
 

 

Abstract—Sampling techniques for data mining applications 

can be broadly categorized into Random Sampling (RS), Active 

Learning (AL) and Progressive Sampling (PS). Progressive 

Sampling techniques grow an initial sample up to the point 

beyond which model accuracy no longer significantly improves. 

These methods have been shown to be computationally efficient. 

The sampling schedule to be used with progressive sampling 

techniques is still an ongoing issue of research due to the fact 

that available sampling schemes may either overshoot, resulting 

in a final sample which is larger than necessary, or they may 

grow the sample too slowly thus requiring many iterations of 

the algorithm before convergence is reached. We demonstrate 

how using Batch Mode Uncertainty Sampling from the domain 

of active learning, to progressively grow the sample, can 

significantly improve the performance of progressive sampling. 

Through a series of trials on both simulated and real data, we 

show that our proposed Progressive Batch Mode Uncertainty 

Sampling (PBMUS) algorithm converges with a comparable or 

smaller number of data points at higher accuracy and in some 

cases, less computational time. 

 
Index Terms—Active learning, uncertainty sampling, 

progressive sampling, linear regression with local sampling, 

random sampling, sampling, machine learning.  

 

I. INTRODUCTION 

In recent years, the amount of data being generated every 

day around the world has reached staggering proportions [1]. 

Novel throughput technologies capable of gathering and 

storing vast amounts of data have ushered in the era of “Big 

Data” and these advancements have had a profound impact 

on fields as diverse as finance, government and science. The 

growth in the size of data sets however, has, in many cases, 

made standard statistical techniques and algorithms 

computationally infeasible and over the last decade a 

growing body of literature has emerged, concerned with 

scaling-down sampling techniques.  

The task of generating a sample from a given data set is 

confronted by two, often competing requirements. Firstly, we  

wish to produce a sample which is nearly as informative as 

the entire data set. What this means, is that a learning 

algorithm should be able to extract the same information 

from the sample as it would have done, from the entire data 

set [2]. The second requirement of the sample is that it should 

be as small as possible.  

Broadly speaking, scaling-down sampling techniques can 

be categorized into 3 types. 1) Random Sampling (RS) [2], 2) 

Active Learning (AL) [3] and 3) Progressive Sampling (PS) 

[4]. Each of these categories tackles the issue of sampling in a 
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different way. Random sampling techniques are the easiest to 

implement but make no attempt to ensure that the sample 

drawn is as informative as the entire data set nor do they 

attempt to find the smallest sample possible [5]. Active 

learning techniques are predominantly concerned with 

finding the most informative data points to include in the 

sample [3] with the final size of the sample usually being 

arbitrarily decided by the user. 

Progressive sampling techniques attempt to satisfy both 

sampling requirements by making use of the concept of the 

learning curve [6]. Essentially, PS techniques work by 

training a learning algorithm on an initial sample then 

gradually growing this sample until the learners accuracy no 

longer improves. PS is both simple to use and has been shown 

to be extremely efficient at generating informative samples 

[7].  

An ongoing area of research in PS is the sampling schedule 

to be used, that is, the method by which new data points are 

added at each iteration. The most cited methods for growing 

the sample are Arithmetic Sampling AS [8] and Geometric 

Sampling GS [9]. The first of these techniques, AS, may 

require a very large number of iterations before accuracy 

converges and the second technique, GS, may overshoot and 

produce a final sample which is larger than necessary [5].  

In the following paper, we demonstrate how combining 

ideas from the domains of progressive sampling and active 

learning, results in a simple and computationally tractable 

algorithm capable of rapidly achieving convergence. Our 

proposed Progressive Batch Mode Uncertainty Sampling 

(PBMUS) algorithm, follows the basic steps of standard PS 

whereby the sample is grown progressively and a 

convergence test is performed at each iteration. However, at 

each iteration of the algorithm, new data points are added 

using Uncertainty Sampling (US).   

Results on both simulated and real data confirm that the 

entire learning curve is shifted to the left and convergence 

occurs with a comparable or smaller number of data points as 

PS and often at higher levels of accuracy and less 

computational time. Our paper begins with an overview of PS 

and US, followed by a description of our proposed algorithm 

and empirical results.  

   

II. OVERVIEW OF CURRENT SAMPLING METHODS 

A. Progressive Sampling 

The central idea of progressive sampling techniques is the 

learning curve, depicted in Fig. 1. Simply speaking, as the 

size of the sample grows, so too does the accuracy of any 

learning algorithm trained using this sample. Gradually 

however, the gains in accuracy become smaller for each 

progressive data point added to the sample until eventually, 
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the learners’ accuracy plateaus. Progressive sampling 

techniques therefore, attempt to grow samples only up to the 

point at which accuracy plateaus and by doing so these 

techniques attempt to satisfy both the requirements of 

generating the most informative sample which is also as 

small as possible. 

The two fundamental practical issues which arise in 

progressive sampling techniques are  

1) Testing for convergence of accuracy.  

2) The sampling schedule to be used.   

Testing for convergence refers to any method of 

determining whether or not accuracy has converged (whether 

or not the sample accuracy has plateaued). As such, 

convergence tests essentially represent a stopping criteria and 

are of paramount importance. The most common technique 

found in the literature is linear regression with local 

sampling method (LRLS) [9].  

The second practical issue of progressive sampling is the 

sampling schedule to be used. This refers to the sampling 

method used to progressively grow the sample. The issue 

here is that if samples are grown too rapidly, we may 

overshoot with our sample, resulting in a sample which is 

larger than necessary. Conversely, if samples are grown too 

slowly (in small increments) then the computational cost of 

testing for convergence at each step may be too large. The 

most common techniques found in the literature are 

arithmetic sampling (AS) [5] and geometric sampling (GS) [5] 

which are both variations of random sampling.  

In the AS framework, an initial sample 𝑆0  of 

predetermined size is selected from the data set. 

Subsequently, a set number of data points 𝑁𝜃  is 

consecutively added to this initial sample such that  

                   𝑆𝑖  =   𝑆0  +   𝑖 ∗  𝑁𝜃                              (1) 

A simple example of arithmetically generated progressive 

samples where 𝑆0 = 500  and 𝑁𝜃 = 100 , is 

  500, 600, 700,… , 10000 . A major drawback of this 

technique is that if 𝑁𝜃  is too small, a very large number of 

iterations will be needed to reach convergence.  

Alternatively, in the GS framework, the initial sample 𝑆0 is 

grown geometrically by multiples of a predefined number 𝜃 

such that  
 

                                 𝑆𝑖 =  𝜃𝑖 ∗  𝑆0                                     (2) 
 

A simple example of a geometrically generated 

progressive samples where 𝑆0 = 500  and 𝜃 = 2 , is 

{ 500, 2000, 4000,… . ,16000 }. With GS, a major drawback 

of the technique is its tendency to overshoot, since the sample 

size rapidly grows.  

B. Active Learning  

Active learning is a form of semi-supervised machine 

learning, in which the learning algorithm is allowed to choose 

the data from which it learns. At their core, active learning 

techniques attempt to locate the most informative data points 

to include in a sample. Active learning techniques can be 

categorized into  

1) Uncertainty Sampling [10]  

2) Minimizing Hypothesis Space [11], [12] 

3) Variance Reduction [13], [14]  

The algorithm proposed in this paper combines uncertainty 

sampling with PS and as such we only provide an overview 

of uncertainty sampling here.   

Uncertainty sampling is the most commonly used and 

extensively researched active learning framework [15]. The 

basic idea is to provide a learning algorithm with an initial 

sample 𝑆0 and build an initial model 𝑀0. Subsequently, the 

algorithm passes through the remaining data selecting only 

those data points about which it is least certain to include in 

the sample. A simple example of uncertainty sampling would 

be the scenario where we have a data set containing 

𝑋1,𝑋2 ,… . . ,𝑋𝑛  independent variables and a dependent, 

binary variable 𝑌 and we are interested in building a standard 

logistic regression model for predicting 𝑌.  

We would begin here with an initial sample 𝑆0  and 

construct our initial logistic regression model 𝑀0 which takes 

the form  

𝑌𝑖 =  
𝑒

( 𝐵0+ 𝐵1𝑋1𝑖
+⋯+𝐵𝑛𝑋𝑛𝑖

)  

𝑒
( 𝐵0+ 𝐵1𝑋1𝑖

+⋯+𝐵𝑛𝑋𝑛𝑖
)  

+  1
                          (3) 

where the 𝐵0  ,𝐵1  ,… . ,𝐵𝑖  in the above equation are the 

standard logistic regression coefficients. We then pass 

through the subsequent data points in the full data set using 

the model 𝑀0 to predict the probability of 𝑌 = 1 for each of 

the observations. Since we are dealing with a binary classifier 

it suffices to select the points which are closest to the 0.5 

boundary [3], that is, we only select observations for which 

the following holds 
 

0.45   ≤    
𝑒
  𝐵0+ 𝐵1𝑋1𝑖

+⋯+𝐵𝑛𝑋𝑛𝑖
  

𝑒
  𝐵0+ 𝐵1𝑋1𝑖

+⋯+𝐵𝑛𝑋𝑛𝑖
  

+  1

   ≤ 0.55            (4) 

 

Every time a new data point is added to our initial sample 

𝑆0, we use the updated sample to learn a new model 𝑀𝑖   and 

use the new model to predict subsequent data points. We 

continue in this fashion until our sample has reached a 

predefined size 𝑆𝐹𝑖𝑛𝑎𝑙 . The three most common types of 

uncertainty found in the literature are least confident, margin 

and entropy, with the latter being the most commonly used 

[3]. 

Despite the widespread use of uncertainty sampling, a 

major drawback of the technique (and most other active 

learning techniques) is the fact that the model 𝑀 is updated 

one instance at a time which ultimately causes computation 

time to increase drastically. A number of authors [16], [17] 

have proposed a slight modification of standard uncertainty 

sampling known as batch mode uncertainty sampling. In this 

framework, instead of updating the model 𝑀 one instance at 

a time, the model is updated after a batch or group of 

instances have been added to the sample and the technique 

has been found to be very effective and less computationally 

costly. 

    

III. PROGRESSIVE BATCH MODE UNCERTAINTY SAMPLING   

Again we assume the scenario where we have a data set 

containing 𝑋1,𝑋2,… . . ,𝑋𝑛  independent variables and a 

dependent, binary variable 𝑌  and we are interested in 

building a classification model for predicting 𝑌 . Our 

proposed method proceeds by selecting an initial sample 𝑆0, 

applying a learner to it and constructing an initial model 𝑀0. 

Using 𝑀0 , we predict the probabilities of the subsequent 
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𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡  data points and for each observation 𝑖 in 𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡  we 

calculate  

  𝑃𝑀0
  𝑌𝑖 = 1   𝑋1𝑖

,𝑋2𝑖
,… . .𝑋𝑁𝑖

  −   0.5 |              (5) 

That is, we calculate the absolute distance between the 

predicted probability of observation 𝑖 and the 0.5 decision 

boundary for each 𝑖 in 𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡  . Having done so, we select a 

subgroup 𝑁𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛  , which are closest to the decision 

boundary and add them to our initial sample.  

A new model 𝑀1 is then learnt and we test our updated 

sample 𝑆1 for convergence. If convergence is detected, our 

algorithm ends, if not we repeat the process of adding 

𝑁𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛  from subsequent points until convergence is 

detected.  

Essentially, our proposed algorithm is a modification of PS 

with arithmetic sampling, only the 𝑁𝜃  data points from 

equation (1) above are selected using uncertainty sampling. 

Furthermore, we do not update our model 𝑀  after each 

individual observation is added but only after 𝑁𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛  

points have been added, that is, we only update the model 𝑀 

at each iteration of the algorithm, as would be the case in 

standard PS. At each updating of the model, we test for 

convergence of the algorithm and we use the test most 

commonly found in the literature which is LRLS.  

1) Convergence should occur with a smaller number of data 

points than standard PS due to the fact that PBMUS 

selects only those points about which the model M is least 

certain about. Specifically, we expect the learning curve 

depicted in Fig. 1 to be shifted to the left. 

2) Due to the fact that PBMUS will pass through a greater 

number of data points, but only select a few, this 

technique is not prone to ignoring large clusters of data 

which may not be located near the beginning of the data 

set. 

3) The computational cost of using US is greatly reduced, 

since we only update the model M at each iteration of the 

algorithm and not after each data point is added. 

 

 
Fig. 1.  Hypothetical learning curve. 

 

IV. SIMULATION RESULTS 

To begin with, we created a data set with 30 explanatory 

binary variables and one binary outcome variable and 

sampled the coefficients of the explanatory variables from 

the uniform distribution with {min = −4 , max = 4 } . We 

created two million training observations and 200,000 testing 

observations. We used Logistic Regression as a learning 

algorithm with an initial sample of 500 observations for both 

PBMUS and PS and set, 𝑁𝜃 =  𝑁𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = 100. That is, at 

each iteration of both methods we added 100 observations 

where the PS algorithm added these observations randomly 

and PBMUS added them using uncertainty sampling. 

𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡  was set at 10,000 , meaning that at each iteration of 

our algorithm, we use our model 𝑀𝑖  to predict the subsequent 

10,000 data points selecting only the closest 100 points to 0.5 

decision boundary.  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Simulation results. 

 

This simulation was repeated 100 times, with a new 

synthetic data set each time and the results on data sets with 

30 covariates are shown in Fig. 2(a). We furthermore 

repeated the same simulations on synthetic data sets with 60, 

120 and 240 explanatory variables, sampling the coefficients 
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We expect our proposed method to deliver a number of 

advantages to standard PS or US including 



 

of the explanatory variables from the uniform distribution 

with {min = −4 , max = 4 } and the results are all displayed 

in Fig. 2.   

A summary of our simulation results are presented in Table 

I below. The results indicate that PBMUS managed to reach 

convergence with a fewer number of data points and at a 

higher accuracy and as would be expected, the difference 

between PBMUS and PS is larger in data sets with a larger 

number of variables. It is also worth noting that the accuracy 

of PBMUS remained stable as the number of explanatory 

variables increased whereas the accuracy of PS gradually 

declined as the number of variables increased.  

A more remarkable result however concerns the 

computational time required to perform both algorithms. In 

the data sets with 30 explanatory variables, PBMUS required 

an additional 15 seconds to reach convergence as compared 

to PS. However, as the number of explanatory variables 

increased, the computational time of PS increased at a faster 

rate and eventually, PBMUS was actually faster.  

 

TABLE I: COMPARISON OF PBMUS AND PS APPROACHES 

 
 

V. TEST ON REAL DATA 

We further tested our proposed technique on real data sets 

from the UCI Repository.  

A. Poker Hand Data  

The Poker Hand data set [18] contains 10 explanatory 

variables and 1 outcome variable with 1 million training data 

points and 25,010 testing observations. The outcome variable 

is not binary as was the case in our simulations, but is 

composed of 10 different categories. Furthermore, for this 

data set we used C5.0 [19] as our learning algorithm instead 

of LR.  

As was the case with our simulated data we set the initial 

sample 𝑆0 at 500 observations but given the relatively limited 

number of training observations available we set      

𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡 = 10,000  and 𝑁𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = 5,000 . At each 

iteration of the algorithm, we selected the closest 50% of 

predicted observations to the decision boundary as opposed 

to the closest 1% as was the case in our simulation studies. 

Fig 3 below depicts the results.  

 

 
Fig. 3. Results on Poker Hand data set. 

 

Our results are depicted in Fig. 3. As was the case in our 

simulations studies, the sample generated by PBMUS 

dominates the PS sample in terms of accuracy. Specifically, 

convergence with PBMUS occurred after 349 seconds at a 

sample size of 316,000 data points with an accuracy of 79.9% 

while with PS convergence occurred after 558 seconds at a 

sample size of 416,000 data points and an accuracy of 70.7%. 

B. Credit Default Data   

The credit default data set [18] contains 23 explanatory 

variables and 1 binary outcome variable with a total of 30,000 

observations. For this data set, we used 25,000 observations 

as training data and 5,000 observations as testing data. 

Furthermore, we used standard logistic regression as our 

learning algorithm and the Area Under the Curve statistic 

(AUC) to compare the 2 techniques instead of accuracy. We 

set 𝑆0 at 100, 𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡 = 200 and 𝑁𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = 100. That is, 

at each iteration of the algorithm, we again selected the 

closest 50% of predicted observations to the decision 

boundary. Fig. 4 below depicts the results.  

As is clear in Fig. 4, the learning curve generated by 

PBMUS is shifted to the left and dominates the PS learning 

curve. Convergence with PBMUS occurred with 3,900 

observations at an AUC of 73.4% and with PS it occurred 

with 7,900 observations at an AUC of 73.2%.  

 

 
Fig. 4. Results on Credit Default data set. 

 

C. Wine Quality Data  

The wine quality data set [18] contains 11 explanatory 

variables and 1 outcome variable representing wine quality 

taking values from 0 to 10. We recoded the outcome variable 

as follows:  

 If wine quality <= 5 then wine quality = 0  

 If wine quality > 5 then wine quality = 1  
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There are a total of 6,497 data points (for both white wine 

and red wine) and as such we used 5,000 observations as 

training data and 1,497 observations as testing data. For this 

data set, we used Logistic Regression and included all second 

order interaction terms in the models and the AUC statistic 

was again used to compare the performance of the sampling 

techniques. Given the size of the small size of the data we set 

𝑆0 at 50, 𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡 = 20 and 𝑁𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = 10 and the results 

are depicted in Fig. 5 below.  

Using LRLS, convergence with PBMUS was detected 

after 980 data points were added to the sample at an AUC of 

80% whereas with PS convergence was detected with a 

sample of 930 data points at an AUC of 79.2%.  So although 

PBMUS did not generate a smaller sample at convergence, it 

did generate a sample of very similar size and with greater 

AUC. It is also worth noting here, that LRLS detected 

convergence fairly early for both PBMUS and PS since we 

continued growing the samples beyond convergence and a 

greater AUC was achieved with both sampling techniques.  

 
Fig. 5. Results on Wine Quality data set. 

 

VI. CONCLUSION 

In a survey conducted of annotation projects [17] for 

natural language processing tasks, it was found that only 20% 

of respondents had ever decided to use active learning 

techniques and one of the main reasons cited for this lack of 

interest was the time required to execute most available 

strategies. In this paper, we have attempted to combine 

elements of both progressive sampling and active learning to 

develop a technique that is both effective and 

computationally tractable.  

Notwithstanding many of the shortcomings of progressive 

sampling, the fundamental concept of using a learning curve 

to grow samples, is intuitively sound and has been 

demonstrated to be very efficient in many cases. By 

combining this concept with a simple modification of 

standard uncertainty sampling, we have demonstrated that it 

is possible to generate samples which are smaller in size, 

produce greater accuracy and require little additional or even 

less computation time.  
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