of FPGAs. The 

quality of placement directly influences the succeeding 
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routing stage and the overall performance of the whole circuit. 

Placement is a classical NP-hard problem. As we mentioned 

before, the number of logic blocks on the FPGAs has 

experienced significant increase recently, which expands 

search space of placement algorithm dramatically. The larger 

search space requires more time for placement. The low 

efficiency of the placement algorithm extends the design 

cycle and hinders the further development of FPGAs [2]. In 

this paper, we propose a much more time-efficient placement 

algorithm without sacrificing the placement quality based on 

the classical simulated annealing algorithm. 

 

 
Fig. 1. General architecture of island style FPGA. 

A. FPGAs Structure 

FPGAs are composed of configurable logic unit blocks 

(CLBs), input and output blocks (IOBs) and programmable 

interconnect resources. CLB consists of several basic logic 

elements (BLEs) and local interconnects. BLE is made up by 

look-up table (LUT), multiplexer (MUX) and trigger. 

According to the different interconnection structure, FPGAs 

are classified into a variety of categories, such as island style 

FPGAs, line-based FPGAs and hierarchical FPGAs. Among 

them, the island style FPGA is the most popular one, and its 

structure is shown in Fig. 1. IOBs are placed at the edge of the 

FPGAs. CLBs are surrounded by the horizontal and vertical 

routing channels. 

B. FPGAs Placement Problem Formulation 

Placement problem on FPGAs is formulated as follows: 

Given a block set (including CLBs and IOBs) B= {b1, b2, 

b3, …, bn} and a net set N= {n1, n2, n3, …, nr}, a block bi of B 

belongs to at least one net ni of N, T= {t1, t2, t3, …, tp} is a set 

of p empty slots (p≥n), slot ti’s position is represented by a 

coordinate (xi, yi) where a block is assigned. The placement 

problem of FPGA is to assign each block bi∈B to a unique 

slot ti∈T to meet some optimization objectives such as 

routing rate, timing performance and power consumption. 

Therefore, there are C
n 

p  possible layout cases, which form 

the solution space of the layout problem. Fig. 2 shows a 
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simple example of placement and routing results.  

 

 
Fig. 2. Example of placement and routing results on island style FPGA. 

C. Prior Work 

Many algorithms have been proposed to solve the 

placement problem on FPGAs with different structures. The 

final goal of these algorithms is to save CPU time to do the 

placement without sacrificing the quality of the placement. 

Currently, FPGA placement algorithm can be divided into the 

following four categories: simulated annealing-based 

placement algorithm [3], partitioning-based placement 

algorithms [4], quadratic-based placement algorithms [5] and 

other heuristic placement algorithms such as ant colony 

optimization [7], genetic algorithm [6], quantum evolutionary 

algorithm [8]. Although these four kinds of algorithms have 

advantages and disadvantages, the simulated annealing 

algorithm has become the most mainstream FPGAs placement 

algorithm due to its good placement quality and open 

objective function. 

Many researches have been carried out around simulated 

annealing-based placement. In [3], the authors developed a  

CAD tool called VPR which can execute packing, placement 

and routing for FPGAs. In the placement stage, VPR uses 

simulated annealing and can take wire length and time delay 

into consideration. Based on VPR, [9] attempted to achieve 

better placement results by using dynamically adaptive 

stochastic tunneling to help the potential solution jumped out 

of the local optimal solution. Vorwerk et al. [10] discussed 

several strategies to enable the swaps during the annealing 

more directional, allowing the converge much quicker 

without decreasing in the placement quality. [6] tried to 

combine the traditional SA algorithm with some heuristic 

algorithms, where genetic algorithm was used to approach 

global optimal solution. In order to save more CPU time, 

Matthew et al. [2] used parallelism calculation into FPGAs 

placement. 

The rest of this paper is organized as follows. Section II 

describes a simulated annealing algorithm and its drawbacks. 

In the Section III, we introduce a new perturbation model 

based on Cauchy distribution to generate new solutions and 

improve the traditional SA. In Section IV, we propose 

GB-VFSA (Group-based Very Fast Simulating Annealing) by 

introducing block group and potential solution group. In 

Section V, we apply the GB-VFSA to the standard placement 

problem and demonstrate the superiority of our proposed 

algorithm. Finally, section VI concludes this paper.  

 

II. SIMULATED ANNEALING (SA) 

SA algorithm mimics the motion of particles during the 

annealing process. In the process of metal annealing, the 

internal energy is minimized by warming the metal to a 

sufficiently high temperature and allowing it to cool slowly. 

When heated, the particles become disordered as the 

temperature increases, thereby increasing the internal energy. 

At cooling process, the particles gradually become more 

ordered (ie, the state of low internal energy). At each 

temperature, the system can approximately reach equilibrium, 

and finally reach the ground state with minimal energy at 

room temperature.  

In the FPGAs placement problem, the particles represent 

the logical blocks that need to be placed on the FPGAs. The 

random motion of particles during annealing corresponds to 

the random location exchange of these logical blocks during 

the placement process. The energy corresponds to the value of 

the cost function. The lowest energy ground state corresponds 

to the best placement result with the lowest cost we need to 

find.  

 

 
Fig. 3. Local optimal solution and global optimal solution. 

A. Guidelines 

The process of SA to find the optimal solution is equal to 

find the minimum value of the cost function in the solution 

space. If there are p slots on FPGA and n blocks need to be 

placed, the solution space will be C
n 

p . As shown in Fig. 3, 

sometimes, our potential solution might be trapped in the 

local optimal solution, in order to jump out of the local 

optimal solution, we need to accept some aggravating 

solutions (red arrow in Fig. 3) according to the Metropolis 

Guidelines (1), 

1 ( ) ( )

( ) ( ) ( )
exp( ) ( ) ( )

C i C j

P i j C i C j
C i C j

T




  




                   (1) 

where i is the current solution, j is the new solution generated 

by perturbation, P is the probability we accept the new 

solution, C is the cost function, T is the current temperature. 

From the Metropolis Guidelines, we can find that the worse 

the new result is, the less likely we are to accept the new result. 

Also, in the low temperature condition, the probability we 

accept worse solution is very low. 

B. Swap Distance Limit 

Swap distance limit Dlimt [3] is an important parameter in 

the simulated annealing algorithm. Dlimit determines the upper 

distance limit when two logic blocks try to exchange. Fig. 4 

shows us the swap area when Dlimt=1. At initialization, Dlimit is 

set to the width of the entire FPGAs. During the annealing 

process, Dlimit will change according to (2). 
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Fig. 4. Example of swap area for logical blocks. 

 

(1 0.44 )new old

Limit LimitD D    
                        (2) 

where α represents the swap acceptance rate at specific 

temperature. By (2), we can keep the acceptance rate around 

0.44. Because when α is over 0.44, Dlimit will increase, the 

longer distance swap will be less likely to accept, then 

acceptance rate will decrease and go back to 0.44. 

C. Adaptive Annealing Schedule 

We will lower the temperature according to (3). The value 

of γ is determined by the adaptive annealing schedule shown 

in Table I.  

new oldT T  
                                  (3) 

TABLE I: ADAPTIVE ANNEALING SCHEDULE 
Acceptance Rate Update Coefficient γ 

α >0.98 0.5 

0.8<α<0.96 0.9 

0.5＜α≤0.8 0.95 

α≤0.15 0.8 

D. Weakness 

Although the SA-based algorithm shows good potential to 

find the global optimal solution, it requires a large number of 

swap operations and frequent calculation of cost functions, 

which takes a lot of time and decreases the efficiency. This is 

the reason why we modify the algorithm into the very fast 

simulated annealing proposed in Section III. Also, the 

algorithm is really sensitive to the value of different 

parameters, in research [11], the authors   found that the initial 

temperature affects not only the CPU time but also the 

placement quality. In [9], the authors change the value of α in 

the adaptive schedule and the critical time delay changes 

obviously in final results. Finally, SA algorithm has the risk of 

falling into the local optimal solution, especially when the 

solution space is relatively rough and the local optimal 

solution is close to the global optimal solution. This 

phenomenon was called freezing problem [12]. Therefore, we 

use several potential solutions to search the solution space to 

decrease the probability of freezing problem as described in 

Section IV. 

 

III. VERY FAST SIMULATING ANNEALING 

In the classical SA algorithms, the acceptance probability 

of a worse solution is given by the Gibbs distribution. The 

existing applications and numerical examples show that the 

very fast simulated annealing algorithm (VFSA) [13], [17] 

has high computational efficiency, mainly because the 

perturbation model that generates new solutions based on a 

temperature dependent Cauchy distribution. Therefore, we 

modify the algorithm and use the same perturbation model.  

A. Perturbation Model 

The new solution in VFSA is generated by perturbing the 

current solution. We use an approximate Cauchy distribution 

to generate the new solution [13]. This process can be 

described by equation (4) and (5).  

new old

i ix x C W  
                              (4) 

2 11
sgn( 0.5) [(1 ) 1]

u
C T u

T


     

                  (5) 

where, x
new 

i  represents the abscissa of the new position of logic 

block i, C is a parameter calculated by equation (5), W is the 

range of xi, which is the width of FPGAs, T is the temperature 

of current circle, sgn() is a symbol function, u is an uniformly 

distributed random number in [0,1].  

The advantage of using a temperature-dependent Cauchy 

distribution is that it enables our algorithm to perform a wide 

range searches at high temperature and search only near the 

current solution at low temperatures. Also, the Cauchy 

distribution has a flat tail [13], which makes it easy to jump 

out of the local optimal solution. This improvement speeds up 

the convergence of SA methods. 

B. Acceptance Probability 

The derivation of accepted probability is based on the 

generalized Gibbs distribution. Refer to [14] and [15] about 

detailed derivation process. Equation (6) gives acceptance 

probability. 

1

(1 )

1 ( ) ( )

( ) (1 )
[1 ] ( ) ( )h

C i C j

P i j h C
C i C j

T






   
 



               (6) 

where h is a positive real number and ΔC is a cost difference 

in (7). In our algorithm, we set h to 5.0. When h tends to 1, 

equation (6) can degenerate into equation (1). As a result, 

from a mathematical angle, acceptance probability of 

classical SA can be seen as a special case of VFSA acceptance 

probability. 

C. Cost Function 

Wiring cost and timing cost are two main angles to evaluate 

the result of placement. Depending on the goal of 

optimization, the placement can be divided into wire length 

driven placement, net timing driven placement and path 

timing driven placement. In our research, we choose path 

timing driven placement, which takes both wiring cost and 

timing cost into consideration. The cost difference (ΔC) can 

be calculated by equation (7). 

_ cos min _ cos
(1 )

_ _ cos _ min _ cos

wiring t ti g t
C

pre wiring t pre ti g t
 

 
     

   (7) 

The β is a parameter we used to balance the weights of 

wiring cost and timing cost, pre_wiring_cost represents the 

wiring cost of the current solution, Δwiring_cost denotes the 

difference between the current cost and new cost. We use half 

perimeter wire length (HPWL) to estimate the wire length of 

the placement. We use (8) to calculate the wire cost: 
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where ni is the i-th net in N. bbx and bby are the x- and 

y-dimensions of the bounding box of net ni. avg_chanx_W(n) 

and avg_chany_W(n) are the average channel width (number 

of tracks) of the bounding box of the net ni in the x and y 

directions. q(n) is the compensation factor, its value will 

increase from 1 (when the number of terminal is 3 or fewer 

than 3) to 2.79 (when the nets have 50 terminals) when the 

terminals of the nets increase. 

We calculate the timing cost according to the equation (9). 

In equation (9), Δxij(Δyij) is the length of x-(y-) direction 

between block i and block j. The timing cost is the sum of 

delay of all the connections in the circuit. A criticality (i, j) 

can be calculated by delay margin. 

,

i min g_Cost= ( , ) ( , )ij ij

i j circuit

T delay x y critically i j
 

  

       (9) 

IV. GROUP-BASED VFSA 

In order to get a better placement result in a shorter period 

of time, based on the VFSA, we propose a group-based very 

fast simulated annealing algorithm (GB-VFSA). We have two 

kinds of groups in our proposed algorithm. The first is the 

logical block group. We put high-connected blocks into one 

group and use block group instead of a single block as the 

basic unit for the placement. The second group is the potential 

solution group. In traditional SA algorithms, we only have 

one potential solution, which makes our algorithm easy to be 

trapped into the local optimal solution. In our algorithm, 

several potential solutions will search the solution space at the 

same time to avoid the premature convergence of the 

algorithm. 

A. Block Group 

The placement results produced by VFSA show that, if two 

logic blocks are connected neatly, they are often placed 

closely to save more wiring resources. Therefore, before 

starting the placement process, we put the closely connected 

logic blocks into one group. Logic blocks in the same group 

are easier to be placed adjacently to each other. This method 

can speed up the convergence speed of our algorithm. 

1) Grouping Basis: We need to collect two kinds of 

information as the basis for grouping. First, for each block, 

how many other blocks it has connection with. We call this 

information “degree” of the block. Second, for the two blocks 

connected with each other, how many connections they have. 

We call this information “weight” between two blocks. For 

example, in Fig. 5, degree(C) is 4 and weight(C, D) is 2. 

2) Grouping Strategy: After we get these two information, 

we will divide the blocks into two categories, central block 

and common block. Central block represents the block with 

high “degree” value. In each group, there is only one central 

block and other blocks are the common blocks. The common 

blocks in one specific group are the blocks having high 

“weight” with the central block. For example, if the five 

blocks in Fig. 5 are put into one group, block C will be the 

central block and the other four blocks will be the common 

blocks. 

 
Fig. 5. Example of “degree” and “weight”. 

 

3) Group Size: The size of a group is a very important 

parameter in our algorithm. If the group size is too small, the 

new algorithm will not be much different from the VFSA, and 

we cannot achieve the goal of accelerating algorithm 

convergence to save more CPU time. If the grouping is too 

large, we will put together logical blocks that should not be 

close to each other. Therefore, we need to spend extra time 

dispersing these logical blocks. Here, we explore the impact 

of group size on the number of swap, CPU time, and 

maximum time delay. From Fig. 6(a), we can see that the 

number of swap decreases as the size of the group increases, 

and then increases. The number of swap also affected the 

CPU time to a certain extent. The trend of CPU time changed 

the same with the number of swap (Fig. 6(b)). The impact of 

group size on the maximum time delay is not obvious (Fig. 

6(c)). Considering the above three perspectives, in our 

algorithm, the size of the group is set to 4. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. The effect of block group size on swap times, CPU time and maximal 

time delay. 
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4) Improved Initial Placement: Since we have already got 

the “degree” of each block, we can put the block with high 

“degree” in the center of FPGAs during the process we 

generate the initial placement. The central blocks having 

higher “degree” with their 3 common blocks will choose 

location first. The greater “degree” a block has in the circuit, 

the more centric it will be implemented on the FPGAs to save 

more wiring resources. Also, initial temperature is inversely 

proportional to the quality of the initial placement, the higher 

the quality is, the lower the temperature will be. Since we 

make the initial placement much more directional, we hope to 

decrease the initial temperature may be decreased and CPU 

time can be reduced. 

5) Swap Operation: During the whole placement process, 

we change the location of groups by swapping the central 

blocks. Common blocks will also change their location when 

their central blocks change their location. They will be 

prioritized in the closest empty CLBs to their central blocks. 

Fig. 7 shows an example of swap operation. If central block A 

has changed its location, the common blocks (D and C) in this 

group will also change their location. They will consider the 

red empty CLBs first since the distance between A and red 

CLBs is one. If all the red CLBs have been occupied, then, 

they will think about the green CLBs (distance is 2). 

B. Potential Solutions Group 

In the traditional SA algorithm, we have only one potential 

solution. This potential solution eventually finds the global 

optimal solution by randomly exchanging the location of the 

logic blocks. However, as we mentioned before, the biggest 

problem with a single potential solution is that it is very likely 

to fall into the local optimal solutions. Restarting algorithm is 

one of the effective ways to overcome the local optimal 

solution [16], but the cost of restarting algorithm is usually 

higher. Particle swarm optimization (PSO) [19] and ant 

colony optimization (ACO) [18] can effectively overcome the 

local optimal solution. The most prominent feature of PSO 

and ASO is that multiple potential solutions search the 

solution space at the same time. Therefore, we introduce a 

number of potential solutions to VFSA. Several potential 

solutions are also used to optimize the layout at the same time, 

so as to reduce the possibility of falling into the local optimal 

solution. 

 

 
Fig. 7. Example of swap operation and distance between CLBs. 

 

We refer to these potential solutions as potential solution 

group. Intuitively, due to the introduction of multiple 

potential solutions, the algorithm's CPU time must increase 

significantly. However, we still have the opportunity to obtain 

a better solution in a shorter period of time. First, in the 

previous section, we greatly improved the convergence speed 

of the algorithm by grouping the logic blocks and improve 

initial placement. At the same time, when multiple solutions 

are used to search the solution space, there exists a mechanism 

for mutual communication between these potential solutions, 

which makes the convergence more directional and further 

improves the operation speed of the algorithm. The 

pseudocode of GB-VFSA using both block group and 

potential solution groups are shown in Fig. 8. 

1) Pheromone Update: A pheromone is a classic variable 

in ant colony optimization that realizes communication 

between multiple potential solutions. As a result, multiple 

potential solutions can share each other's with their excellent 

swap. ACO stems from the phenomenon of ants foraging in 

nature. Scientists have discovered that ants automatically 

gather on the shortest path between food and their nests. This 

is because the shortest path has the highest concentration of 

pheromones, and the ants have a higher probability of 

selecting paths with higher concentrations of pheromones 

[18]. Pheromones have the following two characteristics: 

First, the pheromones will continue to volatilize, the 

concentration will continue to decline. Second, when different 

ants choose the same path, the pheromone concentration of 

that path will increase.  

 

 
Fig. 8. Pseudocode of GB-VFSA. 

 

In the model of the placement problem, ants are multiple 

potential solutions. The pheromone corresponds to the 

probability that we put logical block i on CLB j. If multiple 

potential solutions choose to place logical block i on CLB j 

Begin Algorithm 

 

S=ImprovedInitialPlacement(); 

T=InitialTemperature(); 

Rlimit=InitialRlimit(); 

 

while(ExitCriterion()=False)  /* when the temperature is low enough, the 

search will end */ 

{  /* outside loop starts*/ 

   while(InnerLoopCriterion=False) 

   {/* inner loop starts*/ 

      for ps=1 to n { /* n denotes the number of potential solutions */ 

            Sps 

new=GenerateViaSwap(Sps 

current, Rlimit); 

            ΔC=Cost(Sps 

new)-Cost(Sps 

current); 

            if(ΔC≤ 0){ Sps 

current = Sps 

new;} 

            else(ΔC>0){ 

R=Random(0,1); 

            if(R<η×PGibbs+(1-η) ×PPheromone){Sps 

current = Sps 

new;} 

               }/* all the potential solutions have update their placement*/ 

     } /*inner loop ends*/ 

    

RecordBestPlacement(); /*choose the optimal solution  

from multiple potential solutions*/ 

      UpdatePheromone(); /*optimal solution update pheromone*/ 

T=UpdateTemperature(); /*update the annealing temperature*/ 

Rlimit=UpdateRlimit(); /*update maximum swap distance*/ 

} /* outside loop ends*/ 

 

End Algorithm 
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during the search process, the pheromone concentration of 

that path will increase. 

In the model of the placement problem, ants are multiple 

potential solutions. The pheromone corresponds to the 

probability that we put logical block i on CLB j. If multiple 

potential solutions choose to place logical block i on CLB j 

during the search process, the pheromone concentration 

corresponding to this layout will continue to increase. 

We introduce pheromones in VFSA to enable the 

communication between multiple potential solutions. In 

GB-VFSA process, at a given temperature, potential solutions 

are constantly gaining new solutions by perturbations. After 

the cycle at specific temperature is complete, these potential 

solutions will communicate with each other by updating the 

pheromones. Only potential solutions with the highest layout 

quality can update pheromones. Through this process, 

high-quality exchanges are executed between potential 

solutions. The update equation is shown in (10) 

min min

min max

max max

(1 )

new

ij

new old best new

ij ij ij ij

new

ij

if

if

if

  
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  

 


     
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  (10) 

where τij represents the pheromone we put block i on CLB j. 

Δτ
best 

ij  denotes that only the best potential solution can update 

the pheromone. ρ is the evaporation rate. Δτ
best 

ij  is calculated by 

(11) 

1

Cos

0

best

ij

Q if best solution map block i to CLB j
t

otherwise






  



    (11) 

where cost is the value of cost function defined in (8) and (9) 

and Q is the intensity of pheromone. 

2) Acceptance Probability: In VFSA, we accept the 

deterioration solution according to certain probability 

(Equation (6)) so as to enhance the climbing ability of the 

algorithm. In our proposed GB-VFSA, we modified the 

acceptance probability formula. The new acceptance 

probability (Equation (12)) takes into account both the 

acceptance probability derived from the generalized Gibbs 

distribution and the exchange of information between 

multiple potential solutions.  

(1 )Gibbs PheromoneP P P     
               (12) 

where η is a parameter we used to balance the weight of 

probability derived from Gibbs distribution and pheromone. 

The calculation of PPheromone is calculated by (13). 

       

( )
Pheromone

ij

il

l possible CLBs

P i j





 


               (13) 

where l denotes CLB where we have ever put block i during 

the process these potential solutions search in the solution 

space. The new probability acceptance equation will enable 

the transition from a single potential solution search space to 

multiple potential search space. PGibbs in (12) reflects the 

individual wisdom of a single solution, while PPheromone 

reflects the collaboration among multiple potential solutions. 

With pheromone updates, excellent swap can be passed 

between multiple potential solutions, making the algorithm 

converge to better solutions. 

 
 

TABLE II: COMPARISON  BETWEEN SA, VFSA AND GB-VFSA 

Beachmarks SA VFSA GB-VFSA 

 No. of Swap CPU time Max delay No. of Swap CPU time Max delay No. of Swap CPU time Max delay 

tseng 1x 1x 1x 0.80670x 0.808141x 1.04014x 0.676561x 0.746915x 0.933587x 

apex4 1x 1x 1x 0.58088x 0.876731x 0.990551x 0.577745x 0.783476x 0.94655x 

clma 1x 1x 1x 0.64800x 0.933398x 1.036542x 0.545855x 0.785381x 0.958829x 

bigkey 1x 1x 1x 0.72611x 0.802292x 1.119234x 0.729685x 0.857033x 0.951747x 

ex1010 1x 1x 1x 0.45171x 0.88504x 1.135533x 0.399435x 0.758492x 1.010781x 

s298 1x 1x 1x 0.55292x 0.764472x 1.078563x 0.444863x 0.606568x 0.930411x 

pdc 1x 1x 1x 0.80443x 0.848022x 1.026528x 0.49847x 0.84952x 1.026528x 

apex2 1x 1x 1x 0.64267x 0.708483x 1.061198x 0.457214x 0.763784x 0.94431x 

elliptic 1x 1x 1x 0.67157x 0.888713x 1.078007x 0.671119x 0.80461x 1.026857x 

frisc 1x 1x 1x 0.74632x 0.837304x 1.00213x 0.57185x 0.675257x 0.922174x 

Average 1x 1x 1x 0.683087x 0.86991x 1.050323x 0.586375x 0.773352x 0.965121x 

 
TABLE III: COMPARISON  BETWEEN VFSA AND GB-VFSA 

Beachmarks VFSA GB-VFSA 

 No. of Swap CPU time Max delay No. of Swap CPU time Max delay 

tseng 1x 1x 1x 0.838679x 0.924238x 0.897559x 

apex4 1x 1x 1x 0.994605x 0.893633x 0.955579x 

clma 1x 1x 1x 0.842371x 0.841421x 0.925027x 

bigkey 1x 1x 1x 1.004917x 1.068231x 0.850355x 

ex1010 1x 1x 1x 0.884273x 0.857015x 0.890138x 

s298 1x 1x 1x 0.804567x 0.793446x 0.862639x 

pdc 1x 1x 1x 0.619658x 1.001766x 1.000102x 

apex2 1x 1x 1x 0.711428x 1.078055x 0.889853x 

elliptic 1x 1x 1x 0.999329x 0.905366x 0.952551x 

frisc 1x 1x 1x 0.766221x 0.806465x 0.920214x 

Average 1x 1x 1x 0.858419x 0.889002x 0.918892x 

 

V. EXPERIMENT RESULTS 

To evaluate the performance of our proposed GB-VFAS, 

several experiments are carried out to compare the number of 

swap during the placement, maximal time delay of circuit 

after placement and routing and CPU time for placement. The 

performance is measured by using ten MCNC beachmarks. 

All the experiments are done under a Micro-Star ge60 with 
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Intel i7-4700MQ CPU and 8GB DDR3L RAM. 

Table II shows us the results between the traditional SA, 

VFSA. We can see that compared to SA, VFSA has seen 

significant improvements in both switching times and CPU 

time, improved about 32% and 13% respectively. However, 

there is a slight deterioration in the quality of the placement, 

with a maximum time delay deteriorating about 5%. VFSA 

controls the maximum swap distance, making the maximum 

swap distance decrease as the temperature drops, thus 

improving the quality of swap, making the convergence much 

more directional and saving much computing time. 

From Table II and Table III, we can see that compared with 

SA and VFSA, our proposed GB-VFSA has improved in all 

three aspects: number of swap (41% and 14%), CPU time 

(23% and 11%) and maximal delay (3.6% and 8.2%). In less 

CPU time, we can achieve higher-quality placement. This 

result is reasonable, because GB-VFSA optimizes the 

algorithm in three aspects. We increase the convergence rate 

of the algorithm through the block group and using better 

initial results. We also improve the ability of jumping out of 

the local optimal solution by using potential solution groups. 

 

VI. CONCLUSION 

We propose a novel placement algorithm based on the 

simulated annealing, to achieve the improvement in two 

aspects: placement quality and CPU time. We first introduce 

the new perturbation model that generates new solutions 

based on Cauchy distribution, and achieve the first increase in 

the speed of the algorithm. Then, we put high-connected 

blocks into a group and use block group as the unit to do the 

placement. We also improve the quality of initial placement. 

At the same time, we introduce multiple potential solutions 

into the algorithm, and realize the communication between 

several potential solutions through the update of pheromone, 

which improves algorithm’s ability to get rid of the local 

optimal solution and finally improve the time delay. 
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