
Abstract—Software developers around the globe are actively

asking a question(s) and sharing solutions to the problems

related to software development on Stack Overflow - a social

question and answer (Q&A) website. The knowledge shared by

software developers on Stack Overflow contains useful

information related to software development such as feature

requests (functional/non-functional), code snippets, reporting

bugs or sentiments. How to extract the functional and non-

functional requirements shared by mobile application

developers on social/programming Q&A website Stack

Overflow has become a challenge and a less researched area.

To understand the problems, needs, and trend in the iOS

mobile application development, we evaluated the quality

requirements or non-functional requirements (NFRs) on Stack

Overflow posts. To this end, we applied Latent Dirichlet

Allocation (LDA) topic models, to identify the main topics in

iOS posts on Stack Overflow. Besides, we labeled the extracted

topics with quality requirements or NFRs by using the

wordlists to evaluate the trend, evolution, hot and unresolved

NFRS in all iOS discussions. Our findings revealed that the

highly frequent topics the iOS developers discussed are related

to usability, reliability, and functionality followed by efficiency.

Interestingly, the most problematic areas unresolved are also

usability, reliability, and functionality though followed by

portability. Besides, the evolution trend of each of the six

different quality requirements or NFRs over time is depicted

through comprehensive visualization.

I. INTRODUCTION

Requirements Engineering (RE) plays a vital role in the

success of any software development process. RE is quite

challenging, and there are many activities associated with it

that are required to be addressed properly in every software

development life cycle. Requirements need to be properly

elicited, stated, verified & validated, and maintained as

needed [1]-[4]. In the recent years, the RE community

started considering the user feedback available on different

social media and online platforms as one of the potential

sources of user requirements. These social media and online

platforms include Stack Overflow Q&A community [5],

Twitter, issue tracking systems, and mobile application

stores like Google, and Apple [6].

Typically, software requirements are of two types:

Manuscript received July 17, 2018; revised September 19, 2018. This

work was supported by the National 863 Project, China, under Research
Grant 2015AA015404.

The authors are with School of Computer Science & Technology,

Beijing Institute of Technology, Beijing, 100081, China (e-mail:
fengchong@bit.edu.cn, 2220170592@bit.edu.cn).

functional requirements (FRs) and non-functional

requirements (NFRs) or quality requirements. Concerning

the first type, new FRs can be elicited directly from a user

through software feature requests [7]. The second type of

software requirements (NFRs or quality requirements) can

be extracted from the user content shared on different social

media platforms like Stack Overflow Q&A site, Twitter, and

feedback on different mobile application stores may be of

interest. Since users are directly influenced by different

NFRs/quality characteristics, e.g., usability, performance

efficiency, and security. It is highly probable that the content

shared on Stack Overflow posts contain statements about

mobile application development, tools, and product qualities

[6].

The research effort on NFRs or quality requirements is

significant, as they are vital to the success of software

product development. These NFRs are the architectural

drivers [8], and inadequately addressing them will mostly

result in project failure and increase in rework cost [1], [4].

Thus, NFRs should be addressed in early stages of any

software development to avoid any underlying problems.

However, eliciting entirely complete and precise set of

NFRs or quality requirements is challenging [9], [10].

The recent years have witnessed an enormous growth in

usage of mobile devices. Consequently, this rapid interest

has drawn mobile application developers’ attention too

recently. The research shows that mobile application

development is entirely different from traditional software

development due to diversity in development practices, tools,

evolving user needs, and platforms [11], [12]. Some of the

research studies considered the issues faced by mobile

application developers (e.g., [11], [13]-[15]), and others

have focused on general software developers issues (e.g. [5],

[16]-[19]). However, all of these studies are either too broad

or lacks explicitly classification of the iOS mobile

application development issues with the ISO9126 quality

model.

Thus, in this empirical research study, we set out to

determine whether user content shared on Stack Overflow

can also be a useful source of statements to support the

elicitation of NFRs or quality requirements about mobile

application development. We specifically restrict the scope

our study to iOS mobile application development only. We

have formulated the following research questions which will

be addressed in this empirical study:

RQ1: What are the most important non-functional

requirements discussed in all iOS discussions on Stack

Overflow?

RQ2: What are the most important non-functional

requirements discussed in unanswered iOS Stack Overflow

posts?

An Empirical Study on How iOS Developers Report

Quality Aspects on Stack Overflow

Arshad Ahmad, Kan Li, Chong Feng

, and Tingting Sun

501

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

doi: 10.18178/ijmlc.2018.8.5.736

Index Terms—Non-functional requirements (NFRs), quality

requirements, iOS, latent dirichlet allocation (LDA), stack

overflow.

mailto:fengchong@bit.edu.cn

RQ3: What is the trend of the non-functional

requirements over time in all iOS Stack Overflow posts?

The research questions aim to identify the important

NFRs or quality requirements discussed on Stack Overflow

related to iOS mobile application development. We use huge

scale of iOS posts data available on Stack Overflow to

investigate not only the most the important NFRs along with

their trend but also the common problems faced by iOS

developers. Since Stack Overflow is daily used by thousands

of experienced developers and their discussions trends

mostly represents the current needs of users and market

trends. This will ultimately help 1) iOS developers to know

what are the most important NFRs and issues that needs to

be addressed first so that they can plan for them accordingly,

2) the evolution of NFRs and developers interests will aid

iOS platform providers in providing more desired

development support (e.g., offer a new API), 3) the

evolution of NFRs trend will also help iOS developers,

managers and vendors in comprehending the usage history

of their products, and 4) assist software engineering

academics and industry in identifying the problematic areas

for iOS developers that needs further research and attention.

The remainder of this paper is organized as follows:

Section II describes the data and research approach used for

this study. The results and discussion of the study are

explained in Section III. Finally, Section IV provides the

conclusion and point out avenues for future research.

II. DATA AND APPROACH

In this section, we describe how we carried out our study

in three steps. At firstly, we extracted the iOS posts data

from Stack Overflow, and then applied some preprocessing

steps on the extracted data. Then, we applied topic model

Latent Dirichlet Allocation [20] to extract the topics of the

corpus. In the last step, we match and label the topics with

the identified NFRs through the wordlists defined by [21],

especially suitable for the domain of software engineering.

Step 1: Extract and select SO posts: To address the

research questions of our study, we extracted the posts and

comments provided by a programming/social Q&A website

Stack Overflow
2
 from 31

st
 July 2008 up to 31

st
 August 2017.

The Q&A on Stack Overflow consists of a diverse range of

questions about software development including mobile

application development. These Q&A discussed by

developers can be seeking a solution to a problem,

knowledge sharing and reporting missing feature in some

development tool. We used the Python library Beautiful

Soup
3
 to extract only those posts tagged ”iOS,” totaling

about 525K posts and 985K comments. To address the RQ1,

we mainly used two types of corpus: the “title” & “body” of

iOS posts combined with the “text” of the comments and the

other type only have the “title” and “body” of the iOS posts.

We compare the outcomes of the two types of corpus. For

addressing RQ2, we only extract the “title” and “body” of

the unanswered questions from iOS posts totaling

approximately 228K. For addressing RQ3, we utilize both

2 https://archive.org/details/stackexchange
3 https://www.crummy.com/software/BeautifulSoup/

the “title” and “body” of iOS posts and the “title” and

“body” of the unanswered questions. Fig. 1 depicts the

details of the data used of each month (period), the x-axis

represents the months, and the y-axis represents the number

of posts or comments, the highest among them reaches

approximately 18K.

Fig. 1. Overall dataset used.

After successful desired data extraction, we preprocess

the data following these two steps. First of all, we remove

all those periods (months) which have posts less than 50,

since fewer posts are unusable for the sake of analysis. For

example, in August 2008, there are only three posts.

Afterwards, to further refine the information in the data we

performed tokenization, stop words removal, and case

unification respectively.

Step 2: LDA Topic Modeling: In this research study we

use and construct the topic model LDA by sklearn [22]. The

topic model LDA is applied to extract the topics of our

corpus. In LDA topic model, the topic represents the

conditional probability distribution of words in a particular

vocabulary. To apply LDA, it needs specific inputs, i.e., the

desired number of topics parameter K, the desired number

of iteration N to be carried out, and the Dirichlet parameter.

For our experimental work, we selected the number of

topics parameter K=20 for each of the specified periods

since same words from different topics are not so frequent

when the value of K=20. However, the value of K=20 is not

necessarily the best choice but proved to be an appropriate

value for NFRs analysis as reported in [21], [23]. Besides,

we did not change the default settings for N=1000, α= 0.05,

and β=0.05. In our experiment, the outcome of the LDA is a

matrix M where rows represent the K topics of posts or

comments, and the columns represent the words of the

topics respectively.

Step 3: Perform Labeling of Topics with NFRs: To do

NFRs analysis, we annotate the extracted topics with NFRs

labels by using the ISO9126 quality model as the taxonomy

of quality requirements or NFRs. We lack evidence to claim

that ISO9126 quality model is the only correct and

comprehensive standard available. Nevertheless, the

ISO9126 quality model is the most commonly practiced

software quality model at present. Thus, we deem it enough

representatives to use for this research. We linked each of

the quality requirement or NFR with a list of keywords,

known as wordlists. The word list used in this study is the

exp2; especially suitable for the domain of software

engineering [21]. We match the words of the extracted

502

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

topics with the words in the wordlists. If a match is

identified between them, then the topic is labeled with the

corresponding NFRs or quality requirement. In case no

match is identified between them, then the topic is labeled

with “none” since the topic is not related to any of the

quality requirement or NFRs. Nevertheless, the extracted

topics can also be labeled with one or more quality

requirement or NFRs.

Step 4: Validating the Corpus: To assess our automated

annotated results, four Ph.D. students in software

engineering were invited to do the task of labeling the topics

manually as a validation set. The participants were asked to

label one year data (January 2016-December 2016), and

they finished the labeling task in about one week. The

participants looked at the extracted topics of each period

(month) and the words of each topic. Then, the participants

suggested the suitable label (using one or more NFRs from

ISO9126) to the topic based on their knowledge and

expertise in software engineering domain. Nevertheless, the

participants can also label the extracted topics with “none” if

they deem there is no NFRs related or linked to the topics.

Besides, all of the participants did not annotate each other’s

annotations. During the labeling task, the participants also

utilize the original data as supplementary information

associated with the extracted topics being annotated.

Moreover, we are quite confident that the manual labeling of

topics performed by the participants is correct since they all

have enough background and expertise in software

engineering domain.

III. RESULTS AND DISCUSSION

A. Accuracy of the Evaluation

To assess the accuracy of our NFRs labeling, we

primarily use the well-known metrics of recall and precision

rates for our study. We chose one-year post data from

January 2016 to December 2016 as the testing set and run

our approach on it. Then, we compare the outcome with the

results generated through manual validation set. The

calculation criteria for recall and precision rate are given in

Equation 1 and 2 respectively.

RecallRate = Ndetected / Ntotal (1)

PrecisionRate = Ndetected / Ndetectedall (2)

where Ndetected represents the number of precise NFRs

labels (i.e., the NFRs or quality requirements label

corresponds the manual annotation), Ntotal represents the

whole number of the manual NFRs labels in our testing set,

Ndetectedall represents the whole number of NFRs labels

(both correct and incorrect) generated in the experimental

results through our automatic approach. For instance, if our

approach labels a topic with usability, reliability, and

portability, and in the manual validation set the participants

labels the topic as usability, reliability, and functionality.

Then, in such case the value of Ndetected is 2 (usability and

reliability), the value of Ntotal is 3 (usability, reliability, and

functionality), and finally, the value of Ndetectedall is 3

(usability, reliability, and portability). After calculating, the

values of recall rate are 2/3 approximately 66.7%, and the

precision rate is 2/3 approximately 66.7% respectively.

Fig. 2 depicts the calculated recall rate and the precision

rate for each period (month) of our results. It is evident in

Fig. 2 that the highest recall rate is 82% and the precision

rate is 81% respectively of our study results averaging

approximately 77% and 70.33% respectively.

Fig. 2. Calculated percentage of recall and precision rate of NFRs labeling.

B. Results of RQ1

Fig. 3 depicts the rate of six different quality requirements

or NFRs using the posts data of iOS. The x-axis represents

the rate or value of the six corresponding quality

requirements or NFRs (i.e., the extracted topics labeled by

the six corresponding quality requirements or NFRs divided

by the total number of extracted topics). The y-axis

represents the six respective quality requirements or NFRs.

It is evident in Fig. 3 that the labels with the highly frequent

topics are usability, reliability, and functionality. Efficiency

and portability are less frequent NFRs or quality

requirements. We did not see the maintainability NFRs. This

trend of six different quality requirements or NFRs shows

that the mobile application developers are more concerned

about usability, reliability, and functionality. It also reveals

that they come across several problems of usability,

reliability, and functionality when developing iOS

applications. On the other hand, they are less concerned or

face fewer problems of efficiency, portability, and

maintainability during application development. Besides,

we also examine the rate of different NFRs in posts with

user comments. The results revealed that the rate of different

quality requirements or NFRs is almost similar to the results

of using posts only, i.e., the highly frequent topics in

descending order are usability, reliability, functionality,

efficiency, portability, and maintainability (none).

Fig. 3. Rate of distribution of different NFRs in posts only.

C. Results of RQ2

To address the RQ2, we primarily focused on all

503

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

unanswered iOS questions on Stack Overflow with the aim

to investigate the unsolved critical problematic domains. It

in return will be more helpful for the iOS application

developers to highlight the most challenging issues they face

during development. Fig. 4 depicts the distribution rate of

six quality requirements or NFRs about all iOS unanswered

or unaddressed questions. It is evident in Fig. 4 that the most

frequent topics remain unresolved or unanswered are labeled

with usability, reliability, functionality, and portability. The

less frequent topics remain unanswered are labeled with

efficiency and maintainability being the least frequent

among all. It means that the iOS developers are facing

continuous critical problems in handling usability and

reliability issues. It means that more focus should be put on

usability and reliability of iOS development since

developers often unable to handle them. The issues of

functionality and portability are comparatively less frequent

but still needs attention to have successful iOS development.

The least frequent are efficiency and maintainability

problems in iOS development developers face, or they can

better handle it easily those issues. In future, more research

is needed in this area to investigate in detail the nature of all

those critical issues so that the academic and industry should

come up with possible solutions.

Fig. 4. Rate of distribution of different NFRs in unanswered posts or

questions.

D. Results of RQ3

To address RQ3, we only use posts data because the

outcome of RQ1 determined that using posts alone and

using posts along with the comments have same results.

Through our approach, we label the extracted topics of iOS

posts, and revealed that most of the topics are labeled with

one NFR is approximately 62.39%, more than one NFR are

approximately 17.93%, and approximately 19.68% are

labeled with “none.”

Fig. 5(a) & Fig. 5(b) depicts the gray-scale image of the

six different quality requirements or NFRs frequencies over

the period. The cell corresponds to a 30-day period. The

higher intensity or deep color of a grid cell represents lowest

label frequency, i.e., less count of all NFRs over the passage

of time. The lighter intensity of grid cell represents the

higher frequency of NFRs over the passage of time. Fig. 5(a)

& (b) not only depicts visually the evolution of each of the

six different NFRs with the passage of time but also depicts

the trend of hot or not hot NFRs in a particular timeline. Fig.

5(a) depicts the outcomes of the iOS posts, and it is evident

that almost all of the quality requirements or NFRs evolve

except maintainability. Nevertheless, the trends of the NFRs

are entirely different from one another. The trend of

usability is almost entirely stable over the whole period

having the highest frequency. The frequency of reliability is

higher at the start but then its trend decrease over the time.

It is also evident that efficiency, functionality, and

portability frequency trends are up and down over the time.

The frequency of maintainability is least among all and stays

constant from the start until the end of the period.

Fig. 5(b) depicts the outcomes of the unanswered iOS

questions on SO. The frequency trend of efficiency,

functionality, portability, and reliability is quite low at the

start but then increase with the passage of time. The

frequency trend of usability is the highest at the start and

remains quite stable except a slight decrease is observed at

the end. The frequency trend of maintainability is again the

least (almost none) among all NFRs. To summarize the

findings of both Fig. 5(a) and Fig. 5(b), it is evident that the

trend of reliability, portability and functionality are

interestingly growing not only in the iOS posts but also in

the unanswered iOS questions. The trend of usability is

having the highest frequency and is stable on both iOS posts

and unanswered iOS questions. All these findings hints that

reliability, portability, and functionality will raise the

attention of the iOS developers and the usability will most

probably stay hot in the coming years.

(a) iOS Posts

504

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

(b) Unanswered iOS Posts

Fig. 5. Rate of frequencies of NFRs over time.

IV. CONCLUSION AND FUTURE WORK

We used LDA topic model to identify and evaluate the

NFRs discussed iOS development on Stack Overflow posts.

Our findings revealed that iOS developers focus mostly on

usability, reliability, and functionality. They are found

comparatively to be less focused on efficiency and

portability, while maintainability is almost neglected. The

outcomes of using posts alone in comparison with the output

of using posts along with comments yielded similar results.

The most problematic areas left unresolved lies in usability,

reliability, and functionality, which hints of more work in

future these areas to improve iOS development. The trend

analysis of the six different quality requirements or NFRs

yielded that they change over time. The evolution of NFRs

like reliability, portability, and functionality will raise the

attention of the iOS developers, and the usability will most

probably stay hot in the coming years. Moreover, all these

findings suggest that the content shared on Stack Overflow

posts should be considered more thoroughly and

thoughtfully as an elicitation source for NFRs or quality

requirements. In future, we welcome other researchers and

would like to focus deeply on specific iOS development tool

to analyze the needs and problems of iOS developers.

REFERENCES

[1] M. A. Alnuem, A. Ahmad, and H. Khan, "Requirements
Understanding: A challenge in global software development,

industrial surveys in kingdom of saudi arabia," in Proc. International

2012 IEEE 36th Annual Computer Software and Applications
Conference (COMPSAC), Izmir, 2012, pp. 297-306.

[2] H. Khan, A. Ahmad, C. Johansson, and M. A. Alnuem,

"Requirements understanding in global software engineering
industrial surveys," in Proc. 2011 International Conf. on Computer

and Software Modeling (IPCSIT), 2011, pp. 167-173.

[3] H. Khan, A. Ahmad, and M. A. Alnuem, "Knowledge management: A
solution to requirements understanding in global software

engineering," Research Journal of Applied Sciences, Engineering and

Technology, 2012.
[4] A. Ahmad and H. Khan, "The importance of knowledge management

practices in overcoming the global software engineering challenges in

requirements understanding," Master Thesis Research, Blekinge
Institute of Technology, Sweden, 2008.

[5] C. Treude, O. Barzilay, and M.-A. Storey, "How do programmers ask

and answer questions on the web?: Nier track," in Proc. 2011 33rd
International Conference on Software Engineering (ICSE), 2011, pp.

804-807.

[6] E. C. Groen, S. Kopczy ńska, M. P. Hauer, T. D. Krafft, and J. Doerr,

"Users − The hidden software product quality experts? A study on
how app users report quality aspects in online reviews," in Proc. IEEE

25th International Requirements Engineering Conference, 2017, pp.
80-89.

[7] E. Guzman and W. Maalej, "How do users like this feature? A fine

grained sentiment analysis of app reviews," in Proc. IEEE
International Conference on Requirements Engineering, 2014, pp.

153–162.

[8] D. Ameller, C. Ayala, J. Cabot, and X. Franch, "Non-functional
requirements in architectural decision making," IEEE Software, vol.

30, pp. 61–67, 2013.

[9] L. Chung and J. C. S. do Prado Leite, "On non-functional
requirements in software engineering," Conceptual Modeling:

Foundations and Applications, 2009.

[10] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki,
"Nonfunctional requirements in industry-three case studies adopting

an experience-based nfr method," in Proc. IEEE International

Conference on Requirements Engineering, 2005, pp. 373–382.
[11] C. Rosen and E. Shihab, "What are mobile developers asking about?

A large scale study using stack overflow," Empirical Software

Engineering, vol. 21, pp. 1192-1223, 2016.
[12] A. Ahmad, C. Feng, M. Tao, A. Yousif, and S. Ge, "Challenges of

mobile applications development: Initial results," in Proc. 8th IEEE

International Conference on Software Engineering and Service
Science, Beijing, China, 2017, pp. 464-469.

[13] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, "An exploratory

analysis of mobile development issues using stack overflow," in Proc.
the 10th Working Conference on Mining Software Repositories, 2013,

pp. 93-96.

[14] M. Rebouc a̧s, G. Pinto, A. Serebrenik, and F. Castor, "An empirical
study on the usage of the swift programming language," in Proc.

IEEE 23rd International Conference on Software Analysis, Evolution,

and Reengineering, 2016, pp. 634-638.
[15] I. K. Villanes, S. M. Ascate, J. Gomes, and A. C. Dias-Neto, "What

are software engineers asking about android testing on stack

overflow?" SBES, 2017, pp. 104-113.
[16] A. Barua, S. W. Thomas, and A. E. Hassan, "What are developers

talking about? An analysis of topics and trends in stack overflow,"

Empirical Software Engineering, vol. 19, pp. 619-654, 2014.
[17] J. Zou, L. Xu, W. Guo, M. Yan, D. Yang, and X. Zhang, "Which non-

functional requirements do developers focus on? an empirical study

on stack overflow using topic analysis," in Proc. 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories, 2015, pp.

446-449.

[18] G. Pinto, W. Torres, and F. Castor, "A study on the most popular
questions about concurrent programming," in Proc. the 6th Workshop

on Evaluation and Usability of Programming Languages and Tools,

2015, pp. 39-46.
[19] K. Bajaj, K. Pattabiraman, and A. Mesbah, "Mining questions asked

by web developers," in Proc. the 11th Working Conference on Mining

Software Repositories, 2014, pp. 112-121.
[20] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation,"

Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003.

505

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

506

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

[21] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos,

"Automated topic naming to support cross-project analysis of

software maintenance activities," in Proc. 8th Working Conference on
Mining Software Repositories, 2011.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel et al., "Scikit-learn: Machine Learning in Python," Journal of
Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[23] A. Hindle, M. W. Godfrey, and R. C. Holt, "What’s hot and what's

not: Windowed developer topic analysis," in Proc. IEEE International
Conference on Software Maintenance, 2009, pp. 339–348.

Arshad Ahmad received his MS degree in software

engineering from Blekinge Institute of Technology,

Sweden in 2008. He is currently a PhD student at
School of Computer Science and Technology, Beijing

Institute of Technology, China. His research interests

include requirements engineering, text mining,
sentiment analysis and machine learning.

Kan Li received his PhD degree in computer science

from Beijing Institute of Technology, China in 2003.

He is currently a professor of computer science and
technology in Beijing Institute of Technology, Beijing.

He has published over 40 technical papers in peer-

reviewed journals and conference proceedings. His
research interests include machine learning, data

mining, and distributed systems.

Chong Feng received his PhD degree in computer

science from the University of Science and

Technology of China, Hefei, in 2005. Now he is an

associate professor of computer science and

technology in Beijing Institute of Technology, Beijing.

His current research interests focus on social media
processing, information extraction, and machine

translation.

Tingting Sun received her bachelor's degree in

computer science from the University of Shenyang,
Shenyang in 2014. Currently, she is a master student at

the School of Computer Science and Technology,

Beijing Institute of Technology, Beijing. Her research
interests focus on natural language processing,

information extraction, and information retrieval.

