



Abstract—The distributed database system is the combination

of two fully divergent approaches to data processing: database

systems and computer network to deliver transparency of

distributed and replicated data. The key determination of this

paper is to achieve data integration and data distribution

transparency, study and recognize the problems and approaches

of the distributed database system. The distributed database is

evolving technology to store and retrieve data from several

location or sites with maintaining the dependability and

obtainability of the data. In the paper we learn numerous

problems in distributed database concurrency switch, design,

transaction management problem etc. Distributed database

allows to end worker to store and retrieve data anywhere in the

network where database is located, during storing and accessing

any data from distributed database through computer network

faces numerous difficulties happens e.g. deadlock, concurrency

and data allocation using fragmentation, clustering with

multiple or single nodes, replication to overcome these

difficulties it is essential to design the distributed database

sensibly way.

Index Terms—DDBMS, network, DDBMS rules, problems,

approaches, PCDM, SCDM, DDA.

I. INTRODUCTION

A logically interconnected group of collective data,

materially distributed over a computer network or a system

contains ofa group of sites linked together via

communications network, in which each site is a database

structure site where all the sites allow to work together, so that

a user at any site can access data anywhere in the network

where data stored at the user's own site that looks like one

centralized database to the end user. Thus, instead of having

one central database tolerate the entire load, it is shared by a

collection of machines/computers over the communication

networks or medium. A set of server machines working in

synchronization to provide the desires to numerous users

where these machines are connected to each other either

through the wireless connection or through various

communication media that serve data transfer at high rate

forming a distributed database system. In the distributed

system the processors used in those machines may differ from

Manuscript received July 15, 2018; revised September 6, 2018. The

outcome of this study in Distributed storage system was implemented by a

project work under School of Computing, The University of Southern

Mississippi, United States.

Md. Shohel Rana is with School of Computing, The University of

Southern Mississippi, Hattiesburg, MS 39406 USA (e-mail:

md.rana@usm.edu).

Mohammad Khaled Sohel and Md. Shohel Arman are with Daffodil

International University, Dhaka, Bangladesh (e-mail:

khaledsohel@daffodilvarsity.edu.bd, arman.swe@diu.edu.bd).

microcomputers to work position to minicomputers to

computers used in day to day life [1].

According to Paulina Borsook [2], Distributed databases

differ from traditional distributed processing where

collaborative computing also is done by remote access. In

distributed processing, users can work from remote locations,

where the application, the database management program and

parts of the data are located elsewhere. Micro-to-mainframe

links and time-sharing are examples, but in terms of

distributed database, the physical and logical location of the

software and data are inappropriate to users conduct business

without courtesy for the location of the database, knowing that

they will have access to that data.

The chapter is organized in the following way. In the

second chapter rules of the distributed database system are

presented and in chapter three has been discussed on

problems of DDBMS and four design approaches &

distributed database architecture is explained. Chapter six is

the conclusion.

II. RULES OF DISTRIBUTED DATABASE SYSTEM

A. Date’s Rule

To make the assessment of distributed databases easier,

Chris Date executive vice president of the Codd and Date

Consulting Group, San Jose, Calif came up to formulate

twelve directives plus a fundamental principle to describe

DDBS. Though no current DDBS follows to all of them, they

establish a convenient goal. The twelve rules are as follows

[2]-[4]:

Rule 0 - The Fundamental Principal: To the user, a

distributed database should look exactly like a non-distributed

database.

Rule 1 - Local Autonomy: Each local site can play a role

as an independent, autonomous, centralized DBMS with

having the responsibility to these vital DMB functions

(security, concurrency control, backup, and recovery).

Rule 2 - Central Site Autonomy: No site in the network

relies on a central site or any other site. All sites should have

the same competences, even though some sites may not

unavoidably exercise all these competencies at a specified

point in time.

Rule 3 - Failure Autonomy: The system is not affected by

node failures. The system is in the nonstop act even in the case

of a node failure or an enlargement of the network. In a

comparable manner, the DDBMS should continue to work if

new nodes are added.

Rule 4 - Location Autonomy (Transparency): The user

does not need to know the location of data stored physically to

Distributed Database Problems, Approaches and Solutions

— A Study

Md. Shohel Rana, Mohammad Khaled Sohel, and Md. Shohel Arman

472

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

doi: 10.18178/ijmlc.2018.8.5.731

mailto:khaledsohel@daffodilvarsity.edu.bd

retrieve those data and be able to act as if all the data are

stored locally.

Rule 5 - Fragmentation Autonomy: Data fragmentation

is crystal clear to the user, who perceives only one logical

database. The user does not need to know the name of the

database fragments to retrieve them.

Rule 6 - Replication Autonomy: Relations and fragments

can be represented at the physical level by multiple, distinct,

stored copies or replicas at distinct sites, transparent to the

user.

Rule 7 - Distributed Query Processing: A query should

be capable of being executed at any node in the DDBMS that

contains data relevant to the query. Many nodes may

contribute in the response to the user's query without the user's

being conscious of such contribution.

Rule 8 - Distributed Transaction Management: A

transaction may update data at numerous sites, and the

transaction is executed transparently.

Rule 9 - Hardware Independence: The distributed

database system can run on any kind of hardware platform

with all machines participating as equal partners where

appropriate.

Rule 10 - Operating System Independence: The

distributed database system can run on any kind of operating

system (e.g. Windows, Linux, MacOS, Android).

Rule 11 - Network Independence: The DDB and its

associated DDBMS should be capable of being implemented

on any suitable network platform.

Rule 12 - Database Independence: The system must

support any vendor's database product. That means the DDBS

should be able to work with different database if they have the

same interfaces.

B. Stonebraker’s Rule

Michael Stonebraker, professor of computer science at the

University of California, Berkeley and chief theoretician at

Relational Technologies Inc. proposed a set of six rules that

create a model for distributed databases. This set of rules

described below [2], [5].

Rule 1 - Retrieval Transparency: Transactions should be

able to be retrieved from any site, from which the transaction

was submitted. The equal consequences should be produced,

regardless of the site submitting the transaction.

Rule 2 - Update Transparency: Transactions should be

able to be updated form any site, regardless of the site from

which the transaction was submitted. The equal consequences

should be produced, regardless of the site submitting the

transaction.

Rule 3 - Scheme Transparency: Any authorized user can

issue, from any site, data-definition changes so that those

changes become observable everywhere.

Rule 4 - Performance Transparency: The performance

of any command at one site should be comparable to the

performance of that facility distributed from any further site.

Rule 5 - Copy Transparency: Distributed databases

should support redundant copies of database objects.

Rule 6 - Tool Transparency: All tools provided by a

vendor must support location transparency so that users need

not concern which tools can be used to manipulate remote

data.

By summarizing the two rules we can easily observe that

both emphasize the following goals:

Distributed database can be alike a non-distributed

database (Date Rules: 0, Stonebraker Rules: 6)

Independence of individual sites within the system from

other sites and non-dependence of the system on any one site

(Date Rules: 1-3, Stonebraker Rules: 1-2)

Transparency, to users, of the operations of the system and

the distribution of the data (Date Rules: 4-6, Stonebraker

Rules: 3-5)

Distributed nature of query and transaction processing

(Date Rules: 7-8, Stonebraker Rules: 1-5)

Independence of the system with respect to hardware,

operating systems, network software, and database

management systems (Date Rules: 9-12, Stonebraker Rules:

7).

III. PROBLEMS IN DISTRIBUTED DATABASE SYSTEM

A. The Ideal Situation

The distribution can be geographical or local in which

every single application should be able to work transparently

on data that is:

 spread across a variety of different DBMS's

 running on a variety of different machines

 supported by a variety of different operating systems

 connected by a variety of different communication

networks.

B. Problems Areas of DDBMS

The problems of Distributed database [6]-[8] can be

described as follows:

Distributed Concurrency Control: The integrity of the

database is maintained by specifying the synchronization of

access to the distributed database to manage concurrency

different locking techniques uses based on the mutual

exclusion of access to data.

Replication Control: Replication techniques only

applicable to distributed systems where a database is

supposed to be replicated if the whole database or a

percentage of it is copied and the copies are stockpiled at

dissimilar sites. Having more than one copy of a database, the

issue is continuing the communal uniformity of the copies

ensuring with all copies are identical schema and data.

Deadlock Handling: Numerous users request for the same

resources from the database if the resources are obtainable at

that time, then database allow permission for the resources to

that user if not obtainable the user has to wait until the

resources are released by another user. Sometimes the users

do not release the resources blocked by some other users.

OS Environment: To implement distributed database

environment a specific operating system is required as per

organizational requirements. The operating system plays an

important role to manage the distributed database because

sometimes it doesn‟t support for distributed database.

Transparent Management: The major problem area in

the distributed database where data located in numerous

locations and number of users are used that database. So, the

transparent management of data is important to maintain the

integrity of distributed database.

Security and Privacy: A great issue in the distributed

473

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

system that how to apply the security policies to the

interdependent system. Since distributed systems contract

with sensitive data and information ensuring with the strong

security and privacy measurement system exists. The

important issues in the distributed system are the protection of

distributed system assets together with the fundamental

resources, storage, communications and user-interface I/O,

higher-level compounds of these resources, like processes,

files, messages, display windows and more complex objects,

etc.

Resource Management: Resources are in different places

in the distributed system. Routing is an issue at the network

layer of the distributed system and at the application layer. To

cooperate with these resource in a distributed system.

IV. DESIGN APPROACHES AND DISTRIBUTED DATABASE

ARCHITECTURE

This section describes the approaches for designing

distributed database to meet the following goals [9]:

 to provide high performance

 to provide reliability

 to provide functionality

 to fit into the existing environment

 to provide cost-saving solutions

Importance of design Reasons of poor efficiency:

Hardware: 10%, DBMS: 15%, Database design: 25%,

Applications design: 55% and Costs of improvement:

Hardware: 10%, DBMS: 20%, Database design: 40%,

Applications design: 30% [9].

A. General Design Steps

 Group of logically-related communal data.

 Data split into fragments.

 Fragments may be replicated.

 Fragments/replicas assigned to sites.

 Sites connected by a communications network.

 Data at each site is under control of a DBMS.

 DBMSs grip local applications autonomously.

B. Top Down Approach

Fig. 1. Top-down approach.

This approach shown in the Fig. 1 is typically used during

the implementation of the distributed database from a

foundation. Starting from a requirement analysis phase with

the analysis of the company situation, defining problems and

restraints, defining purposes, and designing scope and

margins. The subsequent activities are conceptual design and

view design. The conceptual design deals with entity

relationship modeling and normalization focusing on the data

requirements [9]-[11].

C. Bottom Up Approach

This approach shown in Fig. 2 is used only when the

distributed database already exists, and we just add another

database to an existing setting. In this situation, we can

improve further features into the existing database [9]-[11].

Fig. 2. Bottom-up approach.

The top-down technique is more accepted if the design is

constructed from a scratch or the bottom-up technique is

typically used if the design matches to the existing systems or

some modules are yet ready.

V. SOLUTIONS IN DDBMS

According to Michael Stonebraker [12] Distributed

Database management systems offer advanced level user

support than conventional operating systems where numerous

operating system services examined with an opinion toward

their applicability to support of database management roles

including buffer pool management, file system, scheduling,

interposes management and communication with consistency

control. Task switching overhead solution for an operating

system to create a special scheduling class for the DDBMS

and other users by proposing model called „Server Model‟

became feasible if the operating system provided a message

facility which allowed n processes to originate messages to a

single destination process by its own scheduling and

multitasking.

C. Sunil Kumar [13] addressed security features when

escalating a distributed database. Several factors had been

considered during the choice between the object-oriented and

the relational data model where the most significant of these

issues were single and multilevel access controls (MAC),

protection and integrity maintenance. The choice didn‟t make

solely based on existing security features while defining

which distributed database replica be more secure for a

specific job. One did also request the effectiveness and

efficiency of the delivery of these features. In this paper, they

474

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

provided a solution for in Relational Database Protection by

proposing access control called SQL View, because Users can

read or modify data in their view, but the view prohibits users

from accessing data at a classification level above their own.

A user at a lower classification level will be unaware that data

exists at a higher classification level if the view is properly

designed. Another is Global Views which is fruitful at data

control to a lesser extent at implication protection because

their usage can be computationally costly, and the addition of

global views adds computational time to a process too long.

D. Cohen [14] addressed in this paper, in the setting of

transaction processing including multicopy updates,

concurrency control, and crash recovery. A variety of the

primary node idea for multicopy updates was implemented.

Data inconsistencies, formed by early termination of

transaction processing, are detected and removed. In this

paper, PCDM accepts three types of transactions. (i)

Customer subnetwork transactions issued by an administrator

to exercise control over the subnetwork. (ii) Process control

transactions issued by maintenance staffs to monitor and

control PCDM functionality. (iii) Response transactions

issued by SDCMS in response to PCDM initiated update

transactions. Having a uniform high priority process control

and response transactions processed before all new

subnetworks management transactions. Customer subnetwork

transactions are processed by three priorities specifying by the

administrators of each transaction submitted. If not specified,

a default priority is assigned by the system uniformly for all

customers. The SCDM accepts three types of transactions. (i)

Update transactions issued by PCDMS to create, remove, or

modify profiles in the SCDB. (ii) Process control transactions

issued by maintenance personnel to monitor and control

SCDM functionally. (iii) Enforcement transactions issued by

other processes to verify the capabilities of a user in the

context of a service request. Having a uniform high priority,

Process control and enforcement transactions are processed

before all new update transactions. All update transactions are

handled with a single-priority issued by the PCDM. The

update algorithm grips transactions to add, modify and

remove the profile. Each update transaction is routed to the

PCDM at the account's home service area.

The following components used for the Recovery

mechanism. (i) Duplex hardware provided to protect service

against single hardware failures. (ii) The operating system

maintains two copies of each data element on distinct disk

drives. (iii) The node creates to take backup copy of the

database for checkpointing. (iv) During transaction

processing, the system maintains on disk the lock table and a

completed update transaction log. The completed update

transaction log maintained at the physical page level and used

only by the recovery process. (v) Node maintained the

synchronization of transactions for restoring database

consistency at all levels. Using these recovery components

specified service restored in the following way:

PCDM‟s responsibility to

 Check file consistency on disk.

 If both disk copies are lost, install backup copy, and

internally run the completed update transaction log.

 Use the lock table to back out rashly terminated

transactions.

 Renew subnetwork management service.

 Detect variations during usual transaction processing to

notify node.

SCDM‟s responsibility to

 Check file consistency on disk.

 If both copies of the database on disk are lost, install

backup, and internally run the completed update

transaction log.

 Renew communication service.

 Inconsistencies detected during normal transaction

processing are promoted to a node.

Natalija K. [15] proposed a new deadlock detection

algorithm for the distributed database with dynamically

creating deadlock detection agents (DDAs) shown in figure 3

that is responsible for detecting deadlocks in one connected

component of the global wait-for-graph (WFG). Distribution

of information about the global WFG between different

agents, called DDAs for every cycle in the graph is the main

idea of the algorithm where one DDA have the complete

information about it. Each cycle goes to one linked section of

the universal WFG for detecting cycles by allowing

transactions to be associated with at most one DDA. Since

only one DDA detects deadlocks one transaction is involved

and the same deadlock will not be detected twice, which is a

characteristic problem another algorithm for distributed

deadlock detection encounter. The proposed algorithm

dynamically creates DDAs when they are needed. A DDA

starts detecting a deadlock each time it receives new

dependencies send to a DDA contain one transaction waiting

for a set of other transactions. Consequently, the waiting

transaction being a member of all cycles currently executing

as part of the WFG the DDA is responsible for. The deadlock

detection follows depth-first search, starting from the waiting

transaction. If a cycle is found, the DDA resolves it. At

present, this is done by choosing the youngest transaction

from the cycle to be terminated. If more than one cycle found

through the new dependencies, the transaction whose wait

dependencies newly arrived is terminated, it seems all cycles

get resolved.

Fig. 3. DDA structure.

In distributed databases replication control procedure used

to store numerous copies of data at different locations. The

problem with having numerous copies in multiple locations is

the overhead to maintain data reliability, predominantly

during update actions. To maintain mutually reliable data in

all sites, replication control procedures need to be

implemented. Some of the replication control algorithms

including (i) Master-slave replication control consists of is

one master site and „N‟ slave sites where a master algorithm

475

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

runs at the master site to detect conflicts and a copy of slave

algorithm runs at each slave site with two phases: transaction

acceptance/rejection phase and transaction application phase,

(ii) Distributed voting algorithm includes of „N‟ peer sites,

before starting execution a transaction all sites have to ensure

“OK”, (iii) Majority consensus where a transaction is

permitted to execute when a majority of the peers “OK”, (iv)

Circulating token where the transactions in the system are

serialized using a circulating token and executed accordingly

against every replica of the database [16], [17].

Among numerous algorithm Yuan Wei [18] proposed

dynamic replication control algorithm called ORDER

algorithm designed for gaining competence over replication

strategies by dynamically changing the update frequency and

update duration of replicas. When receiving a transaction, this

algorithm assesses the data needs of the incoming transaction

and creates data replicas for the transaction. It also registers

the update frequency and duration to the primary sites of these

replicas. This algorithm job is to register active replicas to

their primary sites from the receiving site also to push updates

to the active replicas at the extended frequencies requested by

the incoming transactions. When a local site acknowledges a

transaction, the algorithm computes the appropriate update

frequency and update duration for each remote data item

quantified by the transaction. The algorithm keeps track of all

transactions using the data replicas until they expire to

maintain the minimum update frequency for all active replicas.

The algorithm also requires to re-calculate the update

frequency of replicas accessed by an expiring transaction.

VI. CONCLUSION

The distributed database is one of evolving technology in

the research field and business organization. In this paper, we

learn rules of distributed database proposed by Date and

Stonebraker. After merging these two rules we figure out the

standard that follow can help in any distributed database

system to build a new model for distributed storage

environment. In this paper, we also discuss various problem

areas, approaches and numerous solutions of the distributed

database. The problem areas declared in the paper are very

useful while implementing distributed database so that

concurrency, deadlock, replication control, security, and

privacy is easily managed. In this paper, we also learn the

architecture of distributed database for implementing

distributed database system.

REFERENCES

[1] D. S. Hiremath and S. B. Kishor, “Distributed database problem areas

and approaches,” IOSR Journal of Computer Engineering (IOSR-JCE),

pp. 15-18, 2016.

[2] P. Borsook, “New pains, new gains: Distributed database solutions are

on their way,” Data Communication, March 1988.

[3] C. Date, “Twelve rules for a distributed database,” Computer World,

June 1987.

[4] C. J. Date, An Introduction to Database Systems, 5th ed., Reading, MA:

Addison-Wesley, vol. 1, 1990, ch. 23.

[5] M. Stonebraker, “The integration of rule systems and database

systems,” TKDE, vol. 4, no. 5, pp. 415-423, 1992.

[6] A. S Tanenbaum, “Distributed systems principles and paradigms,”

PHI.

[7] S. Ceri and G. Pelagatti, Distributed Databases: Principles and

Systems, McGraw-Hill Computer Science Series, 1984.

[8] A. B. Gadicha, A. S. Alvi, Vijay B. Gadicha, and S. M. Zaki,

“Top-down approach process built on conceptual design to physical

design using LIS, GCS schema,” International Journal of Engineering

Sciences & Emerging Technologies, vol. 3, issue 1, pp. 90-96, August

2002.

[9] Design of Distributed Databases. (December 12, 2017). [Online].

Available:

http://mazsola.iit.unimiskolc.hu/tempus/discom/doc/db/tema12.pdf

[10] L. Braz de Oliveira Macaferi, Top-Down Approach in Distributed

Databases, Barra Mansa, November 2007.

[11] S. K. Rahimi and F. S. Haug, A Distributed Database Management

System a Practical Approach, Wiley Publication.

[12] M. Stonebraker, Operating System Support for Database Management,

University of California, Berkeley.

[13] C. S. Kumar, J. Seetha, and S. R. Vinotha, “Security implications of

distributed database management system models,” International

Journal of Soft Computing and Software Engineering, vol. 2, no. 11,

2012.

[14] D. Cohen, “Implementation of a distributed database management

system to support logical subnetworks,” The Bell System Technical

Journal, vol. 61, no. 9, November 1982.

[15] N. Krivokapic, A. Kemper, and E. Gudes, “Deadlock detection in

distributed database systems: A new algorithm and a comparative

performance analysis,” The VLDB Journal, vol. 8, pp. 79-100, 1999.

[16] Distributed DBMS - Replication Control. (December 12, 2017).

[Online]. Available:

https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_r

eplication_control.htm

[17] B. Gavish and M. W. Suh, “Configuration of fully replicated

distributed database system over wide area networks,” Annals of

Operations Research, vol. 36, pp. 167-192, 1992.

[18] Y. Wei, A. A. Aslinger, S. H. Son, and J. A. Stankovic, “ORDER: A

dynamic replication algorithm for periodic transactions in distributed

real-time databases,” Department of Computer Science, University of

Virginia, USA.

Md. Shohel Rana was born in Sirajganj, Rajshahi,

Bangladesh, in 1987. He received his B.Sc. (Engg.)

and M.Sc. (Engg.) both in computer science and

engineering from the Mawlana Bhashani Science and

Technology University, Tangail, Bangladesh in 2010

and 2014 respectively. Currently he is pursuing his

Ph.D. in computational science under School of

Computing at The University of Southern Mississippi,

Mississippi, United States. His research area includes digital image

processing and computer vision, data science, machine learning, human

computer interaction, e-learning/remote learning, distributed database

system and web technology.

Mohammad Khaled Sohel was born in

Mymensingh, Bangladesh in 1972. He received his

M.S in management information system from

Daffodil International University, Dhaka, Bangladesh

in 2007. He pursued his B.Sc. (Hons.) in computing

and information systems from London Metropolitan

University, United Kingdom. Currently he is working

as an assistant professor in the Department of

Software Engineering under the Faculty of Science and Technology at The

Daffodil International University, Dhaka, Bangladesh. His research AREA

includes RFID technology, computer networks, distributed database system,

blockchain technology, information systems management.

Md. Shohel Arman is a lecturer and alumni of

Department of Software Engineering under Faculty

of Science & Information Technology in Daffodil

International University, Dhaka, Bangladesh. He is

an energetic and focused man since his student life.

Currently he is focusing on his interested research

area. His research interests are distributed database

system, machine learning, data mining, internet of

things (IOT), software security and management information system (MIS).

476

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018

