
  

 

Abstract—With the development of sensor network 

technologies and the popularization of Industry 4.0, data-driven 

machine health monitoring has become increasingly important, 

not only to save maintenance costs of factory machinery, but also 

to guarantee the safety of factories. However, traditional 

data-driven algorithms are limited by two aspects. Firstly, the 

information fusion of multiple sensors heavily relies on domain 

knowledge. Secondly, imbalanced distribution of machinery 

data brings a challenge for the machine learning algorithm 

performance. In order to tackle these issues, we propose a 

general methodology to organize collected sensor data into 

image form and utilize visual element detectors learned by a 

pre-trained convnet to explore meaningful information hidden 

in data. We also design a Convolutional Neural Network (CNN) 

model, named Senvis-Net. Applied to an imbalance learning task 

of remaining useful life (RUL) prediction, our model 

outperforms the state-of-the-art CNN that learns directly from 

sensor data. Moreover, transferring visual element detectors can 

bring another 20.1% ~ 97% performance benefits depending on 

severity of imbalance. 

 
Index Terms—Machine health monitoring, convolutional 

neural network, imbalanced data, transfer learning.  

 

I. INTRODUCTION 

Significant development of sensor networks has generated 

large amount of data in factories. On the other hand, deep 

learning has made great achievements in fields of computer 

vision, speech recognition, and natural language processing, 

due to the emergence of massive data and powerful 

computing resource. While revolutionary changes brought by 

deep learning to the area of machine health management 

should be expected, the corresponding progress is slow. There 

are two major challenges to overcome. Firstly, machine 

domain knowledge is required to identify representative 

features in data on a case by case basis by individual 

applications. Secondly, the class distribution of machinery 

data in real life normally follows a highly-skewed pattern, 

which means most data samples belong to a few categories 

(e.g., faulty data is much harder to collect than healthy data). 

Similar problems occur in some computer vision area, such as 

medical image analysis [1] and it has been proven that they 

can be partly solved by transfer learning from irrelevant 

ImageNet dataset [2]. 

Convolutional neural network (CNN) can automatically 
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learn a hierarchical feature representation, which makes it an 

appealing tool to explore high dimensional data. Since deep 

CNN has been applied successfully to the task of ImageNet 

classification challenge, low-level filters in trained CNN have 

been found out to be detectors for elementary components in 

natural images [3]. Considering these low-level filters learned 

by CNNs in computer vision area may be applied to artificial 

images constructed by sensor data, we propose a 

methodology that organizes collected sensor data into image 

form and then transfers those visual information to help learn 

meaningful information hidden in data. The methodology can 

be broadly applied to different machine health management 

systems. 

We apply the proposed approach on CMAPSS 

(Commercial Modular Aero-Propulsion System Simulation) 

datasets [4], which are run-to-failure datasets from a turbofan 

engine simulation model generated and disseminated by the 

prognostic center of excellence at NASA Ames Research 

Center (https://ti.arc.nasa.gov/tech/dash/). High variability of 

the datasets due to sensor noise, effects of operating 

conditions and simultaneous presence of multiple fault modes 

makes it suitable to study two challenges we mentioned above. 

In this paper, we organize CMAPSS datasets into images 

following the principle of maximizing local correlation, and 

adopt supervise learning with RUL labels offered in the 

datasets. In the experiments section, it would be showed that 

when training with data of highly imbalance, generalization 

ability of models utilizing transfer learning are much better 

than those not. Visualization of high-level feature maps of 

models shows that meaningful concepts are easier to 

recognize in models with transfer learning than those without. 

The purpose of this paper is to present a general machinery 

data exploring framework, focusing on alleviating the 

imbalanced data problem in machine health area. The 

remainder of this paper describes our method and 

experiments in detail. It first reviews related works in Section 

II. Section III presents the problem formulation and our 

approach. Section IV presents experiments and Section V 

gives a conclusion. 

 

II. LITERFATURE REVIEW 

A. Deep Learning in Machine Health Area 

Conventional multilayer perceptron (MLP) has been 

applied in field of machine health area for many years [5], but 

deep learning techniques have just recently been applied to a 

large number of machine health monitoring problems. 

Stacked auto-encoder (SAE)-based models [6], Deep Belief 

Network (DBN)-based models [7], CNN-based models [8] 
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and Recurrent Neural Network (RNN)-based models [9] were 

applied in fault diagnosis or machine health state prediction 

tasks. We distinguish ourselves from these literature by 

transferring visual information to help extracting high level 

concepts for multi-sensor fusion and focusing on imbalanced 

data problem. Similar works like [10] pre-processed raw 

vibration signals to generate 2D images, and employed 

histogram of original gradients (HOG) descriptor to extract 

features. Different from handcrafted HOG descriptor, 

low-level filters extracted from trained CNN model are 

natural detectors of fine-grain visual element. And [8] utilized 

a 2D-CNN model for four categories rotating machinery 

conditions recognition, whose input is DFT of two 

accelerometer signals.   

B. Data Imbalance 

Issue with the imbalanced learning problem is the ability of 

imbalanced data to significantly compromise the performance 

of most standard learning algorithms. Different effective 

strategies [11] were raised to tackle the imbalanced learning 

problem. [12] adopted resampling methods to handle 

imbalanced data distribution for regression. [13] applied 

cost-sensitive approach to deal with multi-class learning and 

[14] adopted boosted SVM with active learning strategy for 

binary imbalanced problem. However, according to [15], [16], 

[17], degree of imbalance is not the only factor that hinder 

learning. Data set complexity is the primary determining 

factor of classification deterioration, which, in turn, is 

amplified by the addition of a relative imbalance. The core of 

imbalanced learning problem lies on the fact that we know 

little about the minority. Data imbalance affecting the 

performance of machine learning algorithms is similar to size 

of objects affecting our observation. Before the emergence of 

microscope, we know little about micro objects.  We believe 

low-level filters learned by CNNs can play a role of 

microscope, helping deconstruct source data and boosting the 

performance of machine learning algorithm on minority 

cases. 

 

III. PROBLEM FORMULATION AND METHODS 

A. Datasets and Metrics 

CMAPSS datasets [18], which we explore in this paper, are 

run-to-failure datasets from a turbofan engine simulation 

model. It consists of multiple multivariate time series, 

arranged in an R-by-26 matrix, and R is the number of data 

points. Each data point is a snapshot of data taken during a 

single operational cycle and can be represented as 

 1 2 3 26, , ,...,x x x x . 
1x  represents the engine number and 

2x  

represents the operational cycle number. 3x , 4x , 5x  are three 

operation settings which have a substantial effect on engine 

performance. 6 26x x  represent values from 21 different 

sensors. Data points can be divided into six operation 

conditions by the three operation setting values. Table I 

summarizes the four sub-datasets of CMAPSS datasets. The 

objective is to predict the number of remaining operational 

cycles before failure in the test set, i.e., the number of 

operational cycles after the last cycle that the engine will 

continue to operate. We apply standard fully supervised CNN 

models for implementation throughout the paper and the 

tunable parameters of all three models are chosen using 5-fold 

cross-validation procedure based on the training set only. 

For this dataset, a piece-wise linear degradation ground 

truth is favored in previous research, which limits the 

maximum value of the RUL function and we set the maximum 

RUL to be 200 for the reason that the average run length of 

data is 209. 

To evaluate the performance of different models on the 

data-sets, we use the Scoring Function (SF), which is 

officially suggested by providers of CMAPSS datasets. SF is 

defined as: 
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N  is the number of engines in test set, and 

( )predicted trueh RUL RUL  . The SF penalizes late predictions 

(too late to perform maintenance) more than early predictions 

(no big harms although it could waste maintenance 

resources).  

  
TABLE I: DESCRIPTION OF THE FOUR TURBOFAN DEGRADATION DATASETS 

AVAILABLE FROM NASA REPOSITORY [19] 

Datasets Fault modes Conditions Train Units Test Units 

FD001 1 1 100 100 

FD002 1 6 260 259 

FD003 2 1 100 100 

FD004 2 6 249 248 

 

B. Sensor Signal to Image Transformation 

The main idea of this paper is to reorganize the serial 

sensor data into image form and to utilize visual element 

detectors to help explore complex information hidden in 

sensor data. Transformation from sensor data to images is 

flexible depending on the nature of source data as long as 

sensors relationships can be encoded into local relationships 

on the transformed image. Since we intend to get rid of the 

restriction of domain knowledge, we just put sensors data in a 

zigzag fashion without considering physical meaning of 

sensors and use a trick of copy to shorten the distance of 

different sensors. 

As Fig. 1(a) shows, sensors data can be transformed into a 

120-by-120 gray image. Because the kernel size of the first 

convolution layer of our CNN is 11, we make each sensor 

value occupy 10-by-10 pixels. The transformed image would 

be cropped and rescaled into a 227-by-227 RGB channel 

image before sent to our CNN. 

C. Network Architecture 

As Fig. 1(b) shows, detailed information of Senvis-Net 

architecture can be checked in the table embedded in the 

figure. Senvis-Net is composed by following components: 

1) Convolutional layer: convolutional layers apply a 

convolution operation to the input feature maps V  as: 
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, ,( , , )i i

j k j kZ conv s K V                          (2)

,

( 1)* ,( 1 * ,

, ,

l i l

j s m k s n m n

l m n

V K   
    ）

                     (3)

where 
,

i

j kZ the activated neuron in the thi output feature map.

,

,

i l

m nK represents the parameter in the ( , )m n   position of the 

filter kernel connecting the thl input and the thi output.

,

l

m nV is the convolved input neuron and s denotes the 

stride s steps should be moved when K convolves V .

2) ReLU layer: ReLU refers to the Rectifier Unit. 

Mathematically, it is described as:

, ,max(0, )i i

j k j kU Z                             (4)

3) Pooling layer: pooling layer just picks the largest 

element from a sliding window that traverses over the 

entire matrix.

4) Batch normalization layer: the Batch normalization is a 

whitening operation used to reduce internal covariate 

shift in neural networks, which would benefit the whole 

model training process [20].

5) Fully connection layer: fully connection layers connect

every neuron in one layer to every neuron in another 

layer:

,

flatten

j i i j

i

O I F                                 (5)

where flatten

iI is the thi neuron of the flatten version of input

feature maps. ,i jF is the weight connecting the thi input 

neuron and the thj output neuron and
jO is the output 

neuron.
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Fig. 1. (a) Image translation (b) Network Network architecture: Conv indictates convolutional layer. Pool indicates pooling layer. Fc indicates fully 

connection layer. Num_out indicates number of output feature maps. Zero padding is used when necessary. Stride of one and no padding are used by default. 

The concept of residual block follows [23].

A skip connection is introduced to add feature maps after

Pool2 to ones after Conv4 in Res5 layer, which enables a 

clean information path when the loss back propagates 

efficiently to affect weights in Conv1 and Conv2, reducing the 

gradient vanishing problem when training our CNN. Dropout 

[21] (dropping out connection randomly during training 

process) is employed to Fc6 to reduce overfitting.

6) Output layer (fully connection): with each data point as

input, Senvis-Net is expected to output a 1-by-6 matrix. 

The ground truth RUL is arranged in one of six locations

according to which operation condition the data point 

belongs to, while maximum RUL of 200 is arranged in 

other locations. For example, if a data point belongs to 

the 2nd operation condition, then the output should be 

 200, ,200,200,200,200RUL . It means that 

Senvis-Net are expected to complete a classification

function and a regression function at the same time. The 

Mean Square Error (MSE) between prediction and 

ground truth is chosen to be calculated for updating the 

whole network because it is easy to optimize. It is 

necessary to emphasized that MSE is just chosen to be 

the loss function when optimize our model, not used to 

evaluate performance of different models in the 

following experiments.

D. Transfer Visual Element Detectors

Filters of the first convolutional layer in Alex-Net [22], 

trained on ImageNet dataset, have been found out to be visual 

element detectors for lines, dots and other visual element as 

Fig. 1 shows in the green box. Since configuration of Conv1 

in our CNNs is the same to Alex-Net, we can selectively 

initialize filters with those detectors.

Now that those transformed images carry all the 

information we hope to learn, an understanding in the 

structure of these carriers should help CNNs learn in a more 

reasonable way. Let us denote Conv1 as ( , ,s)conv1 1
Z K V

and before training our model, 1
K can be chosen in two ways:

1) initialized by random numbers 
1

rand
K or 2) initialized by 

those visual element detector
1

tran
K . Without loss of 

generality, forward propagation of the first two convolution 

layers can be denoted as:

         1 1 1

1 1 1 2 2Re ( )Z LU V K V K                 (6)

         1 1 1

2 1 3 2 4Re ( )Z LU V K V K                        (7)

         2 1 2 1 2

1 1 1 2 2Re ( )Z LU Z K Z K                           (8)



  

where j

iZ  is the thi  output activated neurons in the thj  layer, 

j

iK  is the thi  kernel in the thj  layer, 
iV  is the thi  image and 

  denotes matrix multiplication. For sake of simplicity, we 

assume items in the brackets of ReLU operation is always 

positive. Then the backpropagation for updating (
2

1K ,
2

2K ) 

would be: 

2 2

1 1/Z Loss Z                                  (9) 

 2 1 2

1 1 1

TK Z Z                               (10) 

2 1 2

2 2 1

TK Z Z                              (11) 

Let us analyze what would happen in the very beginning of 

the training process. 

In the transfer situation,
1

iK  is initialized by 
1

tran
K . Assume 

1 1

1 2( , )K K  be detectors for vertical and horizontal lines and 

1 1

3 4( , )K K  be detectors for curves. Considering the 

characteristics of the transformed images, in forward 

propagation, 1

1Z  would be strongly activated and 1

2Z  would 

be weakly activated. It would lead to 
2 2

1 22 2
K K   

during the next round of backward propagation, which 

indicates just a little portion of 
2

iK  become important in 

future training process. 

In the non-transfer situation, 
1

iK  is initialized by 
1

rand
K , 

which would lead 1

iZ  to a random output. Then the backward 

propagatted gradient 
2

iK  would also be random. 

As a result, we may expect 
2

iK  learned in the transfer 

situation be sparser and more meaningful while 
2

iK  learned 

in the non-transfer situation be in less control due to random 

information flow of gradients. In another word, by transfer 
learning we make the learning of low level concepts more 

reasonable and it should help neural network make an 

efficient gradient feedback to learn information about 

minority class.  

 

IV. EXPERIMENTS 

A. Overall Performance of Senvis-Net 

The task of our CNNs is to estimate RUL of engines in test 

sets. The metric to evaluate the bias from ground truth is 

official Scoring Function (SF). We first examines the overall 

performance of our Senvis-Net (T) with transfer learning on 

the four sub-datasets. 

We use mini-batch stochastic gradient descent (SGD) 

optimizer and step learning policy with base learning rate of 

5E-6, batch sizes of 4 and momentum of 0.9 throughout our 

experiments. We initialized all the weight to zero mean 

Gaussian noise with a standard deviation of 0.01. 

Fig. 2 shows some examples of estimation in all four 

sub-datasets by Senvis-Net (T). It can be seen that the CNN is 

able to learn the degradation process. And as it estimates RUL 

when end of life, it seems more accurate than when initial. It is 

consistent to the intuition that life time of machines gradually 

falls into specific facts from random events as they degrade. 

 
Fig. 2.  Sample prediction. 

 

Generally speaking, network of a larger size has a larger 

capacity. Capacity of a model is its ability to fit a wide variety 

of functions. Models with low capacity may struggle to fit the 

train set. Models with high capacity can overfit training data 

by memorizing properties of the train set that do not preserve 

in the test set. Since CMAPSS datasets contain data of 

different complexity, we also tests shadowNet (T), which 

removes the residual block of Senvis-Net(T), making it only 

contains two convolutional layers. 

Table II records the best results we can get from the two 

models we trained. Comparison of network depth shows that 

shadowNet (T) only gets a pleasing result on FD001, which is 

the simplest dataset, while obvious deterioration can be seen 

on FD002, FD003, FD004. For example, Senvis-Net (T) gets 

2.71E+04 of SF while shadowNet (T) gets 4.17E+05 on 

FD004 test set, which is most complex sub-dataset. 

Remember the smaller SF means more accurate our model 

predicts RUL. It suggests that more complex the data is, 

higher capacity of network is demanded. 

 
TABLE II: SF FOR DEEP AND SHALLOW MODELS ON CMAPSS DATASETS 

Datasets FD001 FD002 FD003 FD004 

Senvis-Net (T) 1.47E+03 1.06E+04 5.27E+03 2.71E+04 

shallowNet (T) 1.46E+03 2.07E+04 6.36E+03 4.17E+05 

 

B. Performance on Imbalance Cases 

In order to evaluate performance of our CNNs on 

imbalanced dataset, we intentionally create two imbalanced 

cases. In Case-1, we use all the training data from FD004 as 

training set, and the trained model is used to predict the RUL 

of test sets from the four datasets. Since FD004 dataset 

incorporates 2 fault modes and 6 operational conditions, we 

believe somewhat imbalanced information of the other three 

datasets also exist in FD004 training dataset. In Case-2, we 

use all 100 units in FD001 training data and only 10 units in 

FD004 training data as training set. The reason of combining 

FD001 and FD004 is that FD001 is the simplest set while 

FD004 is the most complex set, and large number of concepts 

such as different operating conditions do not exist in FD001. 

In another word, FD001 ~ FD003 are treated as minority class 

in Case-1 while FD004 is treated as minority class in Case-2. 

To make a fair comparison and demonstrate the ability of 

different models in digging minority class information, we 

define an I-indicator by dividing the minority class 

performance by the majority class performance of models 
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respectively minor minor major( / )I SF SF . 

We experiment two models, a transfer-version Senvis-Net 

(T) with transfer learning and a scratch-version Senvis-Net (S) 

without transfer learning, and compare them with a CNN 

architecture designed by [24] to learn directly from sensor 

data, which is denoted as A*STAR-CNN. Performance on 

minority class and learned high-level concept are both in our 

consideration when evaluating these models. 

 
TABLE III: SF FOR VARIOUS MODELS ON IMBALANCE CASES 

Datasets FD001 FD002 FD003 FD004 

                                   Case-1 

A*STAR-CNN 4.55E+11 6.88E+04 5.32E+11 6.35E+04 

Senvis-Net (S) 1.60E+05 1.83E+04 4.89E+05 2.79E+04 

Senvis-Net (T) 1.74E+04 1.42E+04 1.56E+05 2.71E+04 

                                   Case-2 

A*STAR-CNN 3.79E+03 n.a. n.a. 2.88E+09 

Senvis-Net (S) 1.94E+03 n.a. n.a. 2.86E+06 

Senvis-Net (T) 1.94E+03 n.a. n.a. 8.56E+04 
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Fig. 3. I-indicator of SF for minority class. 

 

From Table III, it can be seen that the three models work 

very well on majority class, but differ a lot when inferring 

minority class. For example in Case-1, A*STAR-CNN 

behaves terribly on minority classes like FD001 (4.55E+11 of 

SF) and FD003 (5.32E+11 of SF), which means that it almost 

learns nothing about FD001 and FD003 from training data. 

More apparently shown in Fig. 3, our proposed model 

outperforms A*STAR-CNN, and we think that is because we 

make our model structure adapted to the characteristic of the 

CMAPSS datasets, for instance the output layer of 

Senvis-Net. 

Transfer learning boosts the performance of our network 

further on minority cases. Since the only difference between 

FD002 and FD004 is number of fault modes involved, it 

seems that FD002 should be regarded as majority class even 

though we treat it as minority class in problem setup in this 

paper. In Case-1, as imbalance severity in FD002 is not as 

serious as FD001 and FD003, transferring visual element 

detectors only brings 20.1% performance on FD002, while it 

can bring 88.8% on FD001 and 67.2% on FD003. In Case-2, 

as imbalance ratio reaches roughly 10:1 between FD001 and 

FD004, Senvis-Net (T) can get 97.0% performance benefit 

compare to Senvis-Net (S). Especially we notice in Case-2, 

Senvis-Net (T) acquire 8.56E+04 of SF on FD004, almost 

catching up with 2.71E+04 of SF when Senvis-Net (T) is 

trained by all 249 train units of FD004. 

C. High-Level Concept Analysis 

In order to understand what the networks have learned, we 

visualize feature maps [25] after each Conv layer in the three 

models. Since less meaningful information can be observed 

from feature maps of A*STAR-CNN, we just present feature 

maps of Senvis-Net (T) and Senvis-Net (S). 

1) Feature study between transfer and non-transfer  

As Fig. 4 shows, all feature maps are presented when 

Senvis-Net (S) and Senvis-Net (T) process transformed image 

data in different convolutional layers. A little square indicates 

a feature map, for example Conv1 outputs 96 feature maps 

and Conv3 outputs 384 feature maps. By comparing the 

difference between the "scratch" model (S) and the "transfer" 

model (T), we can get an insight on the question why 

"transfer" model (T) performs better than "scratch" model (S). 

In Conv2, feature maps in the T model appear much sparser 

than the S model, which is consistent with the theoretical 

derivation above. It can be found that redundant feature maps 

have been created in Conv3 and Conv4 of the S model. 

Especially feature maps in Conv4 of the S model almost can 

be divided into two groups by human eyes. That means in the 

S model, filters of similar function have been copied in Conv4 

of the S model during training process. On the other hand, 

feature maps of the T model in Conv3 and Conv4 keep 

diverse, and high-level concepts can be easier to recognize in 

Conv4 of the T model, like the 71st feature map in Conv4, 

which we would explain later. 

 
Conv1 Conv2 Conv3 Conv4

Conv1 Conv2 Conv3 Conv4

S

T

 
Fig. 4. Feature maps when Senvis-Net (S) and Senvis-Net (T) process transformed image data: Upside row indicates "scratch" model (S), while 

downside row indicates "transfer" model (T). 
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Fig. 5. Feature visualization: (a) Faults-related sensor distribution on images. (b) Feature maps indicating the engines are at the initial, intermediate and end

of run. (c) Similarity of six exclusive patterns under six different operating condition is consistent to their positions in feature space.

2) Feature representing operation 

We try to analyze those high-level features from view of 

nature in sensor data. As Fig. 5(a) shows, we check physical 

meaning of 21 sensors from [26] and find out sensors appear 

to be related to the two faults: Fan Degradation (F) and HPC 

Degradation (H), and mark them out on the image we 

composed.

We present the 71st feature map after Res5 Layer of 

Senvis-Net (T) in Fig. 5(b) and Fig. 5(c). The network seems 

to treat downside related sensor areas of images for 

measurement of RUL, while activation of those areas fade as 

engines degrade. Exclusive patterns with respect of different 

conditions can be seen in the overall feature maps. We 

compare those patterns among 6 conditions and find out that 

similarity between them is consistent to their positions in 

feature space. For example, patterns under th4 , th5 and th6

condition have some kind of similarity while they are adjacent 

in the feature space.

V. CONCLUSION

In this paper, we propose a general framework to explore 

machinery data, trying to leverage visual element detectors 

learned by a pre-trained CNN to tackle challenges faced in 

machine health area. By organizing sensors data into image 

form, and utilizing transfer knowledge from computer vision 

area, we successfully explore complicated indication

(including degradation process and operation condition about 

target engines) from different sensors with little domain 

knowledge. Our experiments show that transferring low-level 

visual element information can help extracting more 

meaningful features in sensor data, which may help us 

understand behaviors of sensor signal from target machines.

We also prove that transferring visual element detectors does

help alleviate imbalance data dilemma in machine health area, 

while it can bring obvious performance benefits of our deep 

learning model when lack of data in minority classes.

In our future works, firstly we would add Recurrent Neural 

Network models, which can learn the temporal dynamics of 

the serial sensor data, into our framework to treat sensors data 

as form of video, instead of static images in this paper and it 

can be expected to bring improvement on our framework. 

Secondly, we would explore how strategy of transforming 

from sensors data to image affects the performance of our 

models. Lastly, we may try to figure out more information 

reflected by those sensors signal.

Our work not only helps two major challenges in area of 

machine health management, but also builds a bridge between 

machinery application and computer vision application. 

Employing more and more state-of-the-art deep learning 

technologies in computer vision area can be expected to have 

a huge impact on real-world machinery applications. 
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