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Abstract—Today, Infrastructure-as-a-service providers are 

trying to minimize the cost of data center operations, while 

maintaining the Service Level Agreements. This can be 

achieved by one of the advanced state-of-the-art services of 

virtualization - the live migration capability. Live migration is 

defined as the process of transferring an active virtual machine 

from one physical machine to another without any 

disconnection. This is achieved by transferring all of the 

encapsulated states of the VM from one host to another. It has 

become an essential tool for efficient management of resources 

in a data center by enabling server consolidation and load 

balancing. There are two classical migration techniques, 

namely - pre-copy and post-copy, which employ different 

memory transfer mechanism during the offloading of a VM. In 

this paper, we propose a novel hybrid live migration technique 

by combining the existing pre-copy and post-copy approaches. 

Compare to its counterparts, our hybrid technique is a fast, 

efficient and a reliable migration technique.  
 

Index Terms—Cloud computing, IaaS, virtualization, virtual 

machine, data center, physical memory, load balancing, cluster, 

resource allocation, writable working set. 

 

I. INTRODUCTION  

Virtualization [1], [2] has become one of the key 

technologies in the era of Cloud Computing. It is loosely 

defined as an abstraction of the computing resources that 

can be achieved by either dividing the resources into 

multiple computing environments or merging various 

resource components into one. Various concepts and 

techniques such as time sharing, hardware and software 

partitioning, simulation, emulation can be used to apply, the 

division of the resources,  Thus, Virtualization technology 

has enabled the efficient utilization of hardware resources 

by abstracting away the underlying resources such as 

processors, main memory, secondary storage and 

networking. Today, with the help of Virtualization, the data 

centers are continuously employing the virtualized 

architecture to execute multiple applications that are 

mapped on to the physical machines. This has been enabled 

with the help of virtual machines that form the software 

abstraction of a physical machine. This abstraction is 

achieved by the various virtualization techniques [3], [4] 
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such as:  

 Full Virtualization: It is defined as the isolated 

execution of the unmodified guest OS by simulating the 

hardware resources including full instruction set, 

input/output operations, interrupts, and memory access. 

 Para Virtualization: It is defined as the isolated 

execution of the guest OS with modified resources in 

the form of hooks. The para virtualized interface is used 

to decrease the performance degradation caused by the 

time spent by the guest in performing certain operations 

which are substantially more difficult to execute in a 

virtual environment compared to a non-virtualized 

environment. 

 Hardware Assisted Virtualization: It is defined as the 

execution of the guest OS with the capabilities provided 

by the hardware, primarily from the host processor. The 

resources can be either fully virtualized or para 

virtualized in this case, Therefore, the cloud providers 

that are providing the infrastructure resources 

completely rely on Full Virtualization with hardware 

assistance. This is because of the client requirements of 

unmodified guests as a part of the service level 

agreements (SLAs). Overall, Virtualization helps in 

enabling agility, dynamism, adaptability [5,6] within a 

data center. Therefore, VMs form the basic building 

blocks of the Infrastructure-as-a-Service (IaaS) [6] with 

benefits such as flexible resource provisioning, 

monitoring and administration by the system 

administrators. Resource provisioning allows the 

provisioning of the infrastructure based resources either 

at the start or during the life-cycle of a service [7]. At 

the IaaS level, these resources consist of servers, 

network, and self-service for the clouds. Server 

provisioning, a part of resource provisioning, consists of 

well defined configuration of the servers based on the 

requirements of the client. It consists of the following 

two types: 

1) Static server provisioning: The configuration of the 

VMs at the beginning of the life-cycle of a service 

constitutes the static part of server provisioning. During 

this process, a physical machine is selected from a pool 

of physical nodes. Today, a VM is instantiated by using 

the existing template based provisioning. A physical 

machine is selected from a pool of physical nodes, 

during this process, Today, the existing template based 

provisioning is used to instantiate, a VM [8] before 

executing other services provisioning depending upon 

the requirements. 

2) Dynamic server provisioning: From both the client’s 

point of view and cloud provider, the dynamic resource 

provisioning plays an important role in the allocation or 
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removal of the resources during the life-cycle of a 

service. Currently, there are multiple ways to modify 

the resources either horizontally or vertically. 

a) Horizontal scaling: It refers to adding multiple 

independent physical resources to provide more 

resources in terms of computing power, memory, disk 

space and even network bandwidth. 

This form of scaling employs multiple instances of the 

applications running on different physical servers. 

b) Vertical scaling: It refers to the addition of the resources 

on the same physical machine by adding CPUs, 

memory or even disk for that particular application 

residing on a single physical instance. 

Currently, vertical scaling is not supported by cloud 

providers since, it requires changes to the guest OS or VMs 

running on the bare physical machines, which may result in 

several security issues [9]. 

A VM, a software implementation of a physical machine, 

always uses the same physical resources (CPU, memory and 

I/O) utilized by a physical machine. At the beginning of the 

life-cycle of a service, the resource-usage profile provided 

by the client determines initial provisioning of a VM, these 

profiles try to include the estimations to meet the future load 

requirements. However, either due to the changes in the 

workload conditions on VMs or load on the physical 

machines can lead to ―hotspots‖ - not enough resources to 

meet the load spikes / demands or ―coldspots‖ – inefficient 

utilization of the provisioned resources [10]. Thus, to 

mitigate these issues, live migration of VMs plays an 

important role in the dynamic resources management of the 

physical machines inside a data center. 

 

 

 

 
Fig. 1. Load balancing scenario of the virtual machines for equal 

distribution of the resources. 

 
Live migration [11]-[13] is the process of transferring a 

running virtual machine from one physical machine to 

another over the network. This will alleviate the hotspots to 

meet the SLA guarantee and handle coldspots for the 

efficient utilization. Therefore, from a cloud provider’s 

point of view, live migration plays a very important role in 

the following scenarios: 

 Server consolidation: Fig. 1 shows, with the help of 

server consolidation, we can avoid server sprawl. The 

VMs residing on a lightly loaded physical machines can 

be packed onto a fewer physical machines while 

maintaining the SLA. Not only will this lead to low 

power usage by the data center but it will also lead to 

higher resources usage by a host [14]. 

 Load Balancing: The primary purpose of load balancing 

is to ensure the equal distribution of the resources 

resulting in almost equal residual resource capacity 

across the physical machines (Fig. 1). This can be 

achieved via live migration of the VMs which will 

mitigate the resource utilization discrepancy.  

 Hotspot mitigation: During the life-cycle service of a 

VM, if the resource utilization increases for some time 

window, it will result in hotspot in the future. To 

mitigate this issue, either additional resources are 

locally allocated (vertical scaling) or globally i.e. among 

the physical machines. 

 If the local resources are not sufficient, VMs can be 

migrated to another physical node to offload the 

resources, thus resulting in hotspot mitigation . 

 System maintenance: The physical resources need to be 

physical repaired 2 replaced or removed to keep the 

servers running smoothly inside a data center, Thus, 

during the maintenance, the cloud provider will try to 

migrate the VMs on to different physical machines 

while adhering the SLAs [15]. 

A. Motivation 

From the above section, it is quite clear that one of the 

most important services of virtuaization is live migration. 

From a cloud provider perspective, a VM migration should 

be transparent enough to have an unnoticeable fast 

migration by neither exposing the latency to the user nor 

affecting the collocated VMs on the same physical machine. 

However, existing migration approaches, such as pre-copy 

[16] and post-copy [17], are inefficient for highly utilized 

physical machines inside a data center [18]. These 

approaches perform quite poorly on workloads with large 

working set size or even memory intensive workloads. 

Furthermore, they can incur significant performance 

overhead by consuming huge amount of network bandwidth. 

Besides that, the post-copy approach is more efficient than 

the pre-copy is but does not provide any destination VM 

guarantee during the migration period. This becomes 

another concern from a cloud provider perspective. 

 

II. RELATED WORK 

A. Process Migration 

Process migration [19] is defined as the migration of 

processes from one computing environment to another. 

With the introduction of clusters of workstations for 

providing high performance facility, this concept gained 

momentum Since it was quite possible to transfer files 

between various machines in a distributed environment, this 

introduced a demand for dynamic allocation as well as re-

allocation of the computational resources by migrating the 

process’ execution states. With the introduction of 

distributed computing, process migration showed various 

benefits such as load balancing and fault-tolerance  

However, because of the complexity involved in the 

transparent migration of the processes, it did not achieve 

widespread use. 

B. Virtual Machine Migration 

A VM is a software implementation of a physical 
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machine which emulates the behavior of a physical machine. 

A running VM comprising of its states constitute as a 

process visible to the host OS. This process is a special 

process where every state information is in an encapsulated 

format and can be extracted and used, whenever required, 

by the host OS. This has been made possible by the virtual 

machine monitor (VMM). Thus VM migration is a special 

case of process migration where VMM plays an important 

role in providing the required VM’s execution state, hence, 

bringing transparency to the migration process. 

C. Performance Metrics 

The following metrics can be used to measure the 

effectiveness of a live migration technique: 

1) Performance degradation: The performance degradation 

of an application running on the VM due to the 

migration process.  

2)  Data transferred: The total data transferred during the 

migration process. Although it is lower bounded by the 

size of the VM and the device states, it can be larger 

than that depending on the migration technique used. 

3) Total migration time: The time taken to completely 

finish all the three phases of migration: push, stop-and-

copy and pull phases. Since the resources allocated to a 

VM on the source machine will be completely released 

only after the total migration time, this is an important 

metric. 

4) Downtime: Downtime is the duration of the stop-and-

copy phase. During the downtime, the VM is neither 

active on the source nor on the destination.  

5) Perceivable Downtime: This is the time period during 

which the VM is unresponsive after resuming execution 

on the destination. This is a qualitative metric and is 

only relevant to VMs whose state is externally visible 

such as network based workloads. 

 

III. POST-COPY LIVE MIGRATION 

In this section, we propose the design of the post-copy 

approach which tries to minimize the downtime in the pre-

copy and the application performance degradation for the 

workloads with high dirtying rate. The post-copy approach 

consists of the two approaches - stop-and-copy phase and 

pull phase. It works as follows: 

Stop-and-copy phase: As soon as the migration command 

is issued, the VM is suspended. Then the VM’s states 

excluding the main memory pages are transferred to the 

destination. After this, the VM is immediately resumed for 

execution on the destination, while the older memory States 

of the VM at the source are present for the demand paging. 

Pull phase: As the VM resumes its execution on the target 

machine, every time it accesses a page that is not yet 

transferred from the source, a page fault occurs. Then the 

page fault handler retrieves the corresponding page from the 

source over the network. Page faults of this kind are called 

network page faults. 
 

IV. HYBRID LIVE MIGRATION 

In this section, we present the design, implementation and 

evaluation of the hybrid live migration approach. This 

approach consists of both the pre-copy and post-copy 

approaches. The hybrid algorithm utilizes all the three 

described phases of the process migration steps, namely - 

push phase, stop-and copy phase and pull phase. Thus, our 

basic hybrid approach tries to provide the best of two worlds 

– pre-copy and post-copy, by outperforming the both of 

these approaches in terms of the total data transfer, total 

migration time, and the application performance 

degradation. With the introduction of the push phase, our 

hybrid approach decreases both of the perceivable 

downtime as well as the number of network faults that are 

quite high in case of post-copy approach. In addition, we 

have o introduced a histogram based learning phase which 

not only improves the performance metrics but also reduces 

the resource consumption of the source. This phase is 

introduced prior to the push phase that assists the migration 

daemon in restricting the transfer of the writable working 

set, during the push phase. Depending upon the availability 

of the CPU and network bandwidth, we incorporate a 

compression technique using a real-time Compression 

/decompression technique - as well as parallelize the push 

phase to utilize the unused bandwidth. We have 

implemented the hybrid approach on the top of 

QEMU/KVM and have demonstrated our results on the 

same. 

A. Hybrid Approach for Live Migration 

In this Section, we discuss the design of the basic hybrid 

approach along with the introduction of a new phase - 

learning phase, prior to the push phase and other 

optimizations incorporated in the push phase. The hybrid 

approach tries to utilize the network bandwidth optimally by 

a single transfer of the VM’s memory to the destination in 

the push phase followed by only transferring the device 

state’s along with the dirty bitmap in the stop-and-copy 

phase and then the dirty pages in the pull phase. Our 

approach helps us to achieve lesser downtime when 

compared to the pre-copy technique and drastic reduction in 

the perceivable downtime when compared to  the post-copy 

approach. We introduce the learning phase which comes 

prior to the push phase to estimate the WWS.  

B. Basic Hybrid Migration Algorithm 

The various phases of the basic hybrid migration 

algorithm are as follows: 

1) Push phase: The entire memory is transferred to the 

destination without suspending the VM. 

There are no multiple iterations and hence no multiple 

page retransmissions across iterations. 

If all the bytes in a page contain the same value, only 

single byte is transferred. 

2) Stop-and-copy phase: The VM is suspended and the 

dirty bitmap along with the device states are transferred 

to the destination. The dirty bitmap indicates the pages 

that got dirtied during the push phase. Then the VM is  

resumed at the destination. 

3) Pull phase: Whenever the VM accesses a page that got 

dirtied during the push phase, a major page fault gets 

generated which results in a network fault. This network 

fault is handled by retrieving the corresponding page 

from the source. The dirty bitmap transferred during the 

stop-and-copy phase is useful in deciding whether a 
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page fault can be resolved locally or requires a page 

transfer from the source. 

A page gets transmitted in the push phase and gets 

retransmitted again in the pull phase, only if it gets dirtied 

again. No pages get transmitted during the stop-and-copy 

phase. Therefore, a page gets transmitted at most twice. To 

minimize the number of pages that get transmitted twice, we 

introduce a learning phase before the push phase. 

 
Algorithm 1 Estimating WWS using adaptive histograms. 

1: sum   0:0 

2: for i    1 , nopages 

do 

3: hist[i]    αdb[i] + (1 -α )hist[i] 

4: sum   sum + hist[i] 

5: end for 

6: average   sum / nopages 

7: for i   1,  nopages 

do 

8: if hist[i] >= average then 

9: wwsapx[i]   1 

10: end if 

11: end for 

 

The following diagram shows Virtual Machine Migration 

flow 

 

 
Fig. 2. virtual machine migration flow. 

 

V. EXPERIMENTAL EVALUATION AND RESULTS 

 

 
Fig. 3. Total data transferred during different migration mechanisms. 

 

 
Fig. 4. Total migration time during different migration mechanisms. 

Here we present a detailed evaluation of the hybrid 

migration technique against the existing pre-copy and post-

copy approaches. Fig. 3, Fig. 4, Fig. 5 and Fig. 6 shows how 

pre-copy, post-copy, hybrid and hybrid-learning migration 

algorithms compare against each other on various 

workloads. The performance metrics used are application 

degradation, data transferred, migration time and downtime. 
 

 
Fig. 5. Downtime occurred in the stop-and-copy phase for different 

migration mechanisms. 
 

The following diagram shows Total migration time 

between the compression based hybrid learning and 

parallelized compression based hybrid learning. 
 

 
Fig. 6. Total migration time between the compression based hybrid 

learning and parallelized compression based hybrid learning. 

 

VI. CONCLUSION 

We have designed and implemented a hybrid migration 

scheme on the top of a KVM hypervisor, which not only 

utilizes both pre-copy and post-copy techniques, but also 

incorporates a novel learning phase prior to the push phase 

to estimate WWS. Our learning phase leads to effective 

utilization of the source machine CPU cycles and the 

available network bandwidth. Besides this, we also expedite 

the push phase with the introduction of the compression and 

parallel data transfer, drastically reducing the data transfer 

and total migration time for the push phase. 
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