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Abstract—We have been conducting research on 

multi-dimensional data analysis. Because it is difficult to teach 

students of our laboratory the concept of multidimensional data 

processing, we are developing teaching materials to make them 

easier to understand that. In this paper, we described a method 

to solve 3-d puzzles using HOSVD, which is one of the methods 

of tensor decomposition, and proposed utilizing it to education. 

Specifically, we took up several kinds of 3-d puzzles and showed 

their solutions and scripts of R language. 

 
Index Terms—Multidimensional data processing, tensor 

decomposition, HOSVD, 3-d puzzles, understanding support. 

 

I. INTRODUCTION 

We have been worked to develop a precise and rapid 

decomposition method of multidimensional array [1] and to 

analyze multidimensional data, such as clinical data provided 

from a rehabilitation hospital, by using higher-order singular 

value decomposition (HOSVD) [2] and other decomposition 

methods for many years [3], [4]. Recently, it recognized in 

Japan that data analysis is a skill which needs to all students to 

learn [5]. Under this situation, we have started to teach our 

students multidimensional data analysis by using R language 

[6] in addition to basics of statistics and multivariate analysis. 

However, since the concept of multidimensional data and 

operations between the data are fairly complicated and 

difficult, it takes considerable time for students to understand. 

Moreover, because there are few reference books and 

teaching materials of those contents written in Japanese, we 

are instructing students earlier to perform calculations such as 

tensor decomposition of HOSVD using R language libraries. 

Therefore, we have created and proposed a system that 

displays the process of decomposition of HOSVD by CG and 

makes it easier for students to understand [7]. 

This time we got inspiration from the fact that 3-d puzzle 

creation, such as cube Sudoku, becomes popular [8] and then 

devised a method to teach multidimensional data processing 
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to students by solving the puzzle using HOSVD. By using this 

method for the education, it is thought that students can easily 

understand the concepts and calculations of multidimensional 

data. 

 

II. HOSVD 

A. 3-D Puzzle and Its Tensor Representation 

Firstly, we describe tensor representation of a 3-d puzzle. 

As shown in Fig. 1, the 3-d puzzle is a rectangular solid 

consisted of pilling up 321 III   cubes with a size of 111  . 

An example of a question for the puzzle is as follows [9]: 

[Question 1 (Drill Hole Puzzle)] 

In Fig. 1, digits on the visible faces, that is, front, top, and 

right face, of the puzzle denote the number of the 111   

cubes with holes drilled into the puzzle from the faces. Note 

that the holes are not drilled from opposite (invisible) faces of 

the puzzle. Find the number of undrilled 111   cubes in the 

puzzle. 
 

(End of Question) 
 

1

2

1-mode:

  

2-mode:   

3-mode:

  

 

  
   

 

  

 
Fig. 1. Example of 3-d puzzle. 

 

In this paper, to solve the questions of the above kind, we 

represent the 3-d puzzles as the higher-order tensors that 

means the multi-dimensional (more than or equal to three 

dimensions) arrays, where from the first- to the third-order 

tensors correspond to vectors, matrices, and 3-d arrays, 

respectively. 

Now, we explain the notation of third-order tensor by using 

Fig. 1. The puzzle of this figure can be expressed as a 

third-order tensor whose size is 333321  III . Each 

arrow illustrated in the figure shows so-called a mode, that is, 

from the 1-mode to the 3-mode represent the vertical, 

horizontal, and depth direction, respectively. Let A  be this 

third-order tensor, then it can be represented as )(
321 iiiaA , 

),,1;,,1;,,1( 332211 IiIiIi    by using indices ni  
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related to the n-modes )3,2,1( n , where 
321 iiia  denotes an 

),,( 321 iii th element of the tensor. Since each element 
321 iiia  is 

an 111   cube, in order to count the drilled cubes, the value 

given to each element is decided as follows: 0
321
iiia  (for 

drilled cube) or 1
321
iiia  (otherwise). 

For convenience of explanation, the front face with red 

diamonds on it is referred to as the 1-2 face in Fig. 1. Similarly, 

the top and right faces are expressed as the 2-3 face and the 

1-3 face, respectively. For these faces, the 1-2 face can be 

correctly expressed by the matrix )(
321 iiia , ;,,1( 11 Ii   

;,,1 22 Ii   3i  is fixed to 1) and the same expression for the 

others. 

B. HOSVD and Its Algorithm 

Higher-order singular value decomposition (HOSVD) is an 

extension of the matrix (second-order tensor) SVD to the 

higher-order tensor. This decomposition method is widely 

applied in the fields of signal processing, image processing, 

pattern recognition, data analysis, etc. [e.g., 10, 11]. This time, 

we thought that the above-mentioned 3-d puzzles can be 

solved by applying the n-mode matrix unfolding, which is an 

important part of the procedure for computing the HOSVD, 

and that this calculation process is effective for teaching 

students the principle of that decomposition. Now, we 

describe an algorithm for the HOSVD, but the details of the 

n-mode matrix unfolding will be done in the next subsection. 

Please note that here, since the 3-d puzzles are expressed by 

third-order tensors, we only describe the case of those tensors 

in this paper. 

HOSVD of a third-order tensor A  is a method that 

decomposes A  into 
)3(

3

)2(

2

)1(

1 UUU BA , where )1(U , 

)2(U , and )3(U  are orthonormal matrices, and B  is a core 

tensor, which can be briefly thought as the characteristic 

tensor of A  with similar size (possible to reduce, if needed). 

The operator n  is called an n-mode product that multiplies a 

tensor and a matrix. Although the concept of this product is 

also important in the HOSVD algorithm, this paper omits the 

explanation of it, due to limitations of space (please see Ref. 

[2]). HOSVD algorithm is as follows: 

[Algorithm 1 (HOSVD)] 

Input: Third-order tensor A  with a size of 
321 III  . 

Output: Orthonormal matrices )1(U , )2(U , and )3(U  and 

core tensor B . 

(Step 1) Apply the n-mode matrix unfolding to the tensor 

A  and form matrices )(nA , )3,2,1( n . 

(Step 2) Apply SVD to )(nA  obtained in the Step 1, and 

decompose them into )()()(

)(

nnn

n VΣUA  , )3,2,1( n , where 

)(nU  and )(nV  is the left and right singular matrices, 

respectively, and )(nΣ  is a diagonal matrix with singular 

values in diagonal. 

(Step 3) Compute the core tensor B  from the n-mode 

product of the input tensor A  and the matrices )(nU  obtained 

in the Step 2 as 
TTT

UUU )3(

3

)2(

2

)1(

1  AB . 

(Step 4) Return the matrices )(nU , )3,2,1( n  and the 

core tensor B  which are obtained in the Step 2 and Step 3, 

respectively, to the caller. 

(End of Algorithm) 

C. n-Mode Matrix Unfolding and Its Algorithm 

The n-mode matrix unfolding is an operation to convert a 

tensor into n matrices. The value n in the n-mode indicates 

how to unfold a higher-order tensor to a matrix. For example, 

using Fig. 1, the 1-mode unfolding matrix is obtained by 

cutting the cube along the horizontal (2-mode) direction with 

the width of 111   cube and arranging them side by side 

next to the left face matrix in the depth direction. Therefore, 

the original tensor is transferred into the matrix without 

changing the size and subscript order of row. The 2-mode and 

3-mode matrix unfolding transfer the tensor into the matrix, 

similarly. 

Although there are several computation algorithms for the 

matrix unfolding, we use that of Ref. [2] in consideration of 

ease of implementation. The algorithm is as follows: 

Fig. 2 shows an image applying the 1-mode matrix 

unfolding to the 3-d puzzle of Fig. 1. Other mode matrix 

unfoldings can be thought of as like 1-mode case. By 

unfolding the 3-d puzzle to the 2-d matrix in this way, it is 

considered that the position of drilled hole distributed 

three-dimensionally becomes easier to find.  
 

III. SOLUTION OF 3-D PUZZLE 

A. Solution Method of 3-D Puzzles 

Generally, the 3-d puzzle of Question 1 in Section II-A is 
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[Algorithm 2 (n-mode matrix unfolding)]

Input: Third-order tensor A with the size of 321 III  .

Output: n-mode matrix unfolding )(nA , )3,2,1( n .

(Step 1) 1-mode matrix unfolding

Extract submatrices )( ** 22 ii aA  , ),,1( 22 Ii  from the 

tensor A , then arrange them side by side as follows: 

)|||(
221)1( IAAAA  , where )( ** 2i

a is an element of the 

matrix whose first subscript 1i varies from 1 to 1I and third

one 3i does 1 to 3I with a fixed 2i . In the following steps, 

unfolding matrices are constructed in a manner similar to this 

step.

(Step 2) 2-mode matrix unfolding

Extract submatrices )(
33 ** ii aA  , ),,1( 33 Ii  from A

and transpose each of them. And then, arrange obtained 

matrices side by side as follows: )|||(
321)2(

T

I

TT
AAAA  .

(Step 3) 3-mode matrix unfolding

Extract submatrices )( **11 ii aA  , ),,1( 11 Ii  from A

and transpose each matrix like the previous step. And then, 

arrange obtained matrices as )|||(
121)3(

T

I

TT
AAAA  .

(Step 4) Return the matrices ( )nA , ( 1, 2, 3)n  obtained 

from above steps to the caller.

(End of Algorithm)



  

solved by using the brute-force method, but we use here the 

HOSVD. Two solution methods by this decomposition 

technique, where both methods use the n-mode matrix 

unfolding, are described below. 

[Solution method 1] 

(Step 1) Construct the third-order tensor A  with binary 

values representing the presence or absence of holes drilled 

vertically from three faces in the 3-d puzzle. 

(Step 2) Apply the 1-mode matrix unfolding to A  and 

compute the unfolding matrix )1(A . 

(Step 3) The answer of the puzzle can be obtained by 

counting the number of elements of )1(A  with the values 

representing the absence of a hole. 

(End of Solution) 

[Solution method 2] 

(Step 1) Construct the third-order tensor B  with binary 

values, similar to the previous solution method, but the holes 

are drilled only from the 1-2 face. Similarly, construct the 

third-order tensors C  and D  which are drilled from the 2-3 

face and the 1-3 face, respectively. 

(Step 2) Compute the matrix )1(B , )1(C , and )1(D  by 

applying the 1-mode matrix unfolding to the third-order 

tensors B , C , and D , respectively. 

(Step 3) The answer of the puzzle can be obtained by 

counting the number of elements with the values representing 

the absence of a hole from the logical AND operation of the 

elements at the same position in the matrices )1(B , )1(C , and 

)1(D . 

(End of Solution) 

The Solution method 1 seems to be easy to understand at a 

glance, because it simply counts the number of the empty 

(undrilled) elements with white color in the matrix )1(A  

illustrated in the right side of Fig. 2. In comparison with above 

method, the Solution method 2 requires slightly more time to 

count the empty elements, since this method needs to repeat 

the n-mode unfolding algorithm three times to create the 

matrix )1(B , )1(C , and )1(D . Furthermore, it is necessary to 

take logical AND operation between three corresponding 

elements of those matrices. 

In the next section, we implement the above two solution 

methods and show the results of applying them to the 3-d 

puzzles of Question 1. 

B. Example of Solution 1 for Question 1 

In this section, we describe the solutions to Question 1 in 

Section II-A. First, we solve this question using the Solution 

method 1. 

1) Example of solution 1-1 (using solution method 1) 

From now on we install the rTensor package [12] for tensor 

calculations and use the unfold function in the package for 

matrix unfolding. This function can be used as follows. 

unfold( tnsr, row_idx, col_idx ) 

In the calling statement, the original higher-order tensor is 

given to the parameter tnsr, and the mode numbers which 

indicate the row and column directions of the unfolding 

matrix are given to the parameter row_idx and col_idx, 

respectively. 

For example, when we compute the 1-mode matrix 

unfolding, the parameter values are given as row_idx=1 and 

col_idx=(2 and 3), because the 1-modes of the original tensor 

(tnsr) is transferred to as the row, and the 2- and 3-mode as the 

column as shown in Fig. 2. Note that in the latter case, these 

two modes are transferred to as a vector with the size of the 

product of the sizes of the 2- and 3-mode of the original tensor, 

and consequently the parameter col_idx is given as c(3,2) by 

using the function c in R. As for the reason why the order of 

col_idx (c(3,2)) descends, the subscript 3i  needs to be varied 

before 2i  in )1(A  (please see the right side of Fig. 2). 

 

 
Fig. 2. Example of 1-mode matrix unfolding. 

 

The R script for solving this example is shown below. 

[R script for Example of solution 1-1] 

# To solve Question 1 using Solution method 1 

library(rTensor)  # install rTensor (only at the first time) 

I1 <- 3; I2 <- 3; I3 <- 3  # set the size of 3rd order tensor 

A <- array( 1, dim = c(I1,I2,I3) ) # initialize the tensor A 

A <- as.tensor( A )   # convert A to tensor form 

# construct 3rd order tensor of 3-d puzzle in Fig. 1 

A[ 2,2,1 ] <- 0    # drill a hole from A(2,2,1) with length 1 

A[ 3,1,1:2 ] <- 0   #             〃         A(3,1,1)         〃       2 

A[ 1:3,1,2 ] <- 0   #             〃         A(1,1,2)         〃       3 

A[ 1,3,1 ] <- 0    #               〃         A(1,2,1)         〃       1 

A[ 2,3,2 ] <- 0    #               〃         A(2,3,2)         〃       1 

A[ 3,2:3,1 ] <- 0   #             〃         A(3,2,1)         〃       2 

# 1-mode matrix unfolding 

A_1mode <- unfold( A, row_idx=1, col_idx=c(3,2) ) 

# count the number of elements without holes (empty ones) 

ans1_1 <- sum( A_1mode @data ) 

(End of Script) 

Table I shows the result of computing the 1-mode matrix 

unfolding (A_1mode) using this script. In this table, “1” and 

“0” represent the undrilled and drilled cubes, respectively. 

Besides, in this table, the cells with value “0” are color-coded 

according to the direction in which the holes are drilled. These 

colors are same as those of Fig. 2, except that the yellow color 

is used when two or three holes overlap. Comparing the table 

with )1(A  in the right side of Fig. 2 for the location of the 

colors, we see that the puzzle data was correctly given to the 

obtained unfolding matrix A_1mode. 

From the above the number of cubes without holes 

(undrilled) can be obtained in ans1_1 by counting the 

elements with value “1” in the matrix A_1mode. The answer is 

as follows: 

> ans1_1   # display the number of cubes without holes 

[1] 18 
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Consequently, we can see that the number of undrilled 

cubes is eighteen and that the correct answer is obtained. 
 

TABLE I: RESULT OF 1-MODE MATRIX UNFOLDING 

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] 

[1,] 1 0 1 1 1 1 0 1 1 

[2,] 1 0 1 0 1 1 1 0 1 

[3,] 0 0 1 0 1 1 0 1 1 
 

2) Example of solution 1-2 (using solution method 2) 

Next, the same example above is solved using the Solution 

method 2 described in section III-A. The R script for this 

question is shown below. 

[R script for Example of solution 1-2] 

# To solve Question 1 using Solution method 2 

I1 <- 3; I2 <- 3; I3 <- 3 

B <- array( 1, c( I1, I2, I3 ) )   # initialize the tensor B 

C <- array( 1, c( I1, I2, I3 ) )   # initialize the tensor C 

D <- array( 1, c( I1, I2, I3 ) )   # initialize the tensor D 

# convert B, C, and D to tensor form 

B <- as.tensor( B ); C <- as.tensor( C ); D <- as.tensor( D ) 

# give data in which holes are drilled from the 1-2, 2-3, and 

# 1-3 faces to matrices B, C, D, respectively. 

B[ 2,2,1 ] <- 0; B[ 3,1,1:2 ] <- 0   # from 1-2 face 

C[ 1:3,1,2 ] <- 0; C[ 1,3,1 ] <- 0   # from 2-3 face 

D[ 2,3,2 ] <- 0; D[ 3,2:3,1 ] <- 0   # from 1-3 face 

# 1-mode matrix unfolding of  3rd order tensor B, C,  and D 

B_1mode <- unfold( B, 1, c(3,2) )   # unfold B 

C_1mode <- unfold( C, 1, c(3,2) )   # unfold C 

D_1mode <- unfold( D, 1, c(3,2) )   # unfold D 

# count the number of elements without holes (empty ones) 

Temp<- B_1mode@data*C_1mode@data 

*D_1mode@data 

ans1_2 <- sum( temp ) 

(End of Script) 

By executing this script, the data when the holes are drilled 

from each face of the original tensor is given to the 1-mode 

unfolding matrices B_1mode, C_1mode, and D_1mode, 

respectively. The 1-mode unfolding matrix B_1mode of the 

third-order tensor B is shown in Table II. From this table, it 

can be seen that the B_1mode correctly has the information 

about the red diamond marks on the 1-2 face of the tensor A  

in the left side of Fig. 2. 

Similarly, the matrices C_1mode and D_1mode, which are 

the results of the 1-mode matrix unfolding of the tensors C 

and D, are shown in Table III and IV, respectively. 
 

TABLE II: 1-MODE MATRIX UNFOLDING OF 3RD ORDER TENSOR B 

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] 

[1,] 1 1 1 1 1 1 1 1 1 

[2,] 1 1 1 0 1 1 1 1 1 

[3,] 0 0 1 1 1 1 1 1 1 

 

TABLE III: 1-MODE MATRIX UNFOLDING OF 3RD ORDER TENSOR C 

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] 

[1,] 1 0 1 1 1 1 0 1 1 

[2,] 1 0 1 1 1 1 1 1 1 

[3,] 1 0 1 1 1 1 1 1 1 

TABLE IV: 1-MODE MATRIX UNFOLDING OF 3RD ORDER TENSOR D 

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] 

[1,] 1 1 1 1 1 1 1 1 1 

[2,] 1 1 1 1 1 1 1 0 1 

[3,] 1 1 1 0 1 1 0 1 1 

 

The number of the elements without holes (undrilled) in 

any of the unfolding matrices in Table II to IV is substituted 

into the variable temp in this script. Since this result is the 

same as that of the example of Solution 1-1 (shown in Table I), 

it is considered that the correct answer is obtained. 

The Solution method 2 using three unfolding matrices 

requires more storage area than the Solution method 1 which 

uses only one unfolding matrix. On the other hand, it also has 

the following advantages. For example, looking at the 

(yellow-colored) element (3,2) in the Table I, the holes in the 

Table II and III also overlap there, so that we can see the 

direction in which the holes were drilled in the cube. 

C. Example of Solution 2 for Question 2 

In this example, we deal with another type of 3-d puzzle [13] 

which is different from that described in Section II-A. 

[Question 2 (Counting Ball Puzzle)] 

Suppose that a cube with a size of 3×3×3 is made up by 

piling up small transparent cubes with a size of 1×1×1 as 

shown in Fig. 3 (a). Let some of these small cubes in the 

3×3×3 cube have balls, and then its perspective view from 

front, top, and left side is given in Fig. 3 (b) (for example). 

Find the upper limit of the number of balls which are included 

in this 3×3×3 cube under the above conditions. 

(End of Question) 

We treat the puzzle shown in Fig. 3 (a) as a third-order 

tensor. Now note that the empty (transparent) elements in Fig. 

3 (b) is continuously empty toward the rear and there are no 

balls. We can solve this question also by using the n-mode 

matrix unfolding. 

 

1
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o
d

e:
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o

d
e:

3-mode:
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1
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o
d
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2-mode:

2
3

3

2

2 3

Left side

(a) 3-d puzzle with size (b) Perspective view from each side 
 

Fig. 3. Example of another 3-d puzzle. 
 

[R script to solve Quenstion 2] 

# To solve Question 2 

# initialization of tensor A (Suppose all small cubes have a 

# ball, so the initial values are 1‟s.) 

A <- array( 1, c(3,3,3) ) 

A <- as.tensor( A ) 

# construct a tensor A (empty element is 0) 

A[1,3, ] <- 0   #  no ball from front (1,3,1) to backward 

A[2,1, ] <- 0   #           〃         front (2,1,1)         〃        

450

International Journal of Machine Learning and Computing, Vol. 8, No. 5, October 2018



  

A[3,1, ] <- 0   #           〃         front (3,1,1)         〃        

A[3,3, ] <- 0   #           〃         front (3,3,1)         〃        

A[ ,1,1] <- 0   # no ball from top (1,1,1) to downward 

A[ ,1,3] <- 0   #         〃          top (1,1,3)           〃       

A[ ,2,1] <- 0   #         〃          top (1,2,1)           〃       

A[ ,3,1] <- 0   #         〃          top (1,3,1)           〃       

A[ ,3,2] <- 0   #        〃          top (1,3,2)            〃      

A[1, ,1] <- 0   # no ball from left side (1,1,1) to rightward 

A[1, ,3] <- 0   #          〃         left side (1,1,3)         〃        

A[2, ,1] <- 0   #         〃           left side (2,1,1)        〃          

A[3, ,1] <- 0   #          〃          left side (3,1,1)        〃        

A[3, ,3] <- 0   #         〃           left side (3,1,3)        〃       

 # 1-mode matrix unfolding of tensor A 

A_1mode <- unfold( A, 1, c(3,2) ) 

# Count of the number of cubes including balls. 

ans2 <- sum( A_1mode@data ) 

(End of Script) 

 

Table V shows the 1-mode matrix unfolding of tensor A, 

which represents the existence of balls in the puzzle. We can 

make sure that this matrix unfolding expresses precisely the 

ball arrangement shown in the perspective view of Fig. 3 (b). 

From the execution result of this script, since the variable 

ans2 for storing the answer is 6, we can find that the maximum 

number of the balls is 6 in the puzzle. 

 
TABLE V: 1-MODE MATRIX UNFOLDING OF 3RD ORDER TENSOR A 

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] 

[1,] 0 1 0 0 1 0 0 0 0 

[2,] 0 0 0 0 1 1 0 0 1 

[3,] 0 0 0 0 1 0 0 0 0 

 

 
Fig. 4. Example of painted box puzzle. 

 

D. Example of Solution 3 for Question 3 

In this example, we deal with the painted box puzzle as 

shown in Fig. 4 (a) [14]. This puzzle is a rectangular solid 

with a size of 321 III  , where 1I , 2I , and 3I  are all 

assumed to greater than 2. 

[Question 3 (Cutting Painted Box Puzzle)] 

In Fig. 4 (a), the solid is constituted by piling up 321 III   

white cubes with a size of 111  , and the whole surfaces of 

the solid are painted. Count the number of 111   cubes with 

two-sided painted and unpainted (white) 111   cubes in the 

solid, respectively. Here, the size of the solid is assumed to be 

greater than 222  . 

(End of Question) 

The puzzle of Fig. 4 (a) is consisted of four types of pieces 

as shown in Fig. 4 (b). The corner, edge, and center pieces are 

the 111   cubes with painted on three, two, and one sides, 

respectively, and the inner pieces are unpainted cubes. 

In the same way as previous questions, we express the 

puzzle as a third-order tensor and solve by applying the 

n-mode matrix unfolding. Here, the element values of the 

tensor are the number of painted sides of each 111   cube. 

The following script is an example of the solution for this 

3-d puzzle whose size is 543321  III . Note that the 

words “front layer” and “back layer” in the comment of the R 

script mean 21 II   matrices when 13 i  and 33 Ii  , 

respectively. 

[R script to solve Question 3] 

# To solve Question 3 

# substitution of 3-d puzzle size (each greater than 2) 

I1 <- 3; I2 <- 4; I3 <- 5  

# variables to specify the number of colors in each piece 

inner <- 0; center <- 1; edge <- 2; corner <- 3 

A <- array( 0, c(I1,I2,I3) ) 

A <- as.tensor( A ) 

# construction of tensor A 

for( i3 in 1:I3 ){ 

if( i3==1 || i3==I3 ){   # processing of front and back layers 

# initialization of each layer. (The initial value is  

# the number of the colors of edge piece.) 

A[ , , i3] <- edge; 

# substitution of the number of colors in corner pieces 

A[1,1,i3] <- A[1,I2,i3] <- corner 

A[I1,1,i3] <- A[I1,I2,i3] <- corner 

# substitution of the number of colors in center pieces 

if( I1>=3 && I2>=3 ) A[2:(I1-1),2:(I2-1),i3]<- center 

} else {   # processing of other layers 

# initialization of each layer (The initial value is   

# the number of the colors of center piece.) 

A[ , , i3] <- center; 

# substitution of the number of colors in edge pieces 

A[1,1,i3] <- A[1,I2,i3] <- edge  

A[I1,1,i3] <- A[I1,I2,i3] <- edge 

# substitution of the number of colors in inner pieces 

if ( I1>=3 && I2>=3 ) A[2:(I1-1),2:(I2-1),i3] <- inner 

} 

} 

# 1-mode matrix unfolding of tensor A. 

A_1mode <- unfold( A, 1, c(3,2) ) 

A_1mode@data   # display of A_1mode 

# count of the frequency of each puzzle piece 

ans3 <- as.data.frame( table(A_1mode@data) )  

colnames( ans3 ) <- c( "Number of cols.", "Freq." ) 

rownames( ans3 ) <- c( "Inner piece", "Center piece", 

"Edge piece", "Corner piece" ) 

ans3   # display of results 

(End of Script) 

Fig. 5 shows the result of the 1-mode matrix unfolding A_1 

mode obtained by executing the above script as a heat map. 

From the map, we can make sure that this script generates the 

unfolding matrix with correct number of colors as the element 

values. 

The variable ans3 in the script indicates the frequency of 

each piece in this puzzle, and it can be displayed by the 
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following command: 

>  ans3   # display of the frequency of each piece 

The results of the frequency are summarized in Table VI. 

The question is to find the number of edge pieces and inner 

pieces, and we can obtain the answers as 24 and 6, 

respectively. 

 

 
Fig. 5. 1-mode matrix unfolding of the painted box puzzle. 

 
TABLE VI: FREQUENCY OF EACH PIECE 

 Number of cols. Freq. 

Inner piece 0 6 

Center piece 1 22 

Edge piece 2 24 

Corner piece 3 8 

 

IV. RESULTS AND DISCUSSION 

The approach to support understanding of HOSVD by 

using the 3-d puzzles described in the previous section was 

started by us in the creative experiment of 4th grade subjects 

in 2015 in our College. This subject is for students who 

completed basic education of information engineering to 

work on creative themes for half a year under the guidance of 

supervisors. We gave our student interested in data analysis 

the theme of devising a method to solve the puzzle in Ref. [9] 

(Question 1 in Section II-A) using HOSVD and its imple-

mentation to personal computer (PC). It was our aim to make 

this student familiar with HOSVD principle and computation 

through the experiment. The teaching procedure and the 

results carried out by the student are as follows: 

1) First, a teacher (one of us) lectured to the student about 

the principles of SVD and HOSVD, and then gave him 

Refs. [2] and [3] for further study. 

2) Next, the teacher gave the students an assignment of 

creating a program to represent the 3-d puzzle with a 

higher-order tensor and convert it into n-mode matrices. 

3) As a next assignment, the teacher instructed the students 

to devise plural ways to solve this puzzle (counting the 

number of holes) using the n-mode matrices. As the result, 

Solution method 1 and 2 in Section 3-A were obtained. 

4) Finally, the teacher instructed the student to program 

these solutions and implement them on PC. This student 

implemented them in C language. 

The above is an actual example using the problem of 

solving 3-d puzzles to the education of HOSVD. In general, 

programs related to HOSVD can be written with simpler 

instructions by using R packages for tensor data analysis 

compared to not using it, but since this student used C 

language, he programed every detail, such as tensor data 

creation and n-mode matrix conversion (i.e. unfolding). From 

this, as he was able to do it, we saw that he had understood the 

principle of HOSVD very well. The student was able to 

smoothly connect the learning outcomes of this experiment to 

the application of HOSVD in graduation research of the 5th 

(final) grade subjects. 

The solutions to this puzzle were simply to count the 

number of holes in the n-mode unfolding matrix, and the 

student asked us that he wanted to solve other 3-d puzzles as 

well. Thus, we worked on finding and creating further 3-d 

puzzles, and consequently devised solutions based on the 

n-mode matrix unfolding for Questions 2 and 3 mentioned in 

Section III-C and III-D. Those puzzles were added to the 

teaching materials for educational support of HOSVD. We 

continuously used these teaching materials after this student 

in our laboratory and got feedbacks from students that they 

could learn easily and fun. In addition, these puzzles were also 

demonstrated to junior high school students and their parents, 

and others at the Open Campus of our college, and many of 

them were interested in such puzzles and solution methods. 

From the above, it is thought that the method of using 3-d 

puzzles for learning tensor data handling and fundamentals of 

tensor decomposition is effective. 

 

V. FUTURE WORK 

As further work, we are considering the following approach 

on application of 3-d puzzles to education of multi-

dimensional data processing: 

1) To devise new puzzles and their solutions that can be 

solved using HOSVD, where the dimensions of the 

puzzles may be three or more dimensions.  

2) To implement solution algorithms for newly devised 

puzzles in 1) in R language. 

3) To collect all the puzzles which we have devised and to 

have them be used widely by teachers and students at the 

educational sites, because we have confirmed that it is 

effective for the education to let students think about 

solutions using HOSVD, as a representative of the tensor 

decomposition methods, and solve in R language. Note 

that the language used may be not only R language but 

also C language, Java, Phython [15], Scilab [16], and 

others. 

 

VI. CONCLUSION 

In this paper, we described a new approach using 3-d 

puzzles for understanding tensor decomposition, which is 

widely known as an effective technique for big data analysis 

[17], especially taking up HOSVD. Data science education 

for science and engineering students is expected to become 

increasingly important in the future not only in Japan but also 

all over the world. In doing this education, our approach is 

considered very useful. This can be seen from our experiences 

taught students for recent few years. 

Here we cited up a few examples of 3-d puzzles, but we 

could take up other various types of puzzles (though they are 

also future work). For examples, we could give magic cubic 

puzzles, which are the extension of magic squares to 3-d, as 

the numerical puzzles to solve [18]. On the other hand, those 

3-d puzzles can also be thought of as non-numerical 3-d ones 
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like the Rubik‟s cubes [19].  

Since the R language is a very useful programming 

language for statistical analysis, the calculation programs that 

solve the 3-d puzzles was posted as a reference in this paper. 
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