
  

 

Abstract—This article proposes a method for mathematical 

modeling of human movements related to patient exercise 

episodes performed during physical therapy sessions by using 

artificial neural networks. The generative adversarial network 

structure is adopted, whereby a discriminative and a generative 

model are trained concurrently in an adversarial manner. 

Different network architectures are examined, with the 

discriminative and generative models structured as deep 

subnetworks of hidden layers comprised of convolutional or 

recurrent computational units. The models are validated on a 

data set of human movements recorded with an optical motion 

tracker. The results demonstrate an ability of the networks for 

classification of new instances of motions, and for generation of 

motion examples that resemble the recorded motion sequences. 

 
Index Terms—Generative adversarial networks, physical 

rehabilitation, artificial neural networks.  

 

I. INTRODUCTION 

 
 

Manuscript received July 6, 2018; revised September 1, 2018. This work 

was supported by the Center for Modeling Complex Interactions through 

NIH Award #P20GM104420 and with additional support from the 

University of Idaho.   

L. Li is with the Department of Computer Science, University of Idaho, 

Idaho Falls, ID 83402, USA (longzel@uidaho.edu).  

A. Vakanski is with the Industrial Technology, University of Idaho, Idaho 

Falls, ID 83402, USA (e-mail: vakanski@uidaho.edu). 

Modeling human movements has been an essential research 

topic in various fields and disciplines. Congruent models of 

human movements furnish great benefits to ergonomic design 

[5], visual surveillance [6], transfer of human skills to robotic 

learning systems [7], etc. However, mathematical modeling of 

human movements remains an open research problem, due to 

the challenges associated with the complex stochastic and 

nonlinear character of the data. A current trend in machine 

learning related to the implementation of deep artificial 

neural networks (NNs) for modeling and representation of 

complex nonlinear data across various domains [8] has paved 

a promising path to human motion modeling.  

Within the published literature on modeling human 

movements using machine learning approaches, most works 

focus on recognition and classification of movements into a 

particular movement type. To that end, a variety of traditional 

machine learning algorithms have been applied, including 

support vector machines, hidden Markov models, and 

k-nearest neighbors. In recent years, a body of research 

emerged based on the implementation of artificial NNs for the 

task at hand. Encoder-decoder NNs have been a commonly 

employed means for extraction of salient attributes in 

movement trajectories of captured skeletal data [9], [10]. NNs 

with convolutional computational units have been designed 

for recognition of human movements, for example, in 

surveillance videos [11]. Another network architecture that 

employs recurrent connections between the computational 

units has been extensively used for modeling sequential data 

in general [12], [13], and human motions in particular [14], 

[15]. Beside for movement classification task, machine 

learning methods have also been employed for prediction of 

future motion patterns, e.g., fall detection in seniors [16], or 

automated anticipation of driver activities [17].  

Analogously, in the domain of physical therapy and 

rehabilitation several researchers employed machine learning 

for classification of patient movements [18] and for counting 

the number of repetitions in each exercise [19]. In [20] an 

intelligent robotic assistant employs machine learning for 

planning the next therapy session based on the patient’s 

current progress. Similarly, machine learning-based assistants 

have been integrated into virtual reality therapy systems for 

monitoring patient performance and customizing the 

treatment plan according to the patient’s progress [21]-[23]. 

In the treatment of phantom limb pain, it was found that the 

combination of machine learning, augmented reality, and 

gaming produces improved outcomes in comparison to 

traditional treatment approaches [24]. Another class of 

therapy tools employs a motion capturing camera and it 
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Patients recovering from stroke, surgery, nerves damage or 

bone fracture are regularly enrolled in physical therapy and 

rehabilitation programs to regain muscle strength, relieve pain, 

and improve range of motion. Both long- and short-term

physical therapy provides positive results in treating 

musculoskeletal trauma and functional movement disorders 

[1], [2]. The efficiency of therapy programs is highly related 

to the patient adherence to prescribed exercises [3]. On the 

other hand, in an outpatient setting it is difficult to determine 

if a patient complies with the therapy program, because most 

of the patients do not acknowledge the incompliance [4]. The 

latest progress in machine learning has a potential to identify 

incorrect performance of exercise regimens and provide an 

instantaneous feedback to the patient; further, it can also 

provide a basis for the healthcare professionals to be 

proactive and take early corrective actions, if needed. The 

application of machine learning for evaluation of patient 

performance requires corresponding datasets of therapy 

movements for algorithm training purposes, and formulation 

of robust mathematical models of human body trajectories 

executed during physical therapy exercises.



  

displays in real-time on a screen the executed movements by 

the patient, and simultaneously a graphical avatar is displayed 

on the side of the screen that demonstrates the correctly 

performed movements as recommended by the physical 

therapist [25], [26]. These tools are excellent examples of 

innovative solutions and systems in support of home-based 

physical therapy, as they can potentially improve patient 

adherence to prescribed therapy programs, and subsequently, 

lead to reduced rehabilitation period, reduced time to 

functional recovery, and reduced healthcare costs.  

This work presents a novel method for modeling and 

evaluation of physical rehabilitation exercises based on an 

NN architecture known as Generative Adversarial Networks 

(GANs). Introduced by Goodfellow et al. in 2014 [27], GAN 

is a deep learning model comprised of two competitive 

subnetworks: a generative subnetwork (commonly referred to 

as a generator) and a discriminative subnetwork (i.e., a 

discriminator). The two subnetworks are trained in an 

adversarial mode, where the generator improves in producing 

data that resemble the real input data, and the discriminator 

improves in distinguishing real input data from the data 

samples provided by the generator. GAN models have had a 

tremendous success in the domain of image processing, e.g., 

for generating super resolution photo-realistic images from 

text [28], face aging images in entertainment [29], blending of 

objects from one picture into the background of another 

picture, as well as in other applications, such as generating 

hand-written text, and music sequence generation [30].  

This paper investigates the capacity of GAN models for 

generating human movement data related to physical therapy 

exercises. It was motivated by the research by Hyland et al. 

[31] where the authors designed a GAN model for generating 

synthetic medical data resembling the records from an 

intensive care unit. In general, almost all research on GANs is 

directed toward generating images, and only a few works have 

applied GANs for generating time-series data. On the other 

hand, the provision of means for synthesizing realistic 

time-series data can benefit several application areas. For the 

considered problem, the ability to produce movement 

sequences that resemble patient therapy exercises has a 

potential to augment the datasets of recorded therapy 

exercises and to lead to improved movement models. 

Consequently, this paper presents an evaluation of different 

GAN architectures for generating synthetic movement 

sequences. In addition, the performance of GAN networks for 

assessment of the level of correctness of therapy movements 

is also evaluated. For that purpose, soft labels are introduced 

for the movement repetitions based on the average deviation 

from a set of consistently performed movements. The study 

found that GANs are suitable for both generation and 

evaluation of therapy movement sequences.  

The paper is organized as follow. Section II introduces 

GAN models and provides an overview of several GAN 

architectures relevant for the considered task. Section III 

describes the movement sequences data related to physical 

therapy exercises. The investigated architectures of the GAN 

models are presented in Section IV. Section V presents the 

validation results of using GANs for generating movement 

data and for evaluating exercise performance. Section VI 

concludes the work. 

II. INTRODUCTION TO GAN 

As stated in the Introduction section, GANs consist of two 

subnetworks: a discriminator D, and a generator G 

subnetwork. The discriminator maps the input data to class 

probabilities, i.e., it models the probability distribution of the 

output labels conditioned on the input data. On the other hand, 

the generator models the probability distribution of the input 

data, which allows generating new data instances by sampling 

from the model distribution. Both subnetworks D and G are 

trained simultaneously in an adversarial manner, where the 

generator G attempts to improve in creating synthetic data that 

approximate the input data, and the discriminator D attempts 

to improve in differentiating the real data from the 

synthetically generated data.  

Let’s use x to denote the inputs to the network, where 

rx  and 
r
 denotes the probability distribution of the real 

input data. The goal of the generator in GANs is to learn a 

model distribution 
g

 that approximates the unknown 

distribution of the real data 
r
. For that purpose, a random 

variable z sampled from a fixed (e.g., uniform or Gaussian) 

probability distribution is used as the input to the generator, as 

illustrated in Fig. 1. During the training phase, the parameters 

of the generator are iteratively varied in order to reduce the 

distance, or divergence, between the distributions 
g

 and 
r
. 

The output of the generator is denoted x  here, i.e., the 

generator mapping is :G z x . 

To solve the described problem, a network loss function H 

is introduced in the form of a cross-entropy,  

       , log log 1
r gx x

H D G D x D x         .     (1) 

The discriminator is trained to maximize the loss function 

H, and the generator is trained to minimize the loss function H, 

i.e., 

 min max ,
G D

H D G .                              (2) 

In the game theory this is called a minimax game. The two 

subnetworks are trained in a competitive two-player scenario, 

where both the generator and discriminator improve their 

performance until a Nash equilibrium is reached. One can 

note that minimizing the function in (1) is equivalent to 

minimizing the Jensen-Shannon (JS) divergence between the 

real data distribution 
r
 and the model distribution 

g
. 

In the case of a binary classification, the discriminator is 

trained to maximize H by forcing  D x  to approach 1 and 

 D x  to approach 0 (Fig. 1). Contrarily, the generator is 

trained to minimize H by forcing  D x  to approach 1. 

Backpropagation is employed for updating the parameters of 

both the discriminator and generator, with the distribution g  

becoming more and more similar to
r
. 

The main disadvantage of GANs is the training instability. 

More specifically, if the generator is trained faster than the 

discriminator a mode collapse (also known as a Helvetica 

scenario) can occur, where the generator maps many values of 

the random variable z to the same value of x, and reduces its 
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capacity to learn the distribution of the real data 
r

. In 

addition, the model does not allow for explicit calculation of 

 g x , and as a result the quality of the generated data (e.g., 

images, as the most common data in GANs) is typically 

evaluated by visual observation and comparison to the actual 

input data. Another shortcoming of GANs is the presence of 

noise (and blur in the case of image data), due to the 

introduced random noise z as input to the generator.  

 

 
Fig. 1. A GAN model consists of a generator and a discriminator. The 

generator takes random noise as input and attempts to produce synthetic data 

that resemble the real data. The discriminator attempts to discriminate real 

data from the synthetic data produced by the generator. 

 

A number of variants of GANs have been proposed since 

the original work, which have addressed some of the above 

shortcomings [32]–[35], or have been designed for 

domain-specific solutions [36], [37]. In the ensuing sections a 

brief overview of several GAN architectures is presented that 

are relevant for the considered problem of modeling 

time-series data related to patient therapy movement 

episodes.  

A. Deep Convolutional GAN 

Deep Convolutional GANs (DCGANs) [32] introduce 

several constraints and modifications to the original GAN 

architecture for improved stability and performance. As the 

name implies, the generator and discriminator subnetworks 

are composed of multiple layers of convolutional 

computational units, as opposed to the multilayer perceptron 

(MLP) networks proposed in the original GAN paper [27]. 

The modifications in DCGANs are as follows. First, the 

network structure in DCGANs replaces pooling layers with 

strided convolutions, which allows the subnetworks to adjust 

the spatial down-sampling and up-sampling based on the 

input data. Second, it eliminates fully connected layers that 

are commonly used after convolutional layers in deep NNs, 

and it relies solely on convolutional layers. Third, the 

DCGANs model employs batch normalization, to stabilize the 

gradients increase during training and reduce the possibility 

of a mode collapse. Batch normalization is applied to all 

layers, except to output layer of the generator and the input 

layer of the discriminator. Fourth, ReLU activation function is 

used for all layers in the generator, except for the last layer 

where a Tanh activation function is applied. For the 

discriminator, leaky ReLU activation function is suggested 

for all layers. By applying the above recommendations, the 

authors have demonstrated improved classification 

performance on various datasets of images, and capabilities of 

generating complex and visually realistic images. 

B. Wasserstein GAN 

Wasserstein GANs (WGANs) [33] introduce a new loss 

function for training the generator and discriminator 

subnetworks. The loss function is based on the Wasserstein 

distance (also known as Earth Mover distance) between the 

real data distribution 
r

 and the model distribution 
g

 

learned by the generator, 

 
   ,,

, inf
x yr g

r gW x y


     .                    (3) 

In (3)  ,r g  denotes the set of joint distributions 

 ,x y  whose marginals are 
r
 and 

g
. In simpler terms, 

 ,x y  defines the amount of earth mass that needs to be 

moved from a point x to a point y in order 
r
 and 

g
 to be 

identical. Accordingly, the proposed loss function is derived 

as an approximation to the Wasserstein distance  

      ,
r gx x

H D G D x D x        .                 (4) 

Such distance function induces a weaker topology than the 

Jensen-Shannon (JS) divergence used in the original GANs 

and given in (1), and the Kullback-Leibler (KL) divergence 

commonly used in maximum likelihood estimation. The 

weaker topology provides a lever for the convergence of the 

probability distribution of the model g  to the real 

distribution of the data 
r
. If the discriminator  D x  is a K- 

Lipschitz function, it was proven that the proposed loss 

function in (4) is continuous and differentiable, and produces 

stable gradients during training, thereby improving the 

problem of training instability in GANs.  

In addition, the values of the adopted loss function H in (4) 

are correlated to the quality of the generated data samples by 

the generator, and with that WGANs provide a basis for 

quantifying the performance of the generator, rather than 

relying on visual observation of the generated samples. 

Accordingly, during the network training, the loss function is 

used to evaluate the training convergence, i.e., to identify if 

the network is being trained. 

To enforce a Lipschitz constraint on the discriminator, it 

was proposed to apply clipping of the parameters into a range 

 ,c c   after each gradient update, where c is a referred to as 

a clipping constant. The suggested value for c in the paper is 

0.01. 

Unlike GANs, the output of the discriminator in WGANs is 

not a probability; instead, it is an estimate of the Wasserstein 

distance between the distributions. Therefore, the authors use 

the term critic in the article, rather than discriminator, due to 

the similarity with the actor-critic methods in reinforcement 

learning.  

C. Recurrent GAN 

Recurrent GAN (RGAN) [31] is an alternative GAN model 

that is designed for handling multi-dimensional time-series 

data. For that purpose, recurrent computational units are 

employed for the discriminator and generator. More 

specifically, a layer of unidirectional Long Short-Term 

Memory (LSTM) computational units [12] is used for both 

subnetworks.  

The proposed approach was applied to medical records 
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data from an intensive care unit. The authors investigated the 

ability of RGAN to generate synthetic medical data samples 

and the potential for use in data augmentation in cases of 

insufficiency of real data for training deep learning models. In 

the article, RGAN was also implemented for processing 

synthetic sine waves sequences, as well as images. The 

authors claim that RGAN is more suitable for dealing with 

time-series data in comparison to the proposed GAN 

alternatives composed of layers of convolutional kernels. 

 

III. DATA 

A. Data Description 

The presented GAN models are validated on the University 

of Idaho – Physical Rehabilitation Movements Data 

(UI–PRMD) set. The full description of the dataset is 

provided in [38], and here only the most relevant data details 

are presented. The motion sequences related to two common 

training movements in physical therapy exercises — a deep 

squat, hereafter Movement 1, and a standing shoulder 

abduction, hereafter Movement 2 — are used in this work. A 

Vicon optical tracking system was used for the data collection, 

which employs eight high-resolution cameras for tracking the 

position of 39 reflective markers attached to strategic 

locations on a subject’s body. The optical tracking system 

captured the executed motions at 100 frames per second, 

while a dedicated software program assembled the recorded 

data into sequences of joint angle positions. The output data 

by the motion capture system are time-series consisting of 

117–dimensional vectors of joint angle displacements.  

Ten healthy subjects performed 10 repetitions for each of 

the two movements. In addition, the subjects performed 10 

repetitions for each movement in an incorrect fashion, 

simulating performance by patients with musculoskeletal 

constraints that preclude them from executing the movements 

in a manner prescribed by the physical therapist. The single 

repetitions of each movement were separated, by identifying 

the beginning and end time steps of each repetition. 

Consequently, this resulted in a dataset consisting of 100 

instances of correctly performed repetitions, and 100 

instances of incorrectly performed repetitions, for each 

movement. By elimination of poorly recorded repetitions, as 

well as elimination of the data of subjects who performed the 

standing shoulder abduction exercise with their left arm 

(versus the rest of the subject who used their right arm), the 

final number of repetitions was reduced to 90 samples for 

Movement 1, and 63 samples for Movement 2. The number of 

correct and incorrect repetitions was kept equivalent for the 

two movements.     

B. Data Notation 

The number of repetitions of a movement is denoted N, and 

the sequence of measurements by the optical tracking system 

for each correctly performed repetition is denoted 
nU , where 

n is used to index the individual sequences. The set of correct 

repetitions of a movement forms  
1

N

n n
 U . Each sequence 

nU  contains M temporally ordered vectors 

      1 2
, , ,

M

n n n nU u u u , where each temporal measurement 

is a D-dimensional vector, i.e.,  m D

n u . The adopted 

notation employs bold fonts for vectors and matrices.  

Similarly, the set of incorrect repetitions of the movements 

is denoted  
1

N

n n
 W . Each movement sequence 

nW  

consists of M vectors  m D

n w , for 1, 2, ...,m M . 

C. Data Preprocessing and Labeling 

The data preprocessing included scaling of the angular 

displacement measurements in the range  1, 1  . More 

specifically, all sequences in the correct and incorrect 

movement sets were divided by the maximum absolute value 

of the correct set, i.e.,   max
m

nu  for 1, 2, ...,n N , 

1, 2, ...,m M . In addition, each movement sequence 
nU  

and 
nW  was zero-mean shifted. Although it is commonly 

recommended to normalize the inputs to NNs into data 

vectors with a variance of 1, this is not applicable to the 

movement data since the variability of the individual 

dimensions is an important attribute of the data and needs to 

be preserved. 

As the goal of the considered task is to evaluate the level of 

correctness in the execution of movement repetitions during 

rehabilitation exercises, soft labels are assigned to each 

repetition instance. Root-mean-squared (RMS) deviation was 

adopted here as a metric for assessment of the repetition 

consistency. For this purpose, the RMS distance between each 

correct sequence 
nU  and the entire set  is calculated, i.e., 

    
2

1 1

1 1N M
i m

i n n

n iN M


 

   u u , for 1, 2, ...,i N .     (5) 

Similarly, the RMS distance between each incorrect 

repetition 
nW  and the set of correct movements is 

calculated as  

    
2

1 1

1 1N M
i m

i n n

n iN M


 

   w u , for 1, 2, ...,i N .    (6) 

One can note that in (6) the RMS deviation is calculated 

with respect to the set of correct movements.   

Soft labels are assigned next to each of the correct and 

incorrect data sequences as follows:  

1 i

il
 



 
 , 

1 i

il
 



 
 , for 1, 2, ...,i N .      (7) 

The resulting soft labels for the two movements are shown 

in Fig. 2. The parameter τ in (7) is a normalization factor that 

was empirically assigned the value of 100 for Movement 1 

and 200 for Movement 2. The labels in (7) were set with a 

goal to be distributed in the range  0, 1 , and to retain a 

separation boundary between the correct and incorrect 

movements. It can be noticed in Fig. 2 that several of the 

correct movements are performed in an inconsistent manner, 

and they are less similar to the remaining correct set of 

movements than some of the incorrectly performed 

movements. That was one motivation to introduce soft labels 

for the movement instances, instead of employing hard labels 

of 1’s for the correct movements and 0’s for the incorrect 
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movements.  

Furthermore, as stated earlier one of our objectives is to 

assess the potential of GAN models for evaluation of the level 

of correctness of therapy movements. The provision of soft 

labels allows to train an NN on a set of correct and incorrect 

movements, and to validate the trained networks on another 

set of correct and incorrect movements.  Also, with the use of 

soft labels the problem was cast from binary classification 

into a one-class classification, where all data instances belong 

to the same class of movement but have varying levels of 

movement quality. In addition, we believe that the use of soft 

labels provides richer information of the input data and a basis 

for an improved performance of both the generator and 

discriminator subnetworks.  

One final note regarding the above procedure for applying 

soft labels to the motion data is that RMS deviation is 

probably a suboptimal metric for quantifying the distance 

between the high-dimensional data sequences. Although it 

was adopted here for proof of concept, the selection of metrics 

for the task at hand is one of the authors’ topics for future 

research. 
 

 
(a) 

 
(b) 

Fig. 2. Soft labels for: (a) Deep squat movement; (b) Standing shoulder 

abduction movement. The labels for both correct and incorrect sequences for 

the movements are shown in the figure. 

 

IV. NETWORK ARCHITECTURES 

The paper investigates the GAN variations presented in 

Section II (and their sub-variants in one case). A basis for 

comparison of the considered architectures is the DCGAN 

model depicted in Fig. 3. The generative subnetwork consists 

of one fully connected layer and three padded convolutional 

layers. Following the guidelines in the DCGAN paper [26], 

ReLU activation functions are used in the generator except in 

the last layer that uses Tanh activation, and strides are utilized 

instead of pooling layers. As illustrated in Fig. 3, the 

discriminative subnetwork has three padded convolutional 

layers. Leaky ReLU activation functions are introduced in the 

discriminator, and a dropout rate of 20% was applied to 

prevent overfitting. Adam optimizer was the choice in both 

subnetworks. 

The investigated GAN models are fully described in Table 

I. The networks’ structures are based on the DCGAN model 

presented in Fig. 3. The networks are explained in more detail 

in the next section.   
 

 
Fig. 3. DCGAN model layers consisting of a generator and discriminator 

subnetworks composed of convolutional and MLP layers of hidden 

computational units. 

 
TABLE I: GAN NETWORK ARCHITECTURES

1 

Network Generator Discriminator 

GAN 

50 (LR) × 100 (LR) × 200 

(LR) × M = 260, D = 10 

(TH): Adam 

100 (LR,D) × 50 (LR,D) × 

1 (S): Adam 

DCGAN-1 

100 (R, BN) × M = 260, D = 

10 (R, BN) × Conv1D (40, 5, 

R, BN) × US(2) × Conv1D 

(20, 5, R, BN) × US(2) × 

Conv1D (D = 10, 5, TH): 

Adam 

Conv1D (20, 5, LR, D, 

St:2) ×  Conv1D (40, 5, 

LR, D, BN) × Conv1D 

(80, 5, LR,D, BN) × 1 (S): 

Adam 

DCGAN-2 

100 (LR, BN) × M =260, D = 

10 (LR) × Conv1D (40, 5, 

LR) × US(2) × Conv1D (20, 

5, TH) × US(2) × Conv1D 

(D = 10, 5, TH): Adam 

Conv1D (10, 5, LR, D, 

St:2) × Conv1D (20, 5, 

LR, D) × Conv1D (40, 5, 

LR,D) × 50 (LR,D) × 1 

(S): Adam 

WGAN 

100 (LR) × M = 260, D = 10 

(LR) × Conv1D (40, 5, LR) × 

US(2) × Conv1D (20, 5, LR) 

× US(2) × Conv1D (D = 10, 

5, TH): Adam 

Conv1D (10, 5, LR, D, 

St:2) ×  Conv1D (20, 5, 

LR, D) × Conv1D (40, 5, 

LR,D) × 50 (LR,D) × 1 

(S): SGD 

RGAN 
(M = 260,5) × LSTM(100) : 

Adam 
LSTM(100) × 1 (S): SGD 

1 Acronyms: LR – Leaky ReLU activation, R – ReLU activation, TH – Tanh 

activation, S – Sigmoid activation, BN – Batch normalization, US – 

Upsampling, D – Dropout, St – Strides, SGD – Stochastic Gradient Descent. 

 

V. RESULTS 

A. Movement Generation 

The performance of the GAN representations listed in 

Table I is examined in relation to their capacity to generate 

data samples that resemble the time-series data of the actual 

physical therapy movements.  

A subset of the data with reduced dimensionality is first 

considered, where 10 dimensions with the largest variation 

are extracted and used as input to the network. Several 

examples of the sequences for Movement 1 are presented in 

Fig. 4(a).  

One undesirable effect in the synthetic data samples 

produced by the GAN models is the distortion of the ends and 

beginnings of the generated sequences. To reduce the effect of 

the distortions, 10 time steps of synthetic data were added at 

the beginning and at the end of each sequence. The beginning 

10 time steps are set equal to the first vector in each sequence, 

and the ending 10 time steps are set equal to the last vector in 
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the sequence. Consequently, for Movement 1 the number of 

time steps M was increased from 240 to 260, and for 

Movement 2 the length M was increased from 231 to 251 time 

steps.  

The GAN architectures in Table I are related to processing 

the input data for Movement 1, with the number of time steps 

M = 260, and dimensionality D = 10. The NNs for Movement 

2 and for the presented cases with different dimensionality 

have the same structure as the GANs presented in Table I, and 

only the parameters M and D are varied. 

For Movement 1, the subset for training purposes includes 

70 correct and 70 incorrect movement repetitions, and the 

validation subset consists of the remaining 20 correct and 20 

incorrect sequences. Similarly, for Movement 2, the training 

and validation subsets have 98 and 28 sequences of correct 

and incorrect repetitions, respectively.  

 

 
(a)  

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4. (a) Samples of 10-dimensional Movement 1 sequences as recorded with the optical tracking system. (b) Examples of generated sequences with the 

GAN network from Table I. (c) Examples of generated sequences with the DCGAN-2 network from Table I. (d) Examples of generated sequences with the 

WGAN network from Table I. (e) Examples of generated sequences with the RGAN network from Table I. 

 

The sequences generated with the original GAN model 

based on the structure outlined in Table I and consisting of 

MLP layers of computational units are shown in Fig. 4(b). 

Conclusively, the data is quite noisy, and the network 

experiences a mode collapse early in the training, failing to 

refine the output of the generator. The next examined model is 

DCGAN-1 from Table I, which implements the network 

structure recommended by the authors of [26]. However, the 

model was not able to produce data that resemble the real 

motion sequences. One potential reason is that the DCGAN 

network design reported in [26] is more applicable to image 

data. The suggested batch normalization of the hidden layers 

was the main contributing factor for the network failure with 

the human movement input data. Nevertheless, a variant of 

the model listed in Table I as DCGAN-2 provided realistic 

synthetic data. This network employs convolutional layers of 

units in a slightly altered architecture in comparison to the 

recommended DCGAN-1 model. Several representative 

examples of the generated sequences by DCGAN-2 are shown 

in Fig. 4(c). Next, instances of the synthetic data generated 

with WGAN are shown in Fig. 4(d). The quality of the data is 

comparable to the sequences generated with DCGAN-2. 

Overall, WGAN model exhibited improved stability during 

training and, to a certain extent, visually improved quality of 

generated data. The last investigated model is RGAN with the 

network structure presented in Table I, consisting of recurrent 
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LSTM computational units. A set of generated data is 

displayed in Fig. 4(e). The RGAN model created the 

smoothest synthetic sequences for Movement 1, and it 

outperformed the other models that are based on 

convolutional and MLP layers of hidden units. 

Another validation case is presented next for Movement 2, 

related to the standing shoulder abduction exercise. In this 

case, the time-series dimensionality is reduced to the three 

dimensions with the largest variance. Considering the strong 

correlation between the joint angular displacements in human 

movements, a body of work in the literature relies on only 

several most important dimensions for motion modeling. As 

expected, for the considered motion the dimensions with the 

largest variability correspond to the angular displacements of 

the upper arm, lower hand, and the wrist. Two movement 

repetitions as acquired by the optical tracker are displayed in 

Fig. 5(a). Similar to the first validation case, the networks 

presented in Table I are employed for modeling the 

movements and generating synthetic data samples. Instances 

of the generated sequences with the conventional GAN model 

are shown in Fig. 5(b), and similar to Fig. 4(b), the sequences 

are quite noisy. Examples of the generated data with the 

DCGAN-2 and WGAN models are shown on Figs. 5(c) and 

(d), respectively. The quality of the GAN-generated 

sequences is visually appealing, and one can notice that the 

networks demonstrated improved performance in the case of 

low-dimensional input data. Conversely, the samples 

generated with DCGAN-2 are less smooth for this movement. 

The generated data with RGAN is presented in Fig. 5(e). 

In summary, the RGAN model produced the smoothest and 

visually attractive synthetic movement sequences for the two 

movements. The GAN models based on layers of 

convolutional kernels were also able to generate data 

sequences of comparable and acceptable quality. The 

synthetic data samples produced with the original GAN 

model are the least smooth when compared to the other cases, 

although the model was able to learn the general pattern of the 

movement sequences.  

 

       
(a)                         (b) 

      
(c)                          (d) 

 
(e) 

Fig. 5. (a) Samples of 3-dimensional Movement 2 sequences as recorded with the optical tracking system. (b) Examples of generated sequences with the GAN 

network from Table I. (c) Examples of generated sequences with the DCGAN-2 network from Table I. (d) Examples of generated sequences with the WGAN 

network from Table I. (e) Examples of generated sequences with the RGAN network from Table I. 

 

B. Movement Classification 

Next, the ability of the GANs presented in Table I to 

classify therapy movement repetitions is evaluated. For 

comparing the performance of the models, a metric is adopted 

which sums the absolute differences between the predicted 

probabilities of the discriminator and the soft labels for the 

data instances 
kX  in the validation subset, i.e., 

 
1

K

k k

k

C l


  X ,                            (8) 

where K denotes the number of validation sequences.  

The values of the metric C for the considered GAN models 

are presented in Table II. Presented in the table also are the 

performance scores of NNs consisting only of the 

discriminator subnetwork (i.e., without a generator 

subnetwork). In Table II, the corresponding NNs have an 

extension ―-Disc.‖ The values of the metric for the WGAN 

model are not presented in the table, as the outputs of its 

discriminator are not probabilities (but are values of the 

Wasserstein distance). Table II contains the distances C for 

cases of 3-dimensional and 10-dimensional movement 

sequences.    

For the discriminative NNs in Table II, the presented 

numbers correspond to the average value of the parameter C 

based on five runs of the models. The values in the parenthesis 

preceded with the symbol S are the respective standard 

deviations. Early stopping of 100 epochs was employed in the 

training phase. 

For the GAN models, the presented values of the parameter 
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C in Table II are based on a single run of the networks. In 

particular, the values in the parenthesis preceded with the 

symbol M are the minimum values of the parameter C, 

whereas the upper numbers represent the average values of 

the parameter C based on the preceding 25 epochs and the 

succeeding 25 epochs relative to the minimum value. 

Averaging was employed in order to filter out the significant 

oscillations in the obtained C values with the GAN models. 

One example of the performance of the considered models 

is depicted in Fig. 6. The figure shows the soft labels 

calculated based on (7) and the output probabilities of the 

DCGAN-1-Disc model. Fig. 6(a) displays the scores for 

Movement 1, which has a validation set of 40 sequences. In 

the figure, the first 20 sequences are drawn from the set of 

correct movements, and the last 20 sequences are drawn from 

the set of incorrect movements. One can notice that the 

network evaluates the correct movements very accurately, and 

that for the incorrect movements the network predictions are 

close to the assigned labels. Similarly, Fig. 6(b) presents the 

labels and the network predictions for Movement 2, for which 

the validation set consists of 28 data sequences. The predicted 

labels for the movement repetitions for this case also 

approximate the actual labels. 

From the results in Table II regarding the discriminative 

NNs, it can be concluded that DCGAN-2-Disc achieved the 

lowest cumulative deviation between the input soft labels and 

the predicted labels, in comparison to the other discriminative 

models. Overall, the 10-dimensional sequences provided 

richer discriminative information of the movements and 

produced better results in comparison to the 3-dimensional 

sequences. The discriminators of the original GAN and 

DCGAN-1 also achieved comparable classification accuracy. 
 

 
(a) 

 
(b) 

Fig. 6. Soft labels and predicted labels by the DCGAN-1-Disc model for: (a) 

Deep squat movement; (b) Standing shoulder abduction movement. 

 

In comparison to the discriminative NNs, the predicted 

labels of the movements by the GAN architectures are 

characterized by lower deviation values C in relation to the 

input labels. The obtained values are shown with a bold font 

in Table II. Almost in all cases, the GAN models 

outperformed the discriminative NNs. The discriminator 

based on recurrent computational units RGAN-Disc produced 

lower or comparable classification accuracies, compared to 

the models with convolutional units. The RGAN 

demonstrated lower classification accuracy and the results are 

not shown in the table. 

Among the drawbacks of employing GANs for this task is 

the computational expense, as the GAN networks took 

significantly longer to train in comparison to the 

discriminative NNs, and in some cases, the GAN models 

required an additional fine-tuning of the hyperparameters to 

obtain the reported classification accuracy.   
 

TABLE II: CLASSIFICATION ACCURACY RESULTS FOR THE CONSIDERED 

GAN MODELS AND THE CORRESPONDING DISCRIMINATIVE MODELS
1 

Network 
Movement 1 Movement 2 

3D 10D 3D 10D 

GAN 
2.220 

 (M1.821) 

2.097  

(M1.791) 

0.801 

(M0.582) 

0.797 

(M0.607) 

GAN-Disc 
2.254 

(S±0.053) 

2.683 

(S±0.145) 

1.008 

(S±0.101) 

0.922 

(S±0.042) 

DCGAN-1 
3.965 

(M2.601) 

2.237 

(M2.001) 

1.136 

(M0.989) 

0.789 

(M0.614) 

DCGAN-1-Disc 
3.251 

(S±0.637) 

2.413 

(S±0.058) 

0.866 

(S±0.025) 

0.852 

(S±0.225) 

DCGAN-2 
3.649 

(M1.865) 

1.999 

(M1.336) 

0.836 

(M0.745) 

0.793 

(M0.645) 

DCGAN-2-Disc 
2.309 

(S±0.160) 

2.057 

(S±0.318) 

0.799 

(S±0.016) 

0.947 

(S±0.005) 

RGAN-Disc 
2.637 

(S±0.160) 

2.446 

(S±0.455) 

1.336 

(S±0.149) 

0.878 

(S±0.046) 
1 M – minimum value; S – standard deviation.  

 

VI. CONCLUSION 

The article employs GANs for modeling and evaluation of 

physical rehabilitation movements. Four relevant GAN 

models are considered, which include: GAN, DCGAN, 

WGAN, and RGAN. The ability of the networks to generate 

data instances that resemble two sets of therapy movements is 

evaluated. Further, the classification accuracy of the GANs is 

assessed based on introduced soft labels for the movement 

sequences. The presented results demonstrate the capacity of 

the considered GAN models to learn the underlying structure 

of the movement sequences, and with that, to generate 

realistic synthetic movement data, and to predict the level of 

performance consistency on a set of unseen movement 

sequences. These capabilities furnish a potential for 

augmentation of datasets of therapy movements with 

synthetically generated samples for improved movement 

modeling, and for utilization in automated monitoring and 

evaluation of the level of correctness of patient movements in 

home-based therapy programs. 
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