



Abstract—This paper proposes a group-based very fast

simulated annealing (GB-VFSA) algorithm to achieve

higher-quality placement in a shorter CPU time. We first

introduce a temperature-dependent perturbation model based

on Cauchy distribution to generate new solutions. Then, we put

high-connected blocks into one group and use a group as a unit

for placement. In order to avoid premature convergence of the

algorithm, multiple potential solutions are used to search the

solution space at the same time. The idea “pheromone” which

comes from ant colony optimization is used to realize the

communication between multiple potential solutions.

Experimental results using MCNC beachmarks show that

GB-VFSA achieved 23% reduction in CPU time and 3.6%

improvement in maximal time delay over traditional simulating

annealing algorithm.

Index Terms—Placement, simulating annealing, island style

FPGAs, block group, potential solution group.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) embrace

enormous advantages such as low non-recurring engineering

costs, shorter design cycle, high fault tolerance and

outstanding parallel performance [1], which enables FPGAs

to become a popular research topic in microelectronics and

computer science. Also, the development of FPGAs-based

high-level synthesis tools, such as Quartus II or Vivado, has

brought great convenience to the FPGAs-based design. Those

high-level synthesis tools have drastically reduced the R&D

cycle without affecting the performance of the circuit.

Currently, the development of FPGAs shows the following

trends: 1) The structure of FPGAs become more complex.

Due to the development of IP core technology, more and more

FPGA manufacturers embed IP cores (multipliers, block

RAMs, phase-locked loops, etc.) into FPGA to help realize

more complex system-on-chip design. 2) Logic resources

included on the FPGA continue to increase. Introduced in

2013 by Xilinx, Virtex UltraScale series FPGAs utilize a

20nm TSMC process with up to four million logic cells. 3)

FPGAs become more and more energy efficient by lowering

core voltage, using gating clock technology and reducing

leakage.

Placement is a critical stage in the FPGA design flow. It

determines how circuit blocks (including I/O blocks and logic

blocks) are mapped on the physical locations of FPGAs. The

quality of placement directly influences the succeeding

Manuscript received August 15, 2018; revised September 18, 2018.

The authors are with the Graduate School of Information, Production and

Systems, Waseda University, Kitakyushu-shi, CO 808-0135 Japan (e-mail:

srxssinseu@toki.waseda.jp, mimolan@toki.waseda.jp, watt@waseda.jp).

routing stage and the overall performance of the whole circuit.

Placement is a classical NP-hard problem. As we mentioned

before, the number of logic blocks on the FPGAs has

experienced significant increase recently, which expands

search space of placement algorithm dramatically. The larger

search space requires more time for placement. The low

efficiency of the placement algorithm extends the design

cycle and hinders the further development of FPGAs [2]. In

this paper, we propose a much more time-efficient placement

algorithm without sacrificing the placement quality based on

the classical simulated annealing algorithm.

Fig. 1. General architecture of island style FPGA.

A. FPGAs Structure

FPGAs are composed of configurable logic unit blocks

(CLBs), input and output blocks (IOBs) and programmable

interconnect resources. CLB consists of several basic logic

elements (BLEs) and local interconnects. BLE is made up by

look-up table (LUT), multiplexer (MUX) and trigger.

According to the different interconnection structure, FPGAs

are classified into a variety of categories, such as island style

FPGAs, line-based FPGAs and hierarchical FPGAs. Among

them, the island style FPGA is the most popular one, and its

structure is shown in Fig. 1. IOBs are placed at the edge of the

FPGAs. CLBs are surrounded by the horizontal and vertical

routing channels.

B. FPGAs Placement Problem Formulation

Placement problem on FPGAs is formulated as follows:

Given a block set (including CLBs and IOBs) B= {b1, b2,

b3, …, bn} and a net set N= {n1, n2, n3, …, nr}, a block bi of B

belongs to at least one net ni of N, T= {t1, t2, t3, …, tp} is a set

of p empty slots (p≥n), slot ti’s position is represented by a

coordinate (xi, yi) where a block is assigned. The placement

problem of FPGA is to assign each block bi∈B to a unique

slot ti∈T to meet some optimization objectives such as

routing rate, timing performance and power consumption.

Therefore, there are C
n

p possible layout cases, which form

the solution space of the layout problem. Fig. 2 shows a

Efficient Simulated Annealing-Based Placement

Algorithm for Island Style FPGAs

Runxiao Shi, Lan Ma, and Takahiro Watanabe

International Journal of Machine Learning and Computing, Vol. 8, No. 6, December 2018

542doi: 10.18178/ijmlc.2018.8.6.743

mailto:srxssinseu@toki.waseda.jp
mailto:mimolan@toki.waseda.jp

simple example of placement and routing results.

Fig. 2. Example of placement and routing results on island style FPGA.

C. Prior Work

Many algorithms have been proposed to solve the

placement problem on FPGAs with different structures. The

final goal of these algorithms is to save CPU time to do the

placement without sacrificing the quality of the placement.

Currently, FPGA placement algorithm can be divided into the

following four categories: simulated annealing-based

placement algorithm [3], partitioning-based placement

algorithms [4], quadratic-based placement algorithms [5] and

other heuristic placement algorithms such as ant colony

optimization [7], genetic algorithm [6], quantum evolutionary

algorithm [8]. Although these four kinds of algorithms have

advantages and disadvantages, the simulated annealing

algorithm has become the most mainstream FPGAs placement

algorithm due to its good placement quality and open

objective function.

Many researches have been carried out around simulated

annealing-based placement. In [3], the authors developed a

CAD tool called VPR which can execute packing, placement

and routing for FPGAs. In the placement stage, VPR uses

simulated annealing and can take wire length and time delay

into consideration. Based on VPR, [9] attempted to achieve

better placement results by using dynamically adaptive

stochastic tunneling to help the potential solution jumped out

of the local optimal solution. Vorwerk et al. [10] discussed

several strategies to enable the swaps during the annealing

more directional, allowing the converge much quicker

without decreasing in the placement quality. [6] tried to

combine the traditional SA algorithm with some heuristic

algorithms, where genetic algorithm was used to approach

global optimal solution. In order to save more CPU time,

Matthew et al. [2] used parallelism calculation into FPGAs

placement.

The rest of this paper is organized as follows. Section II

describes a simulated annealing algorithm and its drawbacks.

In the Section III, we introduce a new perturbation model

based on Cauchy distribution to generate new solutions and

improve the traditional SA. In Section IV, we propose

GB-VFSA (Group-based Very Fast Simulating Annealing) by

introducing block group and potential solution group. In

Section V, we apply the GB-VFSA to the standard placement

problem and demonstrate the superiority of our proposed

algorithm. Finally, section VI concludes this paper.

II. SIMULATED ANNEALING (SA)

SA algorithm mimics the motion of particles during the

annealing process. In the process of metal annealing, the

internal energy is minimized by warming the metal to a

sufficiently high temperature and allowing it to cool slowly.

When heated, the particles become disordered as the

temperature increases, thereby increasing the internal energy.

At cooling process, the particles gradually become more

ordered (ie, the state of low internal energy). At each

temperature, the system can approximately reach equilibrium,

and finally reach the ground state with minimal energy at

room temperature.

In the FPGAs placement problem, the particles represent

the logical blocks that need to be placed on the FPGAs. The

random motion of particles during annealing corresponds to

the random location exchange of these logical blocks during

the placement process. The energy corresponds to the value of

the cost function. The lowest energy ground state corresponds

to the best placement result with the lowest cost we need to

find.

Fig. 3. Local optimal solution and global optimal solution.

A. Guidelines

The process of SA to find the optimal solution is equal to

find the minimum value of the cost function in the solution

space. If there are p slots on FPGA and n blocks need to be

placed, the solution space will be C
n

p . As shown in Fig. 3,

sometimes, our potential solution might be trapped in the

local optimal solution, in order to jump out of the local

optimal solution, we need to accept some aggravating

solutions (red arrow in Fig. 3) according to the Metropolis

Guidelines (1),

1 () ()

() () ()
exp() () ()

C i C j

P i j C i C j
C i C j

T




  




 (1)

where i is the current solution, j is the new solution generated

by perturbation, P is the probability we accept the new

solution, C is the cost function, T is the current temperature.

From the Metropolis Guidelines, we can find that the worse

the new result is, the less likely we are to accept the new result.

Also, in the low temperature condition, the probability we

accept worse solution is very low.

B. Swap Distance Limit

Swap distance limit Dlimt [3] is an important parameter in

the simulated annealing algorithm. Dlimit determines the upper

distance limit when two logic blocks try to exchange. Fig. 4

shows us the swap area when Dlimt=1. At initialization, Dlimit is

set to the width of the entire FPGAs. During the annealing

process, Dlimit will change according to (2).

International Journal of Machine Learning and Computing, Vol. 8, No. 6, December 2018

543

Fig. 4. Example of swap area for logical blocks.

(1 0.44)new old

Limit LimitD D    
 (2)

where α represents the swap acceptance rate at specific

temperature. By (2), we can keep the acceptance rate around

0.44. Because when α is over 0.44, Dlimit will increase, the

longer distance swap will be less likely to accept, then

acceptance rate will decrease and go back to 0.44.

C. Adaptive Annealing Schedule

We will lower the temperature according to (3). The value

of γ is determined by the adaptive annealing schedule shown

in Table I.

new oldT T  
 (3)

TABLE I: ADAPTIVE ANNEALING SCHEDULE
Acceptance Rate Update Coefficient γ

α >0.98 0.5

0.8<α<0.96 0.9

0.5＜α≤0.8 0.95

α≤0.15 0.8

D. Weakness

Although the SA-based algorithm shows good potential to

find the global optimal solution, it requires a large number of

swap operations and frequent calculation of cost functions,

which takes a lot of time and decreases the efficiency. This is

the reason why we modify the algorithm into the very fast

simulated annealing proposed in Section III. Also, the

algorithm is really sensitive to the value of different

parameters, in research [11], the authors found that the initial

temperature affects not only the CPU time but also the

placement quality. In [9], the authors change the value of α in

the adaptive schedule and the critical time delay changes

obviously in final results. Finally, SA algorithm has the risk of

falling into the local optimal solution, especially when the

solution space is relatively rough and the local optimal

solution is close to the global optimal solution. This

phenomenon was called freezing problem [12]. Therefore, we

use several potential solutions to search the solution space to

decrease the probability of freezing problem as described in

Section IV.

III. VERY FAST SIMULATING ANNEALING

In the classical SA algorithms, the acceptance probability

of a worse solution is given by the Gibbs distribution. The

existing applications and numerical examples show that the

very fast simulated annealing algorithm (VFSA) [13], [17]

has high computational efficiency, mainly because the

perturbation model that generates new solutions based on a

temperature dependent Cauchy distribution. Therefore, we

modify the algorithm and use the same perturbation model.

A. Perturbation Model

The new solution in VFSA is generated by perturbing the

current solution. We use an approximate Cauchy distribution

to generate the new solution [13]. This process can be

described by equation (4) and (5).

new old

i ix x C W  
 (4)

2 11
sgn(0.5) [(1) 1]

u
C T u

T


     

 (5)

where, x
new

i represents the abscissa of the new position of logic

block i, C is a parameter calculated by equation (5), W is the

range of xi, which is the width of FPGAs, T is the temperature

of current circle, sgn() is a symbol function, u is an uniformly

distributed random number in [0,1].

The advantage of using a temperature-dependent Cauchy

distribution is that it enables our algorithm to perform a wide

range searches at high temperature and search only near the

current solution at low temperatures. Also, the Cauchy

distribution has a flat tail [13], which makes it easy to jump

out of the local optimal solution. This improvement speeds up

the convergence of SA methods.

B. Acceptance Probability

The derivation of accepted probability is based on the

generalized Gibbs distribution. Refer to [14] and [15] about

detailed derivation process. Equation (6) gives acceptance

probability.

1

(1)

1 () ()

() (1)
[1] () ()h

C i C j

P i j h C
C i C j

T






   
 



 (6)

where h is a positive real number and ΔC is a cost difference

in (7). In our algorithm, we set h to 5.0. When h tends to 1,

equation (6) can degenerate into equation (1). As a result,

from a mathematical angle, acceptance probability of

classical SA can be seen as a special case of VFSA acceptance

probability.

C. Cost Function

Wiring cost and timing cost are two main angles to evaluate

the result of placement. Depending on the goal of

optimization, the placement can be divided into wire length

driven placement, net timing driven placement and path

timing driven placement. In our research, we choose path

timing driven placement, which takes both wiring cost and

timing cost into consideration. The cost difference (ΔC) can

be calculated by equation (7).

_ cos min _ cos
(1)

_ _ cos _ min _ cos

wiring t ti g t
C

pre wiring t pre ti g t
 

 
     

 (7)

The β is a parameter we used to balance the weights of

wiring cost and timing cost, pre_wiring_cost represents the

wiring cost of the current solution, Δwiring_cost denotes the

difference between the current cost and new cost. We use half

perimeter wire length (HPWL) to estimate the wire length of

the placement. We use (8) to calculate the wire cost:

International Journal of Machine Learning and Computing, Vol. 8, No. 6, December 2018

544

1

()()
_ Cos () []

_ _ () _ _ ()

r
y ix i

i

i i i

bb nbb n
Wiring t q n

avg chanx W n avg chany W n

  

 (8)

where ni is the i-th net in N. bbx and bby are the x- and

y-dimensions of the bounding box of net ni. avg_chanx_W(n)

and avg_chany_W(n) are the average channel width (number

of tracks) of the bounding box of the net ni in the x and y

directions. q(n) is the compensation factor, its value will

increase from 1 (when the number of terminal is 3 or fewer

than 3) to 2.79 (when the nets have 50 terminals) when the

terminals of the nets increase.

We calculate the timing cost according to the equation (9).

In equation (9), Δxij(Δyij) is the length of x-(y-) direction

between block i and block j. The timing cost is the sum of

delay of all the connections in the circuit. A criticality (i, j)

can be calculated by delay margin.

,

i min g_Cost= (,) (,)ij ij

i j circuit

T delay x y critically i j
 

  

 (9)

IV. GROUP-BASED VFSA

In order to get a better placement result in a shorter period

of time, based on the VFSA, we propose a group-based very

fast simulated annealing algorithm (GB-VFSA). We have two

kinds of groups in our proposed algorithm. The first is the

logical block group. We put high-connected blocks into one

group and use block group instead of a single block as the

basic unit for the placement. The second group is the potential

solution group. In traditional SA algorithms, we only have

one potential solution, which makes our algorithm easy to be

trapped into the local optimal solution. In our algorithm,

several potential solutions will search the solution space at the

same time to avoid the premature convergence of the

algorithm.

A. Block Group

The placement results produced by VFSA show that, if two

logic blocks are connected neatly, they are often placed

closely to save more wiring resources. Therefore, before

starting the placement process, we put the closely connected

logic blocks into one group. Logic blocks in the same group

are easier to be placed adjacently to each other. This method

can speed up the convergence speed of our algorithm.

1) Grouping Basis: We need to collect two kinds of

information as the basis for grouping. First, for each block,

how many other blocks it has connection with. We call this

information “degree” of the block. Second, for the two blocks

connected with each other, how many connections they have.

We call this information “weight” between two blocks. For

example, in Fig. 5, degree(C) is 4 and weight(C, D) is 2.

2) Grouping Strategy: After we get these two information,

we will divide the blocks into two categories, central block

and common block. Central block represents the block with

high “degree” value. In each group, there is only one central

block and other blocks are the common blocks. The common

blocks in one specific group are the blocks having high

“weight” with the central block. For example, if the five

blocks in Fig. 5 are put into one group, block C will be the

central block and the other four blocks will be the common

blocks.

Fig. 5. Example of “degree” and “weight”.

3) Group Size: The size of a group is a very important

parameter in our algorithm. If the group size is too small, the

new algorithm will not be much different from the VFSA, and

we cannot achieve the goal of accelerating algorithm

convergence to save more CPU time. If the grouping is too

large, we will put together logical blocks that should not be

close to each other. Therefore, we need to spend extra time

dispersing these logical blocks. Here, we explore the impact

of group size on the number of swap, CPU time, and

maximum time delay. From Fig. 6(a), we can see that the

number of swap decreases as the size of the group increases,

and then increases. The number of swap also affected the

CPU time to a certain extent. The trend of CPU time changed

the same with the number of swap (Fig. 6(b)). The impact of

group size on the maximum time delay is not obvious (Fig.

6(c)). Considering the above three perspectives, in our

algorithm, the size of the group is set to 4.

(a)

(b)

(c)

Fig. 6. The effect of block group size on swap times, CPU time and maximal

time delay.

International Journal of Machine Learning and Computing, Vol. 8, No. 6, December 2018

545

4) Improved Initial Placement: Since we have already got

the “degree” of each block, we can put the block with high

“degree” in the center of FPGAs during the process we

generate the initial placement. The central blocks having

higher “degree” with their 3 common blocks will choose

location first. The greater “degree” a block has in the circuit,

the more centric it will be implemented on the FPGAs to save

more wiring resources. Also, initial temperature is inversely

proportional to the quality of the initial placement, the higher

the quality is, the lower the temperature will be. Since we

make the initial placement much more directional, we hope to

decrease the initial temperature may be decreased and CPU

time can be reduced.

5) Swap Operation: During the whole placement process,

we change the location of groups by swapping the central

blocks. Common blocks will also change their location when

their central blocks change their location. They will be

prioritized in the closest empty CLBs to their central blocks.

Fig. 7 shows an example of swap operation. If central block A

has changed its location, the common blocks (D and C) in this

group will also change their location. They will consider the

red empty CLBs first since the distance between A and red

CLBs is one. If all the red CLBs have been occupied, then,

they will think about the green CLBs (distance is 2).

B. Potential Solutions Group

In the traditional SA algorithm, we have only one potential

solution. This potential solution eventually finds the global

optimal solution by randomly exchanging the location of the

logic blocks. However, as we mentioned before, the biggest

problem with a single potential solution is that it is very likely

to fall into the local optimal solutions. Restarting algorithm is

one of the effective ways to overcome the local optimal

solution [16], but the cost of restarting algorithm is usually

higher. Particle swarm optimization (PSO) [19] and ant

colony optimization (ACO) [18] can effectively overcome the

local optimal solution. The most prominent feature of PSO

and ASO is that multiple potential solutions search the

solution space at the same time. Therefore, we introduce a

number of potential solutions to VFSA. Several potential

solutions are also used to optimize the layout at the same time,

so as to reduce the possibility of falling into the local optimal

solution.

Fig. 7. Example of swap operation and distance between CLBs.

We refer to these potential solutions as potential solution

group. Intuitively, due to the introduction of multiple

potential solutions, the algorithm's CPU time must increase

significantly. However, we still have the opportunity to obtain

a better solution in a shorter period of time. First, in the

previous section, we greatly improved the convergence speed

of the algorithm by grouping the logic blocks and improve

initial placement. At the same time, when multiple solutions

are used to search the solution space, there exists a mechanism

for mutual communication between these potential solutions,

which makes the convergence more directional and further

improves the operation speed of the algorithm. The

pseudocode of GB-VFSA using both block group and

potential solution groups are shown in Fig. 8.

1) Pheromone Update: A pheromone is a classic variable

in ant colony optimization that realizes communication

between multiple potential solutions. As a result, multiple

potential solutions can share each other's with their excellent

swap. ACO stems from the phenomenon of ants foraging in

nature. Scientists have discovered that ants automatically

gather on the shortest path between food and their nests. This

is because the shortest path has the highest concentration of

pheromones, and the ants have a higher probability of

selecting paths with higher concentrations of pheromones

[18]. Pheromones have the following two characteristics:

First, the pheromones will continue to volatilize, the

concentration will continue to decline. Second, when different

ants choose the same path, the pheromone concentration of

that path will increase.

Fig. 8. Pseudocode of GB-VFSA.

In the model of the placement problem, ants are multiple

potential solutions. The pheromone corresponds to the

probability that we put logical block i on CLB j. If multiple

potential solutions choose to place logical block i on CLB j

Begin Algorithm

S=ImprovedInitialPlacement();

T=InitialTemperature();

Rlimit=InitialRlimit();

while(ExitCriterion()=False) /* when the temperature is low enough, the

search will end */

{ /* outside loop starts*/

 while(InnerLoopCriterion=False)

 {/* inner loop starts*/

 for ps=1 to n { /* n denotes the number of potential solutions */

 Sps

new=GenerateViaSwap(Sps

current, Rlimit);

 ΔC=Cost(Sps

new)-Cost(Sps

current);

 if(ΔC≤ 0){ Sps

current = Sps

new;}

 else(ΔC>0){

R=Random(0,1);

 if(R<η×PGibbs+(1-η) ×PPheromone){Sps

current = Sps

new;}

 }/* all the potential solutions have update their placement*/

 } /*inner loop ends*/

RecordBestPlacement(); /*choose the optimal solution

from multiple potential solutions*/

 UpdatePheromone(); /*optimal solution update pheromone*/

T=UpdateTemperature(); /*update the annealing temperature*/

Rlimit=UpdateRlimit(); /*update maximum swap distance*/

} /* outside loop ends*/

End Algorithm

International Journal of Machine Learning and Computing, Vol. 8, No. 6, December 2018

546

during the search process, the pheromone concentration of

that path will increase.

In the model of the placement problem, ants are multiple

potential solutions. The pheromone corresponds to the

probability that we put logical block i on CLB j. If multiple

potential solutions choose to place logical block i on CLB j

during the search process, the pheromone concentration

corresponding to this layout will continue to increase.

We introduce pheromones in VFSA to enable the

communication between multiple potential solutions. In

GB-VFSA process, at a given temperature, potential solutions

are constantly gaining new solutions by perturbations. After

the cycle at specific temperature is complete, these potential

solutions will communicate with each other by updating the

pheromones. Only potential solutions with the highest layout

quality can update pheromones. Through this process,

high-quality exchanges are executed between potential

solutions. The update equation is shown in (10)

min min

min max

max max

(1)

new

ij

new old best new

ij ij ij ij

new

ij

if

if

if

  

      

  

 


     
 

 (10)

where τij represents the pheromone we put block i on CLB j.

Δτ
best

ij denotes that only the best potential solution can update

the pheromone. ρ is the evaporation rate. Δτ
best

ij is calculated by

(11)

1

Cos

0

best

ij

Q if best solution map block i to CLB j
t

otherwise






  



 (11)

where cost is the value of cost function defined in (8) and (9)

and Q is the intensity of pheromone.

2) Acceptance Probability: In VFSA, we accept the

deterioration solution according to certain probability

(Equation (6)) so as to enhance the climbing ability of the

algorithm. In our proposed GB-VFSA, we modified the

acceptance probability formula. The new acceptance

probability (Equation (12)) takes into account both the

acceptance probability derived from the generalized Gibbs

distribution and the exchange of information between

multiple potential solutions.

(1)Gibbs PheromoneP P P     
 (12)

where η is a parameter we used to balance the weight of

probability derived from Gibbs distribution and pheromone.

The calculation of PPheromone is calculated by (13).

()
Pheromone

ij

il

l possible CLBs

P i j





 


 (13)

where l denotes CLB where we have ever put block i during

the process these potential solutions search in the solution

space. The new probability acceptance equation will enable

the transition from a single potential solution search space to

multiple potential search space. PGibbs in (12) reflects the

individual wisdom of a single solution, while PPheromone

reflects the collaboration among multiple potential solutions.

With pheromone updates, excellent swap can be passed

between multiple potential solutions, making the algorithm

converge to better solutions.

TABLE II: COMPARISON BETWEEN SA, VFSA AND GB-VFSA

Beachmarks SA VFSA GB-VFSA

 No. of Swap CPU time Max delay No. of Swap CPU time Max delay No. of Swap CPU time Max delay

tseng 1x 1x 1x 0.80670x 0.808141x 1.04014x 0.676561x 0.746915x 0.933587x

apex4 1x 1x 1x 0.58088x 0.876731x 0.990551x 0.577745x 0.783476x 0.94655x

clma 1x 1x 1x 0.64800x 0.933398x 1.036542x 0.545855x 0.785381x 0.958829x

bigkey 1x 1x 1x 0.72611x 0.802292x 1.119234x 0.729685x 0.857033x 0.951747x

ex1010 1x 1x 1x 0.45171x 0.88504x 1.135533x 0.399435x 0.758492x 1.010781x

s298 1x 1x 1x 0.55292x 0.764472x 1.078563x 0.444863x 0.606568x 0.930411x

pdc 1x 1x 1x 0.80443x 0.848022x 1.026528x 0.49847x 0.84952x 1.026528x

apex2 1x 1x 1x 0.64267x 0.708483x 1.061198x 0.457214x 0.763784x 0.94431x

elliptic 1x 1x 1x 0.67157x 0.888713x 1.078007x 0.671119x 0.80461x 1.026857x

frisc 1x 1x 1x 0.74632x 0.837304x 1.00213x 0.57185x 0.675257x 0.922174x

Average 1x 1x 1x 0.683087x 0.86991x 1.050323x 0.586375x 0.773352x 0.965121x

TABLE III: COMPARISON BETWEEN VFSA AND GB-VFSA

Beachmarks VFSA GB-VFSA

 No. of Swap CPU time Max delay No. of Swap CPU time Max delay

tseng 1x 1x 1x 0.838679x 0.924238x 0.897559x

apex4 1x 1x 1x 0.994605x 0.893633x 0.955579x

clma 1x 1x 1x 0.842371x 0.841421x 0.925027x

bigkey 1x 1x 1x 1.004917x 1.068231x 0.850355x

ex1010 1x 1x 1x 0.884273x 0.857015x 0.890138x

s298 1x 1x 1x 0.804567x 0.793446x 0.862639x

pdc 1x 1x 1x 0.619658x 1.001766x 1.000102x

apex2 1x 1x 1x 0.711428x 1.078055x 0.889853x

elliptic 1x 1x 1x 0.999329x 0.905366x 0.952551x

frisc 1x 1x 1x 0.766221x 0.806465x 0.920214x

Average 1x 1x 1x 0.858419x 0.889002x 0.918892x

V. EXPERIMENT RESULTS

To evaluate the performance of our proposed GB-VFAS,

several experiments are carried out to compare the number of

swap during the placement, maximal time delay of circuit

after placement and routing and CPU time for placement. The

performance is measured by using ten MCNC beachmarks.

All the experiments are done under a Micro-Star ge60 with

International Journal of Machine Learning and Computing, Vol. 8, No. 6, December 2018

547

Intel i7-4700MQ CPU and 8GB DDR3L RAM.

Table II shows us the results between the traditional SA,

VFSA. We can see that compared to SA, VFSA has seen

significant improvements in both switching times and CPU

time, improved about 32% and 13% respectively. However,

there is a slight deterioration in the quality of the placement,

with a maximum time delay deteriorating about 5%. VFSA

controls the maximum swap distance, making the maximum

swap distance decrease as the temperature drops, thus

improving the quality of swap, making the convergence much

more directional and saving much computing time.

From Table II and Table III, we can see that compared with

SA and VFSA, our proposed GB-VFSA has improved in all

three aspects: number of swap (41% and 14%), CPU time

(23% and 11%) and maximal delay (3.6% and 8.2%). In less

CPU time, we can achieve higher-quality placement. This

result is reasonable, because GB-VFSA optimizes the

algorithm in three aspects. We increase the convergence rate

of the algorithm through the block group and using better

initial results. We also improve the ability of jumping out of

the local optimal solution by using potential solution groups.

VI. CONCLUSION

We propose a novel placement algorithm based on the

simulated annealing, to achieve the improvement in two

aspects: placement quality and CPU time. We first introduce

the new perturbation model that generates new solutions

based on Cauchy distribution, and achieve the first increase in

the speed of the algorithm. Then, we put high-connected

blocks into a group and use block group as the unit to do the

placement. We also improve the quality of initial placement.

At the same time, we introduce multiple potential solutions

into the algorithm, and realize the communication between

several potential solutions through the update of pheromone,

which improves algorithm’s ability to get rid of the local

optimal solution and finally improve the time delay.

REFERENCES

[1] J. Timothy et al., "Reconfigurable computing: architectures and design

methods," IEE Proceedings-Computers and Digital Techniques, vol.

152, no. 2, pp. 193-207, 2005.

[2] A. Matthew, J. G. Steffan, and V. Betz, "Speeding up FPGA placement:

Parallel algorithms and methods," in Proc. 2014 IEEE 22nd Annual

International Symposium on Field-Programmable Custom Computing

Machines, IEEE, 2014.

[3] B.Vaughn and J. Rose, "VPR: A new packing, placement and routing

tool for FPGA research," presented at International Workshop on Field

Programmable Logic and Applications, Springer, Berlin, Heidelberg,

1997.

[4] M. Pongstorn, C. Ababei, and K. Bazargan, "Timing-driven

partitioning-based placement for island style FPGAs," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 24, no. 3, 2005, pp. 395-406.

[5] Y. H. Xu and M. A. S. Khalid, "QPF: Efficient quadratic placement for

FPGAs," in Proc. International Conference on Field Programmable

Logic and Applications, 2005.

[6] Y. Meng, A. E. A. Almaini, and P. J. Wang, "FPGA placement

optimization by two-step unified genetic algorithm and simulated

annealing algorithm," Journal of Electronics, vol. 23, no. 4, pp.

632-636, 2006.

[7] W. Y. Xu, K. J. Xu, and X. M. Xu, "A novel placement algorithm for

symmetrical FPGA," in Proc. ASICON'07, IEEE, 2007.

[8] G. Xiao et al., "Fast FPGA placement algorithm using quantum genetic

algorithm with simulated annealing," in Proc. ASICON'09, IEEE,

2009.

[9] M. J. Lin and J. Wawrzynek, "Improving FPGA placement with

dynamically adaptive stochastic tunneling," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 29,

no. 12, pp. 1858-1869, 2010.

[10] V. Kristofer, Andrew Kennings, and Jonathan W. Greene, "Improving

simulated annealing-based FPGA placement with directed moves,"

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 28, no. 2, pp. 179-192, 2009.

[11] R. Hermida et al., "Placement by thermodynamic simulated

annealing," Physics Letters A, vol. 317, no. 5, pp. 415-423, 2003.

[12] Z. Q. Li and H. A. Scheraga, "Monte Carlo-minimization approach to

the multiple-minima problem in protein folding," Proceedings of the

National Academy of Sciences, vol. 84, no. 19, pp. 6611-6615, 1987.

[13] I. Lester, "Very fast simulated re-annealing," Mathematical and

Computer Modeling, vol. 12, no. 8, pp. 967-973, 1989.

[14] T. Constantino, "Possible generalization of Boltzmann-Gibbs

statistics," Journal of Statistical Physics, vol. 52, no. 1, pp. 479-487,

1988.

[15] J. P. P. Thadeu, "Traveling salesman problem and Tsallis statistics,"

Physical Review E, vol. 51, no. 1, 1995.

[16] A. H. Bernardo, R. M. Lukose, and T. Hogg, "An economics approach

to hard computational problems," Science, vol. 275, no. 5296, pp.

51-54, 1997.

[17] I. Lester and B. Rosen, "Genetic algorithms and very fast simulated

reannealing: A comparison," Mathematical and Computer Modelling,

vol. 16, no. 11, pp. 87-100, 1992.

[18] D. Marco, M. Birattari, and T. Stutzle, "Ant colony optimization,"

IEEE Computational Intelligence Magazine, vol. 1, no. 4, pp. 28-39,

2006.

[19] K. James, "Particle swarm optimization," Encyclopedia of Machine

Learning, Springer US, pp. 760-766, 2011.

Runxiao Shi was born in Nanjing, China on August

30, 1995. He received his B.E. degree from Southeast

University (Nanjing, China) in 2017. He is currently

working toward the M.E. degree in Graduate School of

Information, Production and Systems, Waseda

University, Kitakyushu-shi, Japan under the guidance

of Prof. Takahiro Watanabe. In 2016, he was chosen as

the scholarship student of IPS, Waseda University. His

research interests include computer aided design of

FPGAs, especially placement and routing algorithm.

He is also carrying out some research on the interposer-based multi-FPGAs.

Lan Ma was born in Suzhou, China on February 9,

1995. She received her B.E degree from Southeast

University, Nanjing, China in 2017. Currently, she is

working toward M.E degree in Graduate School of

Information, Production and Systems, Waseda

University, Kitakyshu, Japan under the guidance of

Prof. Takahiro Watanabe. She is carrying out her

research on placement and scheduling algorithm on

the reconfigurable systems.

Takahiro Watanabe was born in Ube, Japan in

October 1950. He received his B.E. and M.E. degree

in electrical engineering from Yamaguchi University

(), and the Dr. Eng. From Tohoku University. In 1979,

he joined R&D Center of TOSHIBA Corp., where he

worked in the field of LSI design automation. In

August 1990, he joined Yamaguchi University, and in

April 2003, he moved to Waseda University, Graduate

School of Information, Production and Systems. His

current research interests are EDA algorithm, microprocessor, NoC, FPGA

and their applications. He is a member of IEICE, IPSJ and IEEE.

Author’s formal

phot

Author’s formal

phot

Author’s formal

phot

International Journal of Machine Learning and Computing, Vol. 8, No. 6, December 2018

548

