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Abstract—Clustering is the basic technique in data mining 

research field. However, there are just few mobility patterns 

based clustering techniques which are hierarchical clustering 

and k-means clustering. Moreover, these two techniques suffer 

from the so-called “curse of dimensionality”. Hence in this paper, 

the spectral clustering methods and the novel power symmetric 

normalized spectral clustering method are proposed and these 

three methods are used to solve the mobility pattern based 

clustering problem. First, the novel similarity among mobility 

patterns is defined in the trajectory dataset. From this novel 

similarity, a similarity graph can be constructed. Finally, the 

three proposed clustering methods are applied to this graph. 

Experimental results show that the clustering results of the 

power symmetric normalized clustering method are more 

well-balanced than the clustering results of the un-normalized 

and symmetric normalized spectral clustering methods. 

Moreover, the time complexity of the power symmetric 

normalized clustering method is also lower than the time 

complexity of the two spectral clustering methods. 

 
Index Terms—Spectral clustering, graph Laplacian, 

similarity matrix, mobility patterns, power method.  

 

I. INTRODUCTION 

Clustering is the data mining technique separating objects 

into groups [1], [2]. In the recent years, it’s used to 

partitioning mobility patterns into different groups [3]. 

However, in our literature review, there are just few mobility 

patterns based clustering techniques have been proposed. In 

[4], the authors used hierarchical clustering technique to 

partitioning a set of mobility patterns into different groups. In 

[5], [6], the authors proposed the extended k-mean clustering 

technique. In details, in [5], [6], the authors try to combine 

both spatial similarity and temporal similarity to form a new 

similarity between two mobility patterns and then apply their 

extended k-mean clustering method to the trajectory dataset. 

We can easily see that the hierarchical clustering technique 

and the k-mean clustering technique suffer from the so-called 

“curse of dimensionality”. It means that these methods are 

very computational expensive when they are applied to 

datasets that have high dimensions.   

In this paper, a novel mobility pattern based clustering 

method will be developed. This method is the extended 

spectral clustering method. To the best of my knowledge, this 

work has not been investigated.  

In specific, first, the new spatial similarity between two 

mobility patterns will be defined. It’s a function of the 

Longest Common Subsequence (i.e. LCS) [7], [8] between 
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two mobility patterns. Applications of LCS algorithm are 

huge (but old idea), specifically in bio-informatics research 

area. It’s often used to measure the similarity between two 

DNA strings [9]. In the field mobility pattern mining, it’s also 

used to measure the spatial similarity between two mobility 

patterns [10]. However, in [10], the authors do not try to 

combine the spatial similarity and the temporal similarity 

between two mobility patterns in order to solve the mobility 

pattern based clustering problem. In this paper, the LCS 

spatial similarity and our new defined temporal similarity of 

two mobility patterns will be combined to solve the clustering 

problem. This is the novel idea. We also point out that since 

the spatial similarity and the temporal similarity has the 

symmetric property, this will lead to the reduction of the time 

complexity of procedure computing the combined weighted 

similarity matrix. Second, the un-normalized spectral 

clustering method (i.e. the current state of the art graph based 

clustering method) [11], [12] and the symmetric normalized 

spectral clustering method [11], [13] will be applied to the 

weighted similarity matrix. These two methods will be served 

as the baseline methods. However, the time complexities of 

these two methods are high due to we need to compute the 

whole set of eigenvectors of the graph Laplacian. This is not 

practical for big data problems. Thus, finally, instead of 

computing the whole set of eigenvectors of the symmetric 

normalized graph Laplacian, the power method will be used 

to compute the largest “pseudo-eigenvector” of the symmetric 

normalized weighted similarity matrix. Then the k-mean 

clustering method can be applied to this largest 

“pseudo-eigenvector” of the symmetric normalized weighted 

similarity matrix. Information about the largest 

“pseudo-eigenvector” can be found in [14], [15] and in 

Section IV. This will lead to the significant reduction of the 

time complexity of the symmetric normalized spectral 

clustering method. This novel method will be called “the 

power symmetric normalized clustering method”. 

We will organize the paper as follows. Section II will 

present the preliminary definitions and notations used in this 

paper. Section III will present the un-normalized and 

symmetric normalized spectral clustering methods. Section 

IV will present the power symmetric normalized clustering 

method. Section V will show the experimental results of the 

un-normalized spectral clustering method, the symmetric 

normalized spectral clustering method, and the power 

symmetric normalized clustering method. Section VI will 

conclude this chapter and the future directions of researches 

will be discussed. 

 

II. PRELIMINARY DEFINITIONS AND NOTATIONS 

Consider we are given a set of Points of Interests (i.e. PoIs). 
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Then the mobility of users can be represented by the 

un-directed graph. The set of PoIs is the set of vertices of the 

graph. Each vertex (i.e. PoI) of the graph is connected to all of 

its adjacent vertices by edges. The example of this undirected 

graph is shown is Fig. 1. 
 

 
Fig. 1. Example of un-directed graph.  

 

Let c be the ID number of the POI where the user is located 

at the predefined timestamp t. Hence C and T will be the set of 

IDs of PoIs and the set of timestamps respectively.  

Let the point ( , )p c t  s.t. c C  and t T . Then the 

trajectory of the user can be defined as a finite sequence of 

points 
1 2, ,..., np p p  , where ( , )j j jp c t  s.t. 

, ,1j jc C t T j n    .  

Assume that we are given two mobility patterns 

1 2, ,...,a nP p p p   and 
1' 2' ', ,...,b nP p p p   with 

' ' '', ( , ), ( , )i i i i i in n p c t p c t   . Our first objective in this 

section is to define the spatial similarity and the temporal 

similarity between these two mobility patterns 
aP  and 

bP . 
 

Definition 1: Spatial Similarity 

 

The spatial similarity between 
aP  and 

bP  can be defined as 

the following 
1

( , )

space ( , ) a bLCS P P

a bw P P e





 ,                           (1) 

where ( , )a bLCS P P  is the longest common subsequence (i.e. 

LCS) between 
aP  and 

bP  and   is any small positive 

number (i.e. to avoid the case ( , ) 0a bLCS P P  ). The case 

( , ) 0a bLCS P P   means two mobility patterns 
aP  and 

bP  do not 

have any common PoI.   

Next, the LCS algorithm will be presented as follows: 
 

Algorithm 1: Longest common subsequence (LCS) between 
aP  and 

bP  

Input: 
aP  and 

bP  

Output: The length of the longest common subsequence between
aP  and 

bP  

1. Initialize the integer array C with n rows and n’ columns. 

2. If 
1 1. .a bP c P c  

C[1,1] = 1 

Else 

C[1,1] = 0 

3. Let all the elements of the leftmost column of C be C[1,1]. 

4. Let all the elements of the top row of C be C[1,1]. 

5. For i=2:n 

For j=2:n’ 

 If . .a i b jP c P c  

  C[i,j] = C[i-1, j-1] + 1 

 Else 

  C[i, j] = max(C[i-1,j], C[i,j-1]) 

6. Return C[n,n’] 

Please note that 

1

( , )
0 1a bLCS P P

e





   and 

( , ) ( , )a b b aLCS P P LCS P P . 

Next, [5] have pointed out that the temporal similarity 

between aP  and bP  can be defined as the following 

, '

time

1, 1

| . . |1
( , )

max( . , . )

n n
a i b j

a b

i j a i b j

P t P t
w P P

k P t P t 


  ,                  (2) 

where . .a i b jP c P c  and k is the number of common PoI 

between 
aP  and 

bP . 

In this paper, we propose the novel temporal similarity 

between 
aP  and 

bP  as follows: 

 

Definition 2: Temporal similarity 

The spatial similarity between 
aP  and 

bP bP  can be 

defined as the following 

, '

1, 1

min( . , . )1
( , )

max( . , . )

n n
a i b j

time a b

i j a i b j

P t P t
w P P

k P t P t 

  ,                    (3) 

where . .a i b jP c P c  and k is the number of common PoI 

between 
aP  and 

bP . 

Please note that 
time0 ( , ) 1a bw P P   and 

time time( , ) ( , )a b b aw P P w P P .  

 

III. SPECTRAL CLUSTERING 

In this section, we will present the spectral clustering 

methods to partition a set of mobility patterns into groups. 

Assume we are given a set of mobility patterns 
1 2{ , ,..., }mP P P . 

First, we need to construct the weighted similarity matrix 
*m mW R . We have that  

space time(1 )W W W    ,                        (3) 

where 
space time( , ) ( , ) (1 ) ( , )i j i jw i j w P P w P P     with 

( , )w i j W  and 1 ,i j m  . 

Please also note that 0 1  . 

Because of the symmetric property of spatial similarity of 

temporal similarity, we just need to compute the upper 

diagonal part of the matrix W since this matrix W is symmetric. 

Then we can obtain the lower diagonal part of matrix W easily. 

This will reduce the time complexity of the procedure 

computing W. 

Let D be diagonal matrix containing the degrees of vertices 

(of W) in its diagonal entries. Please note that D is the 
*m mR  

matrix. Then 

1

( ) ( , )
m

j

d i w i j


  

Next, the un-normalized spectral clustering will be 

presented as follows: 
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Algorithm 2: Un-normalized spectral clustering algorithm 

Input: The weighted similarity matrix W and the diagonal matrix D 

Output: Clusters 
1 2, ,..., kC C C  

1. Compute the un-normalized graph Laplacian L D W   

2. Compute all eigenvalues and eigenvectors of L and sort all 

eigenvalues and their corresponding eigenvector in ascending 

order. Pick the first k eigenvectors 
2 3 1, ,..., kv v v 

 of L in the 

sorted list. k can be determined in the following two ways: 

a. k is the number of connected components of L [11] 

b. k is the number such that 2

1

k

k








 or 
2 1k k    is largest 

for all 2 k n           

3. Let *m kV R  be the matrix containing the vectors 
2 3 1, ,..., kv v v 

 

as columns  

4. For 1,2,...,i m , let k

iy R  be the vector corresponding to the 

i-th row of V 

5. Use k-mean clustering algorithm to cluster the points 
1,2,...,( )i i my 

 

into clusters 
1 2, ,..., kC C C   

Finally, the symmetric normalized spectral clustering will 

be presented as follows: 

 

Algorithm 3: Symmetric normalized spectral clustering algorithm 

Input: The weighted similarity matrix W and the diagonal matrix D 

Output: Clusters 
1 2, ,..., kC C C  

1. Compute the symmetric normalized graph Laplacian 
1 1

2 2
symL I D WD

 

   

2. Compute all eigenvalues and eigenvectors of 
symL  and sort all 

eigenvalues and their corresponding eigenvector in ascending 

order. Pick the first k eigenvectors 
2 3 1, ,..., kv v v 

 of 
symL  in the 

sorted list. k can be determined in the following two ways: 

a. k is the number of connected components of 
symL  [11] 

b. k is the number such that 2

1

k

k








 or 
2 1k k    is largest 

for all 2 k n           

3. Let *m kV R  be the matrix containing the vectors 
2 3 1, ,..., kv v v 

 

as columns  

4. Form the matrix *m kT R  from V by normalizing the rows to norm 

1, that is set 

1

2 2

1

( ,:)
( ,:)

( )
k

ij

j

V i
T i

v






  

5. For 1,2,...,i m , let k

iy R  be the vector corresponding to the 

i-th row of T 

6. Use k-mean clustering algorithm to cluster the points 
1,2,...,( )i i my 

 

into cluster 
1 2, ,..., kC C C   

At the end of this section, we will present how to choose the 

centroids for clusters that we obtained in the spectral 

clustering algorithm. This work has been shown clearly in [5]. 

Assume that we have cluster 
1 2( , ,..., )pX P P P . For each 

mobility pattern in X, set 0iO   for 1 i p  . Next, we will 

compute ( , )
p

i

j i

O w i j


 . Choose 
iP  such that 

iO  is 

maximized. Set iP  be the centroid of cluster X. In the future 

research, this centroid will be used for recommendation 

system for new users. 

IV. POWER SYMMETRIC NORMALIZED CLUSTERING 

Although the spectral clustering method is very popular in 

data mining research field, it’s rarely used in practical big data 

problems. It will normally take 3( )O m  time to compute the 

whole set of eigenvectors of the graph Laplacian, where m is 

the number of data points in the dataset. In order to solve this 

difficulty, in [14], the authors used the power method to 

compute the largest “pseudo-eigenvector” of the random walk 

normalized similarity matrix 1D W . The time complexity of 

the power method is 2( )O m .  

In the other words, suppose that the set of eigenvalues and 

the set of their associated eigenvectors of 1D W  are 

1 2{ , ,..., }m    and 
1 2{ , ,..., }mu u u  respectively. Please note 

that all the eigenvalues are sorted in descending order. The 

first and largest eigenvalue 
1  is 1 and its associated 

eigenvector 
1u  is a constant vector since 1D W  is a stochastic 

matrix.  

Let 
(0)v  be a random vector. The power method will 

compute the largest “pseudo-eigenvector” like the following  

( ) 1 1 ( 1) 1 2 ( 2) 1 (0)( ) ( ) ... ( )t t t tv D W v D W v D W v       
1 1 1

1 1 2 2( ) ( ) ... ( )t t t

m mc D W u c D W u c D W u       

1 1 1 2 2 2 ...t t t

m m mc u c u c u       

Hence we have  

( )

2 2
1 2

1 1 1 1 1 1

...
ttt

m m
mt t t

ccv
u u u

c c c



  
     

Power method will finally converge to the largest 

eigenvector 1u  which is useless for clustering since it’s a 

constant vector. To solve this problem, in [14], the authors 

define the velocity at t+1 be the vector 
( 1) ( 1) ( )| |t t tv v     

and the acceleration be the number 
( 1) ( 1) ( )|| ||t t t     . 

The authors will let the algorithm stop as soon as 
( 1)t 

 is 

below some small positive threshold but before the algorithm 

converges to the largest eigenvector 1u  (i.e. the constant 

vector). The computed vector by this algorithm is called the 

largest “pseudo-eigenvector”. One interesting thing is this 

largest “pseudo-eigenvector” is a linear combination of all 

eigenvectors of 1D W .   

Following the idea from [14], the power method is used to 

develop a novel clustering method. Instead of computing the 

largest “pseudo-eigenvector” of the random walk normalized 

similarity matrix 1D W , the largest “pseudo-eigenvector” of 

the symmetric normalized similarity matrix 
1 1

2 2D WD
 

 is 

computed. Next, the following theorem will be proved 
 

Theorem 1 

λ is an eigenvalue of 1D W  with eigenvector u if and only if λ is an 

eigenvalue of 
1 1

2 2D WD
 

 with eigenvector 
1

2w D u .                       

Proof: The theorem 1 can be proved easily by solving 
1 1 1 1 1 1

2 2 2 2 2 2D WD w w D D WD D w 
     

    
1 1

1 2 2D WD w D w
 

         

Let 
1

2u D w


 , (in the other words, 
1

2w D u ), we have 
1D Wu u   

This completes the proof.       
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From the above theorem 1, we see easily that 1D W  and 
1 1

2 2D WD
 

 have the same set of eigenvalues but the 

eigenvectors of 1D W  are different from the eigenvectors of 
1 1

2 2D WD
 

. This will lead to distinct clustering results when we 

apply the power method to the symmetric normalized 

similarity matrix 
1 1

2 2D WD
 

. This work, to the best of my 

knowledge, has not been investigated. 

The power symmetric normalized clustering method will 

be presented as follows: 

 

Algorithm 4: The power symmetric normalized clustering  

Input: The weighted similarity matrix W and the diagonal matrix D 

Output: Clusters 
1 2, ,..., kC C C  

1. Compute the symmetric normalized similarity matrix 
1 1

2 2D WD
 

 

2. Pick an initial random vector (0)v  

3. Set t = 0 

4. Set ( ) [0,0,...,0]t T   

5. Set 1   

6. While 610   

Compute 1 1

( )2 2
( 1)

1 1

( )2 2|| ||

t
t

t

D WD v
v

D WD v

 



 



 

 

       Compute ( 1) ( 1) ( )| |t t tv v     

       Compute ( 1) ( )|| ||t t     

       1t t   

7. End 

8. Apply the k-mean clustering method to the largest 

“pseudo-eigenvector” ( 1)tv   to get cluster 
1 2, ,..., kC C C  

In the end, we can also compute the centroids of the clusters. 

These centroids will be used for recommender system for 

users or will be used later for streaming power symmetric 

normalized clustering technique which will be our future 

researches. 

 

V. EXPERIMENTS AND RESULTS 

In this paper, the trajectory dataset that is available from 

[16] is used. This dataset was derived from Yahoo Flickr 

Creative Commons 100M dataset [17]. For our clustering 

purpose, we just use two .csv files in the trajectory dataset. 

These two files are poi-Melb-all.csv and 

traj-noloop-all-Melb.csv.  

The poi-Melb-all.csv file contains all the information about 

the Point of Interest (i.e. PoI). The information of PoIs 

contained in the poi-Melb-all.csv is: 

- poiID: POI unique ID 

- poiName: POI Name 

- poiTheme: POI Categoy 

- poiLat: POI Latitude 

- poiLon: POI Longitude 

- poiURL: URL of Wikipedia webpage that describes this 

POI 

- poiPopularity: The popularity of POI, i.e. the number of 

distinct users that visited the POI 

The file poi-Melb-all.csv file is shown in Table I. 

From the above Table I, we see that there are total 88 PoIs 

in the dataset. 

 
TABLE I: SAMPLE OF POI-MELB-ALL.CSV FILE 

poiID poiName poiTheme poiLat poiLon 

0 Arts Precinct City precincts -37.82167 144.96778 

1 Docklands City precincts -37.817 144.946 

… 

87 Yarra River Transport -37.85194 144.90833 

 

The traj-noloop-all-Melb.csv file contains all the 

information about users’ trajectories. The information 

contained in the tra-noloop-all-Melb.csv is: 

- userID: User ID 

- poiID: PoI ID 

- startTime: When a user starts to visit the PoI, approximated 

by the time the first photo taken by the user at that PoI 

- endTime: When a user leaves the PoI, approximated by the 

time the last photo taken by the user at that PoI 

- #photo: Number of photos taken at the PoI by the user 

- poiDuration: Visit duration (in seconds) at the PoI 

The file traj-noloop-all-Melb.csv file is shown in Table II. 
 

TABLE II: SAMPLE OF TRAJ-NOLOOP-ALL-MELB.CSV FILE 

userID poiID startTime endTime 

10058801@N06 25 1226726126 1226726126 

10087938@N02 58 1205332532 1205332541 

… 

99804259@N00 21 1396489522 1396489522 
 

By a little programming, from the above Table II, we see 

that there are total 1000 users in the trajectory dataset. Our 

main task is to partitioning 1000 users into different groups 

based on their mobility patterns. 

First, two arrays of lists are constructed. This first array has 

1000 elements (i.e. 1000 users). Each element contains a list 

of PoIs that each user visits. The second array also has 1000 

elements. Each element contains a list of timestamps when 

each user visits PoIs. Next the spatial similarity matrix and the 

temporal similarity matrix can be constructed. Finally, we 

combine these two matrices to form the weighted similarity 

matrix W. 

Second, the un-normalized spectral clustering method, the 

symmetric normalized spectral clustering method, and the 

power symmetric normalized method are applied to this 

weighted similarity matrix to get the clustering results. We 

test these three methods with k=3, 4, 5 where k is the number 

of clusters. In this paper, the clustering accuracy performance 

measures are not measured.  
 

TABLE III: CENTROIDS FOR THREE CLUSTERS AS LISTS of poiIDs 

Cluster 0 [26 66 28 58] 

Cluster 1 [81] 

Cluster 2 [6 50 42 84 40 ... 14] 
 

Next, the clustering results of the un-normalized spectral 

clustering method will be shown. Please note that idx is the 

clustering indices of 1000 users. 

For k=3, we have the clustering results as follows 

[2,0,2,2,...,2,2]idx   

The centroids for these three clusters are shown in the 

following Table III and Table IV. 
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TABLE IV. CENTROIDS FOR THREE CLUSTERS AS LISTS OF NAMES of PoIs 
Cluster 0 Luna Park 

Albert Park and Lake 

Melbourne Zoo 

Melbourne Grand Prix Circuit 

Cluster 1 Capital City Trail 

Cluster 2 Sports and Entertainment Precinct 

St Paul's Cathedral 

Supreme Court of Victoria 

Melbourne Central station 

Parliament House 

… 

Collins Street 
 

For k=4, we have the clustering results as follows 

[0,1,0,0,...,0,0]idx   

The centroids for these four clusters are shown in the 

following Table V and Table VI. 
 

TABLE V: CENTROIDS FOR FOUR CLUSTERS AS LISTS oF POIIDS 

Cluster 0 [6 50 42 84 40 … 14] 

Cluster 1 [26 7] 

Cluster 2 [49] 

Cluster 3 [40 22 72] 
 

TABLE VI: CENTROIDS FOR FOUR CLUSTERS AS LISTS OF NAMES of PoIs 

Cluster 0 Sports and Entertainment 

Precinct 

St Paul's Cathedral 

Supreme Court of Victoria 

Melbourne Central station 

Parliament House 

… 

Collins Street 

Cluster 1 Luna Park 

University of Melbourne 

Cluster 2 Shrine of Remembrance 

Cluster 3 Parliament House 

Queen Victoria Village 

Fitzroy Gardens 
 

For k=5, we have the clustering results as follows 

[4,2,4,4,...,4,4]idx   

The centroids for these five clusters are shown in the 

following Table VII and Table VIII. 
 

TABLE VII: CENTROIDS FOR FIVE CLUSTERS AS LISTS of poiIDs 

Cluster 0 [0] 

Cluster 1 [4] 

Cluster 2 [26 66 28 58] 

Cluster 3 [22 41 41] 

Cluster 4 [6 50 42 84 40 … 14] 

 

TABLE VIII: CENTROIDS FOR FIVE CLUSTERS AS LISTS OF NAMES of PoIs 

Cluster 0 Arts Precinct 

Cluster 1 RMIT City 

Cluster 2 Luna Park 

Albert Park and Lake 

Melbourne Zoo 

Melbourne Grand Prix Circuit 

Cluster 3 Queen Victoria Village 

State Library of Victoria 

State Library of Victoria 

Cluster 4 Sports and Entertainment Precinct 

St Paul's Cathedral 

Supreme Court of Victoria 

Melbourne Central station 

Parliament House 

… 

Collins Street 

 

Next, the clustering results of the symmetric normalized 

spectral clustering method will be shown.  

For k=3, we have the clustering results as follows 

[1,1,2,2,...,2,1]idx   

The centroids for these three clusters are shown in the 

following Table IX and Table X. 
 

TABLE IX: CENTROIDS FOR THREE CLUSTERS AS LISTS of poiIDs 

Cluster 0 [50 70 71] 

Cluster 1 [6 50 42 84 40 … 14] 

Cluster 2 [23 32 85 45 48 26 35 71 57] 
 

TABLE X: CENTROIDS FOR THREE CLUSTERS AS LISTS OF NAMES of PoIs 

Cluster 0 St Paul's Cathedral 

City Square 

Federation Square 

Cluster 1 Sports and Entertainment Precinct 

St Paul's Cathedral 

Supreme Court of Victoria 

Melbourne Central station 

Parliament House 

… 

Collins Street 

Cluster 2 Royal Arcade 

General Post Office 

Southern Cross station 

Eureka Tower 

Royal Exhibition Building 

Luna Park 

Melbourne Town Hall 

Federation Square 

Melbourne Cricket Ground (MCG) 
 

For k=4, we have the clustering results as follows 

[0,0,0,3,...,0,0]idx   

The centroids for these four clusters are shown in the 

following Table XI and Table XII. 
 

TABLE XI: CENTROIDS FOR FOUR CLUSTERS AS LISTS of poiIDs 

Cluster 0 [6 50 42 84 40 … 14] 

Cluster 1 [56 71  4 24 56] 

Cluster 2 [26 14 35] 

Cluster 3 [23 32 85 45 48 26 35 71 57] 

 

TABLE XII: CENTROIDS FOR FOUR CLUSTERS AS LISTS OF NAMES of PoIs 

Cluster 0 Sports and Entertainment Precinct 

St Paul's Cathedral 

Supreme Court of Victoria 

Melbourne Central station 

Parliament House 

… 

Collins Street 

Cluster 1 Melbourne Multi Purpose Venue (Hisense Arena) 

Federation Square 

RMIT City 

Swanston Street 

Melbourne Multi Purpose Venue (Hisense Arena) 

Cluster 2 Luna Park 

Collins Street 

Melbourne Town Hall 

Cluster 3 Royal Arcade 

General Post Office 

Southern Cross station 

Eureka Tower 

Royal Exhibition Building 

Luna Park 

Melbourne Town Hall 

Federation Square 

Melbourne Cricket Ground (MCG) 

 

For k=5, we have the clustering results as follows 

[1,1,1,1,...,1,1]idx   
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The centroids for these five clusters are shown in the 

following Table XIII and Table XIV. 
 

TABLE XIII: CENTROIDS FOR FIVE CLUSTERS AS LISTS of poiIDs 

Cluster 0 [26 25] 

Cluster 1 [6 50 42 84 40 … 14] 

Cluster 2 [51 40 51 51 29 31 44 76  9] 

Cluster 3 [ 2 50 71  3] 

Cluster 4 [50 50 50 35 50 … 71] 
 

TABLE XIV: CENTROIDS FOR FIVE CLUSTERS AS LISTS OF NAMES of PoIs 

Cluster 0 Luna Park 

Crown Casino and Entertainment Complex 

Cluster 1 Sports and Entertainment Precinct 

St Paul's Cathedral 

Supreme Court of Victoria 

Melbourne Central station 

Parliament House 

… 

Collins Street 

Cluster 2 St Patrick's Cathedral 

Parliament House 

St Patrick's Cathedral 

St Patrick's Cathedral 

Australian Centre for Contemporary Art 

NGV International 

Arts Centre 

Royal Botanic Gardens 

Bourke Street 

Cluster 3 Government Precinct 

St Paul's Cathedral 

Federation Square 

Little Italy 

Cluster 4 St Paul's Cathedral 

St Paul's Cathedral 

St Paul's Cathedral 

Melbourne Town Hall 

St Paul's Cathedral 

… 

Federation Square 
 

Next, the clustering results of the power symmetric 

normalized clustering method will be shown.  

For k=3, we have the clustering results as follows 

[0,0,0,1,...,1,2]idx   

The centroids for these three clusters are shown in the 

following Table XV and Table XVI. 
 

TABLE XV: CENTROIDS FOR THREE CLUSTERS AS LISTS of poiIDs 

Cluster 0 [26 66 28 58] 

Cluster 1 [25 27 42 48 69 32 18 23  2] 

Cluster 2 [6 50 42 84 40 … 14] 
 

TABLE XVI: CENTROIDS FOR THREE CLUSTERS AS LISTS OF NAMES of PoIs 

Cluster 0 Luna Park 

Albert Park and Lake 

Melbourne Zoo 

Melbourne Grand Prix Circuit 

Cluster 1 Crown Casino and Entertainment Complex 

Melbourne Aquarium 

Supreme Court of Victoria 

Royal Exhibition Building 

Carlton Gardens 

General Post Office 

Little Collins Street 

Royal Arcade 

Government Precinct 

Cluster 2 Sports and Entertainment Precinct 

St Paul's Cathedral 

Supreme Court of Victoria 

Melbourne Central station 

Parliament House 

… 

Collins Street 

For k=4, we have the clustering results as follows 

[3,3,2,1,...,2,0]idx   

The centroids for these four clusters are shown in the 

following Table XVII and Table XVIII. 

 
TABLE XVII: CENTROIDS FOR FOUR CLUSTERS AS LISTS of poiIDs 

Cluster 0 [6 50 42 84 40 … 14] 

Cluster 1 [36 41 50 55 71 81 50] 

Cluster 2 [32 35 78] 

Cluster 3 [26  7] 

 
TABLE XVIII: CENTROIDS FOR FOUR CLUSTERS AS LISTS OF NAMES of PoIs 

Cluster 0 Sports and Entertainment Precinct 

St Paul's Cathedral 

Supreme Court of Victoria 

Melbourne Central station 

Parliament House 

… 

Collins Street 

Cluster 1 Old Melbourne Gaol 

State Library of Victoria 

St Paul's Cathedral 

Margaret Court Arena 

Federation Square 

Capital City Trail 

St Paul's Cathedral 

Cluster 2 General Post Office 

Melbourne Town Hall 

Treasury Gardens 

Cluster 3 Luna Park 

University of Melbourne 

 

For k=5, we have the clustering results as follows 

[2,2,4,1,...,3,0]idx   

The centroids for these five clusters are shown in the 

following Table XIX and Table XX. 

 
TABLE XIX: CENTROIDS FOR FIVE CLUSTERS AS LISTS of poiIDs 

Cluster 0 [6 50 42 84 40 … 14] 

Cluster 1 [9 21 36 45 71 82] 

Cluster 2 [49] 

Cluster 3 [9 32 42 41] 

Cluster 4 [26 66 28 58] 

 

TABLE XX: CENTROIDS FOR FIVE CLUSTERS AS LISTS OF NAMES of PoIs 

Cluster 0 Sports and Entertainment Precinct 

St Paul's Cathedral 

Supreme Court of Victoria 

Melbourne Central station 

Parliament House 

… 

Collins Street 

Cluster 1 Bourke Street 

Queen Victoria Market 

Old Melbourne Gaol 

Eureka Tower 

Federation Square 

Flinders Street station 

Cluster 2 Shrine of Remembrance 

Cluster 3 Bourke Street 

General Post Office 

Supreme Court of Victoria 

State Library of Victoria 

Cluster 4 Luna Park 

Albert Park and Lake 

Melbourne Zoo 

Melbourne Grand Prix Circuit 

 

From the above table, we easily see that the clustering 

results of the power symmetric normalized clustering method 
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are more well-balanced than the clustering results of the 

un-normalized and symmetric normalized spectral clustering 

methods. In the other words, for the un-normalized and 

symmetric normalized spectral clustering methods, there exist 

some clusters that have only one element. This is not the case 

for the clustering results of the power symmetric normalized 

clustering method.  

 

VI. CONCLUSIONS AND FUTURE WORKS 

There are three main contributions in this paper. First, the 

novel similarity among mobility patterns in the trajectory 

dataset is defined. From this novel similarity, a similarity 

graph can be constructed. Second, the un-normalized and 

symmetric normalized spectral clustering methods are applied 

successfully to this graph constructed from the trajectory 

dataset. Finally, the novel power symmetric normalized 

clustering method is developed successfully. This work, to the 

best of our knowledge, has not been investigated. From the 

experimental results, we recognize that the clustering results 

of the power symmetric normalized clustering method are 

more well-balanced than the clustering results of the 

un-normalized and symmetric normalized clustering methods.  

In the future, the p-Laplacian spectral clustering method 

(i.e. the very high time complexity method) can also be 

applied to the trajectory dataset. The p-Laplacian spectral 

clustering method is worth investigated because of its hard 

nature and because this method has never been applied to the 

mobility pattern based clustering problem. The Alternating 

Direction Methods of Multipliers (i.e. the ADMM) method 

will be employed to solve the p-Laplacian based clustering 

method. Moreover, the streaming spectral clustering method 

will also be developed and will be applied to the streaming 

trajectory dataset. This work, to the best of our knowledge, 

has not been investigated up to now.  
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