


Abstract—Today, Infrastructure-as-a-service providers are

trying to minimize the cost of data center operations, while

maintaining the Service Level Agreements. This can be

achieved by one of the advanced state-of-the-art services of

virtualization - the live migration capability. Live migration is

defined as the process of transferring an active virtual machine

from one physical machine to another without any

disconnection. This is achieved by transferring all of the

encapsulated states of the VM from one host to another. It has

become an essential tool for efficient management of resources

in a data center by enabling server consolidation and load

balancing. There are two classical migration techniques,

namely - pre-copy and post-copy, which employ different

memory transfer mechanism during the offloading of a VM. In

this paper, we propose a novel hybrid live migration technique

by combining the existing pre-copy and post-copy approaches.

Compare to its counterparts, our hybrid technique is a fast,

efficient and a reliable migration technique.

Index Terms—Cloud computing, IaaS, virtualization, virtual

machine, data center, physical memory, load balancing, cluster,

resource allocation, writable working set.

I. INTRODUCTION

Virtualization [1], [2] has become one of the key

technologies in the era of Cloud Computing. It is loosely

defined as an abstraction of the computing resources that

can be achieved by either dividing the resources into

multiple computing environments or merging various

resource components into one. Various concepts and

techniques such as time sharing, hardware and software

partitioning, simulation, emulation can be used to apply, the

division of the resources, Thus, Virtualization technology

has enabled the efficient utilization of hardware resources

by abstracting away the underlying resources such as

processors, main memory, secondary storage and

networking. Today, with the help of Virtualization, the data

centers are continuously employing the virtualized

architecture to execute multiple applications that are

mapped on to the physical machines. This has been enabled

with the help of virtual machines that form the software

abstraction of a physical machine. This abstraction is

achieved by the various virtualization techniques [3], [4]

Manuscript received July 17, 2018; revised September 4, 2018.

Pvss Gangadhar is with Gitam University, Visakhapatnam, India (e-mail:

pvss.gangadhar@nic.in)
Ashok Kumar Hota is with F, NIC, MEITY, Govt. of India (e-mail:

ak.hota@nic.in).

M. Venkateswara Rao is with the Dept. of IT, Gitam University,
Visakhapatnam, India (e-mail: mandapti_venkat@yahoo.com).

V. Venkateswara Rao is with the Dept. of CSE, Sri Vasavi Engineering

College, Tadepalligudem, India (e-mail: venkatvedula2017@gmail.com).

such as:

 Full Virtualization: It is defined as the isolated

execution of the unmodified guest OS by simulating the

hardware resources including full instruction set,

input/output operations, interrupts, and memory access.

 Para Virtualization: It is defined as the isolated

execution of the guest OS with modified resources in

the form of hooks. The para virtualized interface is used

to decrease the performance degradation caused by the

time spent by the guest in performing certain operations

which are substantially more difficult to execute in a

virtual environment compared to a non-virtualized

environment.

 Hardware Assisted Virtualization: It is defined as the

execution of the guest OS with the capabilities provided

by the hardware, primarily from the host processor. The

resources can be either fully virtualized or para

virtualized in this case, Therefore, the cloud providers

that are providing the infrastructure resources

completely rely on Full Virtualization with hardware

assistance. This is because of the client requirements of

unmodified guests as a part of the service level

agreements (SLAs). Overall, Virtualization helps in

enabling agility, dynamism, adaptability [5,6] within a

data center. Therefore, VMs form the basic building

blocks of the Infrastructure-as-a-Service (IaaS) [6] with

benefits such as flexible resource provisioning,

monitoring and administration by the system

administrators. Resource provisioning allows the

provisioning of the infrastructure based resources either

at the start or during the life-cycle of a service [7]. At

the IaaS level, these resources consist of servers,

network, and self-service for the clouds. Server

provisioning, a part of resource provisioning, consists of

well defined configuration of the servers based on the

requirements of the client. It consists of the following

two types:

1) Static server provisioning: The configuration of the

VMs at the beginning of the life-cycle of a service

constitutes the static part of server provisioning. During

this process, a physical machine is selected from a pool

of physical nodes. Today, a VM is instantiated by using

the existing template based provisioning. A physical

machine is selected from a pool of physical nodes,

during this process, Today, the existing template based

provisioning is used to instantiate, a VM [8] before

executing other services provisioning depending upon

the requirements.

2) Dynamic server provisioning: From both the client’s

point of view and cloud provider, the dynamic resource

provisioning plays an important role in the allocation or

Performance of Memory Virtualization Using Hybrid

Live Migration of Virtual Machines

Pvss Gangadhar, Ashok Kumar Hota, M. Venkateswara Rao, and V. Venkateswara Rao

507

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

doi: 10.18178/ijmlc.2018.8.5.737

mailto:pvss.gangadhar@nic.in
mailto:ak.hota@nic.in
mailto:mandapti_venkat@yahoo.com

removal of the resources during the life-cycle of a

service. Currently, there are multiple ways to modify

the resources either horizontally or vertically.

a) Horizontal scaling: It refers to adding multiple

independent physical resources to provide more

resources in terms of computing power, memory, disk

space and even network bandwidth.

This form of scaling employs multiple instances of the

applications running on different physical servers.

b) Vertical scaling: It refers to the addition of the resources

on the same physical machine by adding CPUs,

memory or even disk for that particular application

residing on a single physical instance.

Currently, vertical scaling is not supported by cloud

providers since, it requires changes to the guest OS or VMs

running on the bare physical machines, which may result in

several security issues [9].

A VM, a software implementation of a physical machine,

always uses the same physical resources (CPU, memory and

I/O) utilized by a physical machine. At the beginning of the

life-cycle of a service, the resource-usage profile provided

by the client determines initial provisioning of a VM, these

profiles try to include the estimations to meet the future load

requirements. However, either due to the changes in the

workload conditions on VMs or load on the physical

machines can lead to ―hotspots‖ - not enough resources to

meet the load spikes / demands or ―coldspots‖ – inefficient

utilization of the provisioned resources [10]. Thus, to

mitigate these issues, live migration of VMs plays an

important role in the dynamic resources management of the

physical machines inside a data center.

Fig. 1. Load balancing scenario of the virtual machines for equal

distribution of the resources.

Live migration [11]-[13] is the process of transferring a

running virtual machine from one physical machine to

another over the network. This will alleviate the hotspots to

meet the SLA guarantee and handle coldspots for the

efficient utilization. Therefore, from a cloud provider’s

point of view, live migration plays a very important role in

the following scenarios:

 Server consolidation: Fig. 1 shows, with the help of

server consolidation, we can avoid server sprawl. The

VMs residing on a lightly loaded physical machines can

be packed onto a fewer physical machines while

maintaining the SLA. Not only will this lead to low

power usage by the data center but it will also lead to

higher resources usage by a host [14].

 Load Balancing: The primary purpose of load balancing

is to ensure the equal distribution of the resources

resulting in almost equal residual resource capacity

across the physical machines (Fig. 1). This can be

achieved via live migration of the VMs which will

mitigate the resource utilization discrepancy.

 Hotspot mitigation: During the life-cycle service of a

VM, if the resource utilization increases for some time

window, it will result in hotspot in the future. To

mitigate this issue, either additional resources are

locally allocated (vertical scaling) or globally i.e. among

the physical machines.

 If the local resources are not sufficient, VMs can be

migrated to another physical node to offload the

resources, thus resulting in hotspot mitigation .

 System maintenance: The physical resources need to be

physical repaired 2 replaced or removed to keep the

servers running smoothly inside a data center, Thus,

during the maintenance, the cloud provider will try to

migrate the VMs on to different physical machines

while adhering the SLAs [15].

A. Motivation

From the above section, it is quite clear that one of the

most important services of virtuaization is live migration.

From a cloud provider perspective, a VM migration should

be transparent enough to have an unnoticeable fast

migration by neither exposing the latency to the user nor

affecting the collocated VMs on the same physical machine.

However, existing migration approaches, such as pre-copy

[16] and post-copy [17], are inefficient for highly utilized

physical machines inside a data center [18]. These

approaches perform quite poorly on workloads with large

working set size or even memory intensive workloads.

Furthermore, they can incur significant performance

overhead by consuming huge amount of network bandwidth.

Besides that, the post-copy approach is more efficient than

the pre-copy is but does not provide any destination VM

guarantee during the migration period. This becomes

another concern from a cloud provider perspective.

II. RELATED WORK

A. Process Migration

Process migration [19] is defined as the migration of

processes from one computing environment to another.

With the introduction of clusters of workstations for

providing high performance facility, this concept gained

momentum Since it was quite possible to transfer files

between various machines in a distributed environment, this

introduced a demand for dynamic allocation as well as re-

allocation of the computational resources by migrating the

process’ execution states. With the introduction of

distributed computing, process migration showed various

benefits such as load balancing and fault-tolerance

However, because of the complexity involved in the

transparent migration of the processes, it did not achieve

widespread use.

B. Virtual Machine Migration

A VM is a software implementation of a physical

508

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

machine which emulates the behavior of a physical machine.

A running VM comprising of its states constitute as a

process visible to the host OS. This process is a special

process where every state information is in an encapsulated

format and can be extracted and used, whenever required,

by the host OS. This has been made possible by the virtual

machine monitor (VMM). Thus VM migration is a special

case of process migration where VMM plays an important

role in providing the required VM’s execution state, hence,

bringing transparency to the migration process.

C. Performance Metrics

The following metrics can be used to measure the

effectiveness of a live migration technique:

1) Performance degradation: The performance degradation

of an application running on the VM due to the

migration process.

2) Data transferred: The total data transferred during the

migration process. Although it is lower bounded by the

size of the VM and the device states, it can be larger

than that depending on the migration technique used.

3) Total migration time: The time taken to completely

finish all the three phases of migration: push, stop-and-

copy and pull phases. Since the resources allocated to a

VM on the source machine will be completely released

only after the total migration time, this is an important

metric.

4) Downtime: Downtime is the duration of the stop-and-

copy phase. During the downtime, the VM is neither

active on the source nor on the destination.

5) Perceivable Downtime: This is the time period during

which the VM is unresponsive after resuming execution

on the destination. This is a qualitative metric and is

only relevant to VMs whose state is externally visible

such as network based workloads.

III. POST-COPY LIVE MIGRATION

In this section, we propose the design of the post-copy

approach which tries to minimize the downtime in the pre-

copy and the application performance degradation for the

workloads with high dirtying rate. The post-copy approach

consists of the two approaches - stop-and-copy phase and

pull phase. It works as follows:

Stop-and-copy phase: As soon as the migration command

is issued, the VM is suspended. Then the VM’s states

excluding the main memory pages are transferred to the

destination. After this, the VM is immediately resumed for

execution on the destination, while the older memory States

of the VM at the source are present for the demand paging.

Pull phase: As the VM resumes its execution on the target

machine, every time it accesses a page that is not yet

transferred from the source, a page fault occurs. Then the

page fault handler retrieves the corresponding page from the

source over the network. Page faults of this kind are called

network page faults.

IV. HYBRID LIVE MIGRATION

In this section, we present the design, implementation and

evaluation of the hybrid live migration approach. This

approach consists of both the pre-copy and post-copy

approaches. The hybrid algorithm utilizes all the three

described phases of the process migration steps, namely -

push phase, stop-and copy phase and pull phase. Thus, our

basic hybrid approach tries to provide the best of two worlds

– pre-copy and post-copy, by outperforming the both of

these approaches in terms of the total data transfer, total

migration time, and the application performance

degradation. With the introduction of the push phase, our

hybrid approach decreases both of the perceivable

downtime as well as the number of network faults that are

quite high in case of post-copy approach. In addition, we

have o introduced a histogram based learning phase which

not only improves the performance metrics but also reduces

the resource consumption of the source. This phase is

introduced prior to the push phase that assists the migration

daemon in restricting the transfer of the writable working

set, during the push phase. Depending upon the availability

of the CPU and network bandwidth, we incorporate a

compression technique using a real-time Compression

/decompression technique - as well as parallelize the push

phase to utilize the unused bandwidth. We have

implemented the hybrid approach on the top of

QEMU/KVM and have demonstrated our results on the

same.

A. Hybrid Approach for Live Migration

In this Section, we discuss the design of the basic hybrid

approach along with the introduction of a new phase -

learning phase, prior to the push phase and other

optimizations incorporated in the push phase. The hybrid

approach tries to utilize the network bandwidth optimally by

a single transfer of the VM’s memory to the destination in

the push phase followed by only transferring the device

state’s along with the dirty bitmap in the stop-and-copy

phase and then the dirty pages in the pull phase. Our

approach helps us to achieve lesser downtime when

compared to the pre-copy technique and drastic reduction in

the perceivable downtime when compared to the post-copy

approach. We introduce the learning phase which comes

prior to the push phase to estimate the WWS.

B. Basic Hybrid Migration Algorithm

The various phases of the basic hybrid migration

algorithm are as follows:

1) Push phase: The entire memory is transferred to the

destination without suspending the VM.

There are no multiple iterations and hence no multiple

page retransmissions across iterations.

If all the bytes in a page contain the same value, only

single byte is transferred.

2) Stop-and-copy phase: The VM is suspended and the

dirty bitmap along with the device states are transferred

to the destination. The dirty bitmap indicates the pages

that got dirtied during the push phase. Then the VM is

resumed at the destination.

3) Pull phase: Whenever the VM accesses a page that got

dirtied during the push phase, a major page fault gets

generated which results in a network fault. This network

fault is handled by retrieving the corresponding page

from the source. The dirty bitmap transferred during the

stop-and-copy phase is useful in deciding whether a

509

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

page fault can be resolved locally or requires a page

transfer from the source.

A page gets transmitted in the push phase and gets

retransmitted again in the pull phase, only if it gets dirtied

again. No pages get transmitted during the stop-and-copy

phase. Therefore, a page gets transmitted at most twice. To

minimize the number of pages that get transmitted twice, we

introduce a learning phase before the push phase.

Algorithm 1 Estimating WWS using adaptive histograms.

1: sum  0:0

2: for i  1 , nopages

do

3: hist[i]  αdb[i] + (1 -α)hist[i]

4: sum  sum + hist[i]

5: end for

6: average  sum / nopages

7: for i  1, nopages

do

8: if hist[i] >= average then

9: wwsapx[i]  1

10: end if

11: end for

The following diagram shows Virtual Machine Migration

flow

Fig. 2. virtual machine migration flow.

V. EXPERIMENTAL EVALUATION AND RESULTS

Fig. 3. Total data transferred during different migration mechanisms.

Fig. 4. Total migration time during different migration mechanisms.

Here we present a detailed evaluation of the hybrid

migration technique against the existing pre-copy and post-

copy approaches. Fig. 3, Fig. 4, Fig. 5 and Fig. 6 shows how

pre-copy, post-copy, hybrid and hybrid-learning migration

algorithms compare against each other on various

workloads. The performance metrics used are application

degradation, data transferred, migration time and downtime.

Fig. 5. Downtime occurred in the stop-and-copy phase for different

migration mechanisms.

The following diagram shows Total migration time

between the compression based hybrid learning and

parallelized compression based hybrid learning.

Fig. 6. Total migration time between the compression based hybrid

learning and parallelized compression based hybrid learning.

VI. CONCLUSION

We have designed and implemented a hybrid migration

scheme on the top of a KVM hypervisor, which not only

utilizes both pre-copy and post-copy techniques, but also

incorporates a novel learning phase prior to the push phase

to estimate WWS. Our learning phase leads to effective

utilization of the source machine CPU cycles and the

available network bandwidth. Besides this, we also expedite

the push phase with the introduction of the compression and

parallel data transfer, drastically reducing the data transfer

and total migration time for the push phase.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, ―Xen and the art of
virtualization,‖ in Proc. the Nineteenth ACM Symposium on

Operating Systems Principles, pp. 164–177, New York, NY, USA,

2003.
[2] Amazon. Amazon Elastic Compute Cloud (Amazon EC2). (2012),

[Online]. Available: aws.amazon.com/ec2/

[3] B. Arnold, S. A. Baset, P. Dettori, M. Kalantar, I. I. Mohomed, S. J.
Nadgowda, M. Sabath, S. R. Seelam, M. Steinder, M. Spreitzer, and

A. S. Youssef, ―Building the ibm containers cloud service,‖ IBM

Journal of Research and Development, vol. 60, no. 2-3, pp. 9:1–9:12,
March 2016.

510

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

511

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

[4] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu, ―Vmflock:

virtual machine co-migration for the cloud,‖ in Proc. the 20th

International Symposium on High Performance Distributed
Computing, pp. 159–170, New York, NY, USA, 2011.

[5] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow et al., ―Optimizing

the migration of virtual computers,‖ in Proc. the 5th Symposium on
Operating Systems Design and Implementation, 2002, pp. 377–390.

[6] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, and J. E. B. Moss,

―Automatic heap sizing: taking real memory into account,‖ in Proc.
the 4th International Symposium on Memory Management, 2004, pp.

61–72.

[7] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M. Trubian,
―Resource management in the autonomic service-oriented

architecture,‖ in Proc. the 2006 IEEE International Conference on

Autonomic Computing, June 2006, pp. 84–92.
[8] S. S. Seiden, ―A guessing game and randomized online algorithms,‖

in Proc. the Thirty-Second Annual ACM Symposium on Theory of

Computing, 2000, pp. 592–601.
[9] A. Whitaker, M. Shaw, and S. D. Gribble, ―Denali: Lightweight

virtual machines for distributed and networked applications,‖ in Proc.

the USENIX Annual Technical Conference, 2002.

[10] T. Sherwood, E. Perelman, and B. Calder, ―Basic block distribution

analysis to find periodic behavior and simulation points in

applications,‖ in Proc. the 2001 International Conference on Parallel
Architectures and Compilation Techniques, 2001, pp. 3–14.

[11] K. Adams and O. Agesen, ―A comparison of software and hardware

techniques for x86 virtualization,‖ in Proc. the 12th International
Conference on Architectural Support for Programming Languages

and Operating Systems, New York, NY, USA, 2006, pp. 2–13.

[12] IEEE Std 1516.2-2010, IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA), Object Model Template

(OMT) Specification, 2010.

[13] P. Nagpurkar, C. Krintz, M. Hind et al., ―Online phase detection
algorithms,‖ in Proc. the International Symposium on Code

Generation and Optimization, 2006, pp. 111–123.

[14] T. Sherwood, S. Sair, and B. Calder, ―Phase tracking and prediction,‖
in Proc. the 30th International Symposium on Computer Architecture,

2003.

[15] Adaptive threshold-based approach for energy-efficient consolidation

of virtual machines in cloud data centers, in Proc. the 8th

International Workshop on Middleware for Grids, Clouds and e-
Science, December 2010, pp. 4:1–4:6.

[16] VMware, Inc. (2009). VMware vMotion. [Online]. Available:

www.vmware.com/files/pdf/VMware-VMotion-DS-EN
[17] A. J´avor and A. Fur, ―Simulation on the Web with distributed

models and intelligent agents,‖ Simulation, vol. 88, no. 9, pp. 1080–

1092, 2012.
[18] Oracle. (2012). VirtualBox. [Online]. Available: virtualbox.org

[19] B. Nicolae and F. Cappello, ―A hybrid local storage transfer scheme

for live migration of i/o intensive workloads,‖ in Proc. the 21st
international symposium on High-Performance Parallel and

Distributed Computing, New York, NY, USA, 2012, pp. 85–96.

[20] A Kochut and K. Beaty, ―On strategies for dynamic resource
management in virtualized server environments,‖ in Proc. 15th

International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, 2007, pp. 193–200.
[21] O. George. (May 22, 2006). Introduction to server virtualization.

TechRepublic. [Online]. Available:

http://www.techrepublic.com/article/introduction-to-server-
virtualization/6074941

[22] C. Christopher et al., ―Live migration of virtual machines,‖ in Proc.

the 2nd ACM/USENIX Symposium on Networked Systems Design
and Implementation, 2005.

[23] J. P. Rajan. (March 31, 2010). How Live Migration works in Hyper-V

R2. [Online]. Available:
http://blogs.technet.com/b/ranjanajain/archive/2010/03/31/how-live-

migration-works-in- hyper-v-r2.aspx

[24] Q. Ali. (2015). Scaling web 2.0 applications using Docker containers
on vSphere 6.0. [Online]. Available:

http://blogs.vmware.com/performance/2015/04/scaling-web-2-0-

applicationsusing-docker-containers-vsphere-6-0.html
[25] J. Anselmi, E. Amaldi, and P. Cremonesi, ―Service Consolidation

with End-to-End Response Time Constraints,‖ in Proc. 34th

Euromicro Conference on Software Engineering and Advanced
Applications, pp. 345–352, September 2008.

[26] M. Armbrust, A. Fox, R. Griffith et al., ―A view of cloud

computing,‖ Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[27] M. Assuncao, M. Netto, B. Peterson, L. Renganarayana, J. Rofrano,

C. Ward, and C. Young, ―CloudAffinity: A framework for matching

servers to cloudmates,‖ in Proc. 2012 IEEE Network Operations and

Management Symposium, April 2012, pp. 213–220.

[28] A. Schuster et al., ―Deconstructing amazon ec2 spot instance

pricing,‖ ACM Trans. Econ. Comput., vol. 1, no. 3, pp. 16:1–16:20,

Sept. 2013.

[29] A. Arcangeli, I. Eidus, and C. Wright, ―Increasing memory density by
using KSM,‖ in Proc. OLS ’09 the Linux Symposium, pp. 19–28, July

2009.

[30] F. Caglar, S. Shekhar, and A. Gokhale, ―A performance Interference-
aware virtual machine placement strategy for supporting soft realtime

applications in the cloud,‖ Institute for Software Integrated Systems,

Vanderbilt University, Nashville, TN, USA, 2013.
[31] P. Delforge. Energy efficiency, data centers — NRDC. [Online].

Available: http://www.nrdc.org/energy/data-center-efficiency-

assessment.asp
[32] B. H. Li, X. Chai, and L. Zhang, ―New advances of the research on

cloud simulation,‖ in advanced methods, techniques, and applications

in modeling and simulation,‖ Proceedings in Information and
Communications Technology, vol. 4, pp. 144–163, 2012.

[33] S. Jafer, Q. Liu, and G. Wainer, ―Synchronization methods in

parallel and distributed discrete-event simulation,‖ Simulation

Modelling Practice and Theory, vol. 30, pp. 54–73, 2013.

[34] R. Fujimoto, A. Malik, and A. Park, ―Parallel and distributed

simulation in the cloud,‖ SCS Modeling and Simulation Magazine, pp.
1–10, 2010.

[35] A. W. Malik, A. J. Park, and R. M. Fujimoto, ―An optimistic parallel

simulation protocol for cloud computing environments,‖ SCS M&S
Magazine, vol. 4, 2010.

[36] IEEE Std 1516.1-2010, IEEE Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA), Framework and Rules
Specification, 2010.

[37] IEEE Standard, 1516.1-2010—IEEE Standard for Modeling and

Simulation (M&S) High Level Architecture (HLA)—Federate
Interface Specification, 2010.

[38] Google. (2012). Google App Engine. [Online]. Available:

cloud.google.com [Nov 1, 2012].
[39] Microsoft. (2012). Windows Azure. [Online]. Available:

windowsazure.com

[40] IBM. (2012). SmartCloud. [Online]. Available:

ibm.com/cloudcomputing

[41] P. Mell and T. Grance, ―The NIST definition of cloud
computing(draft),‖ NIST Special Publication, vol. 800, p. 145.

[42] M. R. Hines and K. Gopalan, ―Post-copy based live virtual machine

migration using adaptive pre-paging and dynamic self-ballooning,‖ I
in Proc. the 2009 ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments, New York, NY, USA, 2009, pp.

51–60.
[43] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi. ―Enabling

instantaneous relocation of virtual machines with a lightweight vmm

extension,‖ in Proc. 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, 2010, pp. 73 –83, May 2010.

[44] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, ―Reactive

consolidation of virtual machines enabled by postcopy live
migration,‖ in Proc. the 5th International Workshop on Virtualization

Technologies in Distributed Computing, New York, NY, USA, 2011,

pp. 11–18.
[45] R. Ho, C.-L. Wang, and F. C. M. Lau, ―Lightweight process

migration and memory prefetching in openmo six,‖ in Proc. IEEE

International Symposium on Parallel and Distributed Processing,
2008, pp. 1–12.

[46] KVM. (2012). Kernel-based virtual machine. [Online]. Available:

linux-kvm.org
[47] T. Newhall, S. Finney, K. Ganchev, M. Spiegel, ―Nswap: A network

swap module for linux clusters,‖ in Proc. the 9th European

Conference on Parallel Processing (Euro-Par), 2003, pp. 1160–1169.
[48] S. S. Pinter, Y. Aridor, S. Shultz, and S. Guenender, ―Improving

machine virtualization with ’hotplug memory’,‖ in Proc. 17th

International Symposium on Computer Architecture and High
Performance Computing, 2005, pp. 168–175.

[49] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. N. Bershad,

―Reducing tlb and memory overhead using online superpage
promotion,‖ SIGARCH Computer Architecture News, vol. 23, no. 2,

pp. 176–187, 1995.

[50] X. Shen, Y. Zhong, and C. Ding, ―Locality phase prediction,‖ in Proc.
11th International Conference on Architectural Support for

Programming Languages and Operating Systems, 2004.

[51] T. Sherwood, E. Perelman, B. Calder, ―Basic block distribution
analysis to find periodic behavior and simulation points in

applications,‖ in Proc. 2001 International Conference on Parallel

Architectures and Compilation Techniques, 2001, pp. 3–14.

http://www.nrdc.org/

512

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

[52] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott,

―Proactive fault tolerance for hpc with xen virtualization,‖ in Proc.

the 21st Annual International Conference on Supercomputing, pp.

23–32, New York, NY, USA, 2007.

[53] M. Nelson, B.-H. Lim, and G. Hutchins, ―Fast transparent migration

for virtual machines,‖ in Proc. the Annual Conference on USENIX
Annual Technical Conference, Berkeley, CA, USA, 2005, p. 25.

[54] R. Uhlig et al., ―Intel virtualization technology,‖ Computer, May

2005, vol. 38, no. 5, pp. 48–56.
[55] C. A. Waldspurger, ―Memory resource management in VMware ESX

server,‖ SIGOPS Operting Systems Review, vol. 36, pp. 181–194,

2002.
[56] P. Werstein, X. Jia, Z. Huang, ―A remote memory swapping system

for cluster computers,‖ in Proc. Eighth International Conference on

Parallel and Distributed Computing, Applications and Technologies,
pp. 75–81, 2007.

[57] D. Williams, H. Jamjoom, Y. H. Liu, H. Weatherspoon, ―Overdriver:

handling memory overload in an oversubscribed cloud,‖ in Proc. 7th
ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, 2011, pp. 205–216.

[58] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, ―Black-box

and gray-box strategies for virtual machine migration,‖ in Proc. the

4th USENIX Conference on Networked Systems Design &

Implementation, 2007, pp. 17–17.
[59] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss, ―CRAMM:

Virtual memory support for garbage collected applications,‖ in Proc.

the 7th Symposium on Operating Systems Design and Implementation,
2006, pp. 103–116.

[60] E. Zayas ―Attacking the process migration bottleneck,‖ SIGOPS

Operating Systems Review, vol. 21, no. 5, pp. 13–24, 1987.
[61] A. Zeileis, C. Kleiber, W. Kramer, and K. Hornik, ―Testing and

dating of structural changes in practice,‖ Computational Statistics &

Data Analysis, vol. 44, no. 109–123, 2003.
[62] X. Zhang, S. Dwarkadas, K. Shen, ―Towards practical page coloring-

based multi-core cache management,‖ in Proc. the 4th ACM

European Conference on Computer Systems, 2009.

P. V. S. S. Gangadhar is a scientist-D in NIC &

Ph.D Scholar. He is presently studying for a Ph.D at

the Department of Information Technology, Gitam

Institute of Technology, Gitam University,

Vishakapatnam, AndhraPradesh, India. His

research interests include e-governance, cloud
computing, fuzzy logic and data mining.

Ashok Kumar Hota is a scientist-F at NIC,
MEITY, OSU, Bhubaneswar, Govt of India. His

research interests include e-governance, tribal

informatics, cloud computing, data mining, and big
data analytics. He has published several papers in

International conferences journals.

Mandapati Venkateswara Rao is a professor at the

Department of Information Technology, Gitam
Institute of Technology, Gitam University,

Vishakhapatnam, India. He got an M.Tech in CST

and a PhD in robotics from Andhra University. His
research interests includes robotics, cloud computing

and image processing. He has published several

papers in international conferences and journals.

Vedula Venkateswara Rao is a professor at the

Department of Computer Science Engineering,

Srivasavi Engineering College, Tadepalligudem,
India. He received his master degree in computer

science engineering from Jawahar Lal Nehru

Technological University Kakinada; master degree in
information technology from Punjabi University,

Patiayala, India and PhD from Gitam University. His

research interests include cloud computing and
distributed systems, data mining, big data analytics and image processing.

He has published several papers in international conferences and journals.

