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Abstract—High efficiency video coding (HEVC) is the current 

video coding standard. HEVC achieved very high coding 

efficiency compared with previous video coding standards. 

However, the increasing of the computational complexity and 

the hardware implementation difficulty are the critical problems 

for HEVC. In this paper, we propose a fast coding unit (CU) size 

decision algorithm for HEVC based on convolutional neural 

network. The proposed fast algorithm contribute to decrease no 

less than two CU partition modes in each coding tree unit for full 

rate-distortion optimization processing, thereby reducing the 

encoder hardware complexity. Moreover, our algorithm only 

use the texture information and it does not depend on the 

correlations among CU depths or spatially nearby CUs. It is 

friendly to the parallel processing of RDO. The proposed 

algorithm is evaluated by the reference software of HEVC 

(HM16.7). The simulation results show that the proposed 

algorithm can achieve over 66.7% computation complexity 

reduction comparing to the original HEVC algorithm. 

 
Index Terms—High efficiency video coding (HEVC), intra 

coding, convolutional neural network (CNN).  

 

I. INTRODUCTION 

High Efficiency Video Coding (HEVC) was developed by 

Joint Collaborative Team on Video Coding (JCT-VC) [1], [2]. 

HEVC achieved double the coding efficiency as compared to 

the predecessor H.264/AVC, especially when processing the 

high-resolution sequence s(HD/UHD). However, this 

increases the computational complexity up by 10 times as 

compared to H.264/AVC. On the other words, the high 

computational complexity in HEVC becomes a hardware 

implementation bottle-neck. In HEVC, recursive coding unit 

(CU) size decision method occupy most of the computational 

complexity. Intra coding is particularly an important coding 

tool adopted in almost all mainstream video compression 

standard such as MPEG-2, H.264/AVC and HEVC. 

Although the quad-tree structure enables each CU to be 

coded optimally and can greatly improves the encoding 

efficiency significantly, it imposes significant computational 

complexity on the encoder during the exhaustive 
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rate-distortion cost calculation of total 85 CUs, where all 

possible combinations of CU, prediction unit (PU) and 

transform unit (TU) are tried to find the optimal combination. 

Thus, it is important to find a practical implementation of 

HEVC to reduce the complexity while maintaining its 

performance. To overcome this problem, a number of 

algorithms on accelerating the encoder of HEVC have been 

proposed to reduce the computational complexity. 

To alleviate the intra encoding complexity, many 

algorithms have been developed for fast intra coding mode 

decision. The previous work can be classified into three 

categories. 

1) The method of the first category reduces the RDO 

complexity of intra prediction mode in every CU depth. For 

example, Ma applied the rough mode decision scheme to 

reduce the number of candidate prediction modes, which will 

perform the RDO processing [3]. Zhu simplified the 

computation of rate and distortion estimation [4], [5]. These 

previous works contribute to the RDO complexity reduction. 

2) The methods of the second category dynamically skip 

the CU depth decision process based on some preprocessing 

[6]-[8]. Similarly, another algorithms skip the early 

terminating the CU/PU depth RDO procedure based on the 

CU depth information of previously coded slices and 

neighboring CUs [9]. 

3) The method of the third category show a fast CU 

partitioning algorithm using machine learning which has been 

actively discussed in recent years. Some algorithms decide the 

optimal CU depth by using the convolutional neural network 

(CNN) [10], [11]. Because the pip-line processing of coding 

tree unit (CTU) is considered, these previous works is 

oriented for hardware implementation. 

For the hardware encoder design, the first kinds of methods 

did not reduce the depth of CU/PU. On the other hand, the 

methods of the second category did not shrink the maximum 

complexity at the CTU. For example, in literature [9], in the 

parameter training stage, all CU levels must be searched with 

the exhaustive RDO. Moreover, in the third category, the 

inherent drawbacks of [11] induce 4.79% BD-BR increment. 

In fact, the optimal CU coding modes are determined by not 

only the edge information, the texture strength, and the 

quantization step, but also neighboring CU parameter. 

Therefore, our research focuses on the texture information of 

neighboring spatial blocks.  

We consider that the coding performance is improved by 

the utilizing the neighboring blocks. However, the input 

texture of neighboring spatial blocks increase the 

computation complexity of CNN.  In this paper, the fast CU 

depth decision is implemented by the optimal CNN 

architecture, that is specially devised to deal with 16x16 pixel 

block. 
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The HEVC standard inherits the well-known blockbased 

hybrid coding architecture of H.264/AVC. However, in 

contrast to 16 × 16 pixels macro blocks (MB) used in 

H.264/AVC, it employs a flexible quad-tree coding block 

partitioning structure that enables the usage of large and 

multiple sizes of CU, PU and TU. One of the frame is divided 

into a sequence of CTUs and the maximum size allowed for 

the luma block in a CTU is specified to be 64×64. Each 2N×

2N CUs which shares the same prediction mode can be 

divided into four smaller N×N CUs recursively until the 

maximum CU depth is reached. The sizes of CU range from 

64×64 to 8x8. Furthermore, the number of intra prediction 

modes for each CU is also increased to 35. Therefore, the 

computation of CU candidate modes for a largest coding unit 

(LCU) is exhausted, as shown in Fig. 1. As a result, intra 

prediction in HEVC encoding is much more complicated than 

H.264/AVC. Therefore, it is effective for the computation 

complexity reduction to early determine the optimal CU size 

and prediction mode. 

 

 
Fig. 1. CTU description. 

 

III. ANALYSIS OF CNN FOR FAST INTRA CODING 

A. Verification of CNN Structure 

Previous work proposed the hardware-oriented algorithm 

using CNN for HEVC encoder [11]. This work achieved high 

computational complexity reduction, and proved easy to 

implement hardware of CNN. However, the proposed 

algorithm induced BD-BR increase. Considering the 

encoding of super-resolution (4K), a more efficient CU 

decision algorithm by CNN is required for super-resolution 

encoder. For this reason, to clarify the optimal CNN structure 

including the convolutional layer (Conv), kernel, and full 

connection layer (FCL), we evaluate the relationship of the 

validity and the parameter. The evaluation is performed by 

using CNN structure of [11], and the block division of 32×32 

is judged by single CNN process. CNN structure of [11] is 

shown as Fig. 2. The structure consists of two Conv, two max 

pooling, and two FCL. The parameters represent the number 

of Conv, kernel, and FCL. The sequence of ClassA and 

ClassB are used as the training sequences. 

Table I show validation accuracy (Valid_acc) and training 

accuracy (Train_acc) when training of 20000 epoch is 

performed. Reference CNN represent simple and small 

network based on the CNN structure of [11]. To evaluate the 

accuracy with some conditions, the Conv, kernel, and FCL are 

added to the reference CNN. The evaluation result show 

about 70% Train_acc and 65% Valid_acc. From this 

evaluation result, it is observed that both accuracy are not 

greatly affected by the variation of the number of Conv, 

kernel, and FCL. In other words, in the simple structure, 

training and validation accuracy have the limit accuracy. 

Hence, for achieving higher accuracy performance, our 

approach adopts the CNN structure of the multiple inputs.  

 

 
Fig. 2. Reference CNN structure. 

 
TABLE I: ANALYZING OF SINGLE INPUT CNN 

  Number of parameter Prediction accuracy(%) 

  Conv Kernel FCL Valid_acc Train_acc 

Default 

parameter[11] 
2 6 2 68.40  71.80  

Comparison 

of Conv 

3 6 2 65.00  71.10  

4 6 2 60.40  70.70  

Comparison 

of kernel 

2 8 2 49.90  65.10  

2 10 2 65.90  71.00  

Comparison 

of FCL 

2 6 3 63.50  70.90  

2 6 4 50.00  55.70  

 

 
Fig. 3. Mapping neighboring block and current block. 

 

In HEVC intra coding, best CU size depend on the 

complexity of the neighboring blocks. For this reason, the 

pixels of the neighboring blocks are important for high 

prediction accuracy. Fig. 3 shows the block position which is 

used as input to our proposed CNN. In our approach, only 

neighboring blocks are used for the input of CNN. Moreover, 

the prediction of division pattern in 32×32 block have high 

complexity. Considering the improvement of the division 

accuracy, the reduction of block division pattern is required. 

Therefore, our proposed CNN use 16×16 block as input 

texture. The CNN structure of multiple inputs that we 

considered from this evaluation result is shown in Fig. 4. To 

clarify the structure of more efficiency multiple inputs CNN, 

in the next subsection, the evaluation of the number of input 

and parameter is performed by using Fig. 4. 

 

With the support of powerful computational devices, many 

deep learning networks become deeper. For example, a deep 

residual network is proposed for image recognition [12]. 

However, the deeper network model does not necessarily give 

the high accuracy. Therefore, for identifying the most suitable 

multiple inputs CNN, we evaluate the prediction accuracy 

according to the different of the number of inputs. 
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II. ALL INTRA MODE

B. Evaluation of Multiple Inputs CNN



  

Variation of the number of the neighboring block and the 

number of Conv, kernel, FCL were evaluated with the 

sequence of ClassA and ClassB, as shown in Table II. Table II 

shows that the increasing of the neighboring block and kernel 

lead to improvement of accuracy. It is clear that the extraction 

of feature map by kernel is important for block division. On 

the other hands, about the variation of Conv and FCL, these 

parameters had little change compared to kernel variation. 

 

 
Fig. 4. Structure of 4-inputs CNN. 

 

TABLE II: TRAIN AND VALIDATION ACCURACY (%) EVALUATION OF THE NEIGHBORING BLOCK AND THE PARAMETER VARIATION 

  Number of parameter Number of input 

  
Conv Kernel FCL 

NB2, NB4 NB1, NB2, NB3, NB4 

  Valid_acc Train_acc Valid_acc Train_acc 

Default parameter 2 6 2 68.40  73.40  69.40  76.80  

Comparison of Conv 3 6 2 69.10  72.80  70.40  74.80  

Comparison of 

kernel 

2 8 2 73.20  78.10  75.80  80.20  

2 10 2 79.90  84.50  84.40  89.20  

Comparison of FCL 
2 6 3 66.80  68.80  67.20  71.80  

2 6 4 65.40  67.80  66.40  68.80  

 

IV. PROPOSED ALGORITHM 

A module with our CNN model is implemented and 

embedded in HM16.7 encoder software before intra 

prediction. The CNN classifier outputs the optimal CTU 

division information. The detail of flowchart is shown in Fig. 

5. Compared with the conventional encoding processing, the 

encoding process using our proposed algorithm is not induce 

the many iteration for determining the optimal CU depth. The 

CU classification algorithm will be helpful to the 

computational complexity reduction of intra encoding. This 

means that the hardware area of RDO process in intra coding 

mode can be reduced. 

 

 
Fig. 5. Comparison of conventional flowchart and the proposed flowchart. 

 

From evaluations previous section, our approach supplies 

the best performance condition to CNN model. In Table II, 

the comparison of Conv, Kernel, FCL are evaluated. 

Obviously, the number of input affect the prediction accuracy. 

Regarding Conv and FCL parameter, the prediction accuracy 

improved a little. As a possible reason for that increasing the 

Conv in 16×16 block is ineffective and many parameters in 

FCL increase the complexity of the prediction accuracy. On 

the other hand, the number of kernel increase the effective 

parameter for classification. Therefore, our proposed CNN 

consist of the multiple inputs using neighboring block, two 

Convs, two FCLs, and ten kernels, as shown in Fig. 6. 

The input of CNN is the block partition patterns from 64×

4 to 8×8 which are converted to 16×16 block. The first layer 

is a convolutional layer with ten kernels. Each neuron is 

connected to a 3×3 receptive field in the input. The size of the 

feature map is 8 × 8 and the convolution calculation is 

performed with zero padding mode. The kernels in this layer 

are deemed as feature extractors. The second layer performs 

the max pooling. Similarly, the third and fourth layer perform 

the convolution and max pooling. The fifth and sixth layer use 

FCL which the parameter is 256 and 64 to each input. The 

seventh layer concatenate FCL of each input with 256 

parameters. The eighth layers perform FCL which the 

parameter is 64. The output layer use softmax units. 

 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

For all of the evaluations, the coding structure which is set 

to all intra mode is used. The simulation environment is 

Intel(R) Core(TM) i7-4770 CPU 3.40GHz with 4 cores, 

RAM 8.00 GB and Windows 10 Home Edition 64-bit. 

Several test sequences (100 frames) with picture size from 
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Class 4K to Class B are used. The number of 50 frame in 

Class B are selected as the training samples i.e. 

BasketballDrive, BQTerrace, Cactus, Kimono, and 

ParkScene. The performance of our proposed complexity 

reduction is compared with that of the unmodified HM16.7 

encoder in terms of execution time, and impact on bit-rate and 

peak signal to noise ratio (PSNR)[ 13]. The difference value 

of execution time between the unmodified HM16.7 and the 

proposed algorithm is represented as time saving (TS). TS is 

defined as 

16.7 proposed

16.7

(%)
HM

HM

T T
TS

T


                           (1) 

where THM16.7 is the encoding time of the unmodified HM16.7 

and TProposed is that of the proposed algorithm. The 

computation complexity reduction (CR) is evaluated with QP 

from 22 to 37. CR is defined as 

  100
85

),,(
%

1

1

1




 









J

j

i
F

f FJ

fjiBestCU
CR                  (2) 

where BestCU(i, j, f) indicates the ith best CU of the jth CTU 
of the fth frame of the test sequence. J and F are the total 
number of CTUs in each frame and total number of frames of 
the test video, respectively. 85 is represented by the number of 

iteration which is required for the best CU size decision from 
64×64 to 8×8 in reference software HM16.7. 
 

TABLE III: RESULT OF PROPOSED ALGORITHM COMPARED TO HM16.7 

Class Sequences CR TS 

BD-rate  

(piecewise cubic) 

    (%)   (%) Y(%) U(%) V(%) 

Class 

4K CampfireParty 69.5  62.0  1.5  1.6  1.7  

  CatRobot 78.3  62.9  1.9  2.1  2.4  

  DaylightRoad 62.8  62.4  2.6  2.6  2.0  

  Drums100 77.9  66.1  1.6  1.9  0.9  

  TrafficFlow 65.2  61.6  2.3  2.1  2.8  

  Tango 68.2  62.7  1.7  1.6  1.9  

  ToddlerFountain 70.3  62.5  1.3  1.4  1.7  

  Rollercoaster 66.1  60.6  2.3  2.2  2.2  

  Average 69.8  62.6  1.9  1.9  2.0  

Class A Traffic 70.4  68.7  1.4  1.9  1.8  

  PeopleOnStreet 72.8  66.5  2.4  1.9  1.8  

  Nebuta 72.5  67.1  1.5  1.7  1.8  

  SteamLocomotive 71.4  64.1  1.8  0.6  1.1  

  Average 71.8  66.6  1.8  1.5  1.8  

Class B BasketballDrive 68.3  72.1  1.8  1.3  0.8  

  BQTerrace 66.1  73.3  1.8  0.4  0.1  

  Cactus 68.9  71.8  2.0  1.6  1.7  

  Kimono 72.5  75.8  1.7  1.5  1.7  

  ParkScene 71.3  73.7  1.2  0.1  0.7  

  Average 69.4  73.3  1.7  1.0  1.2  

Average   70.1  66.7  1.8  1.6  1.6  

 

 

 
Fig. 6. Proposed CNN structure. 

 

TABLE IV: COMPARISON WITH OTHER PAPER IN TIME SAVING, BD-BR AND BD-PSNR 

Sequences 

Previous work [14] Proposed algorithm [14] vs Proposed algorithm 

TS BD-BR BD-PSNR TS BD-BR BD-PSNR ΔTS ΔBD-BR ΔBD-PSNR 

(%) (%) (dB) (%) (%) (dB) (%) (%) (dB) 

PeopleOnStreet 74.6  5.24  -0.26  72.8  3.23  -0.13  -1.8  -2.01  0.13  

Traffic 73.4  5.01  -0.24  70.4  2.11  -0.09  -3.0  -2.90  0.15  

BasketballDrive 76.1  5.52  -0.14  76.3  1.93  -0.08  0.2  -3.59  0.06  

BQTerrace 72.3  4.03  -0.20  73.1  1.92  -0.08  0.8  -2.11  0.12  

Cactus 77.5  4.72  -0.16  74.9  2.16  -0.18  -2.6  -2.56  -0.02  

Kimono 62.6  3.64  -0.12  75.5  1.56  -0.06  12.9  -2.08  0.06  

ParkScene 72.0  3.97  -0.16  74.3  1.13  -0.05  2.3  -2.84  0.11  

Average 72.6  4.59  -0.18  73.9  2.01  -0.10  1.3  -2.58  0.09  

 

The results of our experiment are summarized in Table III 

and Table IV. The coding performance comparisons between 

the proposed algorithm and the original HM16.7 are shown in 

Table III. The proposed algorithm shows a consistent gain in 

encoding time saving for all sequences with the least gain of 

60.6\% in Rollercoaster and the most gain of 75.8\% in 

Kimono. For all sequences, the proposed algorithm can save 

66.7\% encoding time and 70.1\% complexity reduction. 

In Table IV, the time reduction percentage compared to 

previous work [14] is shown, the impact on the bit-rate 

(bjontegaard delta rate (BD-BR)), and the video quality in 

terms of PSNR (BD-PSNR in dB) [15]. Table IV shows that 
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the proposed algorithm reduces TS by about 1.2\% better than 

in [14]. Additionally, BD-BR-2.58\% and BD-PSNR 0.09dB 

are improved by our proposed algorithm, respectively. In 

particularly, our approach has an effect on the complexity 

texture such as Traffic and BasketballDrive.

However, our approach has some drawbacks. Our 

proposed algorithm may impact to increase of hardware area 

because the CNN structure of multiple inputs requires the 

parallel processing. Additionally, the utilization of much 

kernels need to reserve many parameters. Therefore, in our

CNN structure, a large memory area is required. To solve 

these problems, we need to consider the reduction of number 

of input pixel and kernel parameter in our future work.

VI. CONCLUSION AND FUTURE WORK

The focus of this paper is on developing a complexity 

reduction scheme for HEVC encoder. The proposed 

algorithms use fast intra coding. Our scheme utilizes the CNN 

analysis to predict the CU sizes of the CTUs of intra coding. 

To realize the low complexity of CU size decision for HEVC, 

our approach notice the CNN structure of multiple inputs. The 

performance of the proposed algorithm was tested on a 

representative set of video sequences and was compared 

against the unmodified HM encoder as well as two of the art 

complexity reduction schemes and combinations. 

Performance evaluations show that our proposed algorithms 

reduce encoding time on average 67.3\% and increases 

BD-rate about 1.8\%, compared with HM 16.7. In our future, 

we discuss the reduction of some parameters used for CNN.
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