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Abstract—The multi-objective problem is particularly 

difficult in practical engineering applications, so more and 

more scholars have studied the problem to find the true Pareto 

optimal solution. In order to improve the convergence 

performance of multi-objective optimization algorithm and 

diversity, this paper proposes a multi-objective optimization 

algorithm based on chaos particle swarm optimization 

algorithm: using Logistic mapping sequences in solution in the 

particle swarm algorithm is updated; introducing the crossover 

operator of normal distribution to improve the diversity of the 

population; and using simplified mesh reduction and gene 

exchange to improve the performance of the algorithm. 

Compared with the MOPSO, NSGA-II and MOEA/D 

algorithms, it is shown that the proposed algorithm has good 

performance and can effectively solve the multi-objective 

optimization problem. 

 
Index Terms—Multi-objective optimization, logistic 

mapping, C-MOPSO, crossover operator, Pareto optimal.  

 

I. INTRODUCTION 

Particle swarm optimization (PSO) is an intelligent 

optimization method for simulating group behavior, which 

is proposed by Kennedy et al. in 1995 [1-2]. Its core idea is 

to promote the development of the whole population 

through the information sharing mechanism between 

particles and experience from each other. Particle swarm 

optimization (PSO) algorithm has been applied in many 

single objective optimization problems because of its fast 

convergence and easy implementation, and it has good 

results. In recent years, many scholars began to study 

particle swarm optimization (PSO) algorithm to solve multi-

objective optimization problems. The representative is: Li 

Fei et al. [3] proposed a multi-objective particle swarm 

optimization (MOEA/D-DE) algorithm based on 

decomposition and differential evolution. In the existing 

multi-objective particle swarm optimization algorithm, we 

did not take full advantage of the information obtained in 

the calculation process. In every iteration, we only use 

Individual optimal and global optimal; At the same time, In 

the process of optimization, we only exchange information 

between particles, but the information exchange between 

non dominated solutions stored in external archives is not 

fully utilized. Therefore, it is not possible to approach the 

real Pareto front leading to poor optimization performance.  

In scientific research, many engineering application 
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problems can be classified as multi-objective optimization 

problems, and multiple objectives need to be optimized at 

the same time. Therefore, the demand for solving multi-

objective problems is stronger. However, the multiple goals 

that need to be optimized are often conflicting, and one 

optimization of a target will reduce the performance of other 

targets. The traditional multi-objective optimization method 

converts multi-objective optimization problems into single 

objective optimization problems by weighting, but this 

requires prior knowledge of the problem to be optimized, 

and whether it can be divided according to these objectives, 

so this method is difficult to deal with some multi-objective 

optimization problems [4], [5]. The population based 

evolutionary algorithm can be used to search multiple 

solutions in the solution space in parallel, and it is suitable 

for solving the multi-objective optimization problem [6]. In 

recent years, many scholars have proposed different 

improved particle swarm algorithms to solve multi-objective 

optimization problems. For example, Yang Ning et al. [7] 

put forward a multi-objective particle swarm optimization 

algorithm based on the multilevel interaction of information, 

this algorithm can divide the whole optimization process 

into 3 levels: standard particle swarm optimization layer, 

particle evolution and learning layer, and file information 

exchange layer. The 3 levels together improve the 

convergence and diversity of the algorithm. Li Kewen et al. 

[8] proposed a detection mechanism for the evolutionary 

state of Multi-objective particle swarm optimization (PSO): 

Through updating the external Pareto solution set, we detect 

the evolution state of the algorithm and get feedback 

information to dynamically adjust the evolution strategy, so 

that the algorithm can take account of the diversity and 

convergence of the approximate Pareto front-end in the 

process of evolution; Yang Jingming et al. [9] introduced 

the redundancy mechanism of external files, and enhanced 

the diversity of the solution by using its variation and the 

interference strategy of the population so as to avoid the 

premature phenomenon of the algorithm. Li Li and Wang 

Wanliang et al. [10] proposed a multi-objective particle 

swarm optimization (PSO) based on grid ranking, the grid-

based ranking mechanism combines the individual 

dominance information in the entire solution space, and 

takes advantage of this information to sort. As a result, we 

gain the merits of the relationship between individuals in the 

population effectively and efficiently, so the distribution of 

the solution has been improved well; Yang Jingming et al. 

[11] proposed multi-objective adaptive chaos particle swarm 

optimization algorithm, applied chaotic sequence to our 

global optimal selection, and added adaptive selection 

strategy, and the effect of improvement is also very good. 

In order to improve the multi-objective particle swarm 
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optimization algorithm convergence and diversity, 

according to the ergodicity of chaotic sequences proposed 

by Xiong Junhua and Xie Fei [12], a multi-objective 

optimization algorithm based on Chaotic Particle Swarm 

Optimization (C-MOPSO) is proposed. Based on particle 

swarm optimization, the algorithm uses chaotic Logistic 

sequence to generate initial solution, and adds normal 

crossover operator into the corresponding particle operation, 

and makes full use of particle information obtained from 

each iteration. At the same time, the file reduction strategy 

is added to reduce the computational complexity. Finally, a 

comparative analysis with MOEA/D, NSGA-II and MOPSO 

algorithm shows that the proposed algorithm has good 

performance and can effectively solve multi-objective 

optimization problems. 

 

II. BASIC CONCEPTS 

A. Description of multi-Objective Problem 

The multi-objective optimization problem is composed of 

D decision variables, N objective functions and m+n 

constraints. The decision variables are function relations 

with objective functions and constraints. In non-inferior 

solutions, the decision maker can only choose a non-inferior 

solution which makes it satisfactory as the final solution 

according to the requirement of the specific problem. The 

mathematical form of the multi-objective optimization 

problem can be described as follows: 

1 2min ( ) [ ( ), ( ),..., ( )], 1,2,...nf x f x f x f x n N 

. . ( ) 0, 1,2,...,ist g x i m 

  ( )=0, 1,2,...,jh x j k 

 1 2[ , ,..., ]dx x x x 


_ min _ max , 1,2,...,d d dx x x d D 

where X is a D dimension decision vector, and Y is the target 

vector. N to optimize the total number of targets, ( ) 0ig x  

is the ith inequality constraint, ( )=0jh x  is the jth equality 

constraint, ( )nf x  is the Nth target function; X is the decisive 

space for the decision vector formation, Y is the target space 

formed by the target vector. ( ) 0ig x  and ( )=0jh x  

determine the feasible domain solution, 
_ maxdx  and 

_ mindx  

are the upper and lower bounds for each vector search. The 
Pareto [13] optimal solution for solving multi-objective 
problems is defined as follows: 

Pareto dominant: For any two vector ，  is called 

 dominated v , or v  is dominated by  ,when and only 

when: =1,2,..., , i ii M  and =1,2,..., , j jj M ; 

Pareto optimal solution: *x Q  solution of a is called 

Pareto optimal solution or Pareto non - dominant solution, 

when and only as *:x Q x x ; 

Pareto optimal solution set: The set PS of all Pareto 

optimal solutions is called the Pareto optimal solution set 

PS= * *{ | : }x x Q x x  

B. The principle of Particle Swarm Optimization 

Similar to other algorithms based on swarm intelligence, 

particle swarm optimization (PSO) is also through the 

cooperation and competition among different particles in the 

group to achieve the search process in the search space to 

find the optimal location of the problem. The particle swarm 

algorithm first random initialization a uniform distribution 

in the optimization space of a given particle (population size 

is 30), then all the particles according to the two extreme 

value to update its own speed: one is the individual extreme 

value(pbest); the other is a group of extreme value (gbest). 

The mathematical description of the standard PSO, which is 

widely used at present, is: the total number of particles in 

the particle swarm is POPSIZE, the dimension of the 

particle is m, the termination condition of the algorithm (the 

maximum number of iterations) is 
maxiter , the flight velocity 

of the I particle at the t moment and the position in the 

search space are 

1 2( ) [ ( ), ( ), , ( )]T

i i i imv t v t v t v t ,

1 2( ) [ ( ), ( ), , ( )]i i i imx t x t x t x t ; The individual extremum 

and the group extremum of the particle at t time are 

1 2( ) [ ( ), ( ),..., ( )]T

i i i impbest t p t p t p t ,

1 2( ) [ , ,..., ]T

mgbest t g g g . All the particles fly in the search 

space in the following update way to find the optimal 

solution. 

 
1 1 1 2 2( 1) ( ) ( ( ) ( ))+ (g ( ))i i i i iv t v t c r pbest t x t c r best x t  

1 1( 1) ( ) ( 1)i i ix t x t v t                          

where   is the inertia weight coefficient, 
1c and 2c  are 

learning factors of the algorithm. They affect the "self - 

learning" and "social learning" ability of the particles. 
1r  

and 2r  are random numbers between [0,1].  

 

III. IMPROVED MULTIOBJECTIVE PARTICLE SWARM 

OPTIMIZATION (PSO) ALGORITHM 

A. Chaos Theory 

Chaos is a form of motion in a nonlinear dynamic system, 

which has the characteristics of randomness, ergodicity and 

sensitivity to the initial value. Chaos phenomenon is a 

random and irregular movement occurring in a deterministic 

system. Its manifestation is uncertainty, but it has the 

characteristics of unrepeatable and unpredictable. The 

random motion state obtained by the deterministic equation 

is called chaos, and the variable which presents the chaotic 

state is called the chaotic variable. Document [11] proposes 

a single objective particle swarm optimization algorithm 

with chaotic sequence, and extends the mutation method to 

multi-objective particle swarm optimization to enhance its 

ergodicity in decision space. Logistic mapping is a typical 

chaotic system, and its formula is as follows: 


1 4 (1 )t t t

d d dc c c 

In this formula: t stands for tth traversal searches, d 
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represents variable sequence number, 
t

dc  doesn’t include 

four fixed points of the chaotic equation.  

The chaotic mapping is introduced into the multi-

objective particle swarm optimization (PSO), and the 

initialization method of particle swarm is changed to reduce 

the uncertainty of the particle swarm. The ergodic 

characteristics of the chaotic mapping will make the optimal 

particle swarm go through all the states in the solution space 

as much as possible, and the diversity of the particle swarm 

will also increase. In this way, the chaotic traversal search is 

used after each iteration to avoid the early maturing of the 

particle swarm, thus improving the global optimization 

ability of the particle swarm. 

In this paper, the initial population is generated: first, we 

randomly generate an initial solution x1, then generate 

population size according to our needs, generate N-1 

individuals through formula (8), and complete the 

population generation. 

B. Improvement of Particle Weight Updating 

The inertia weight determines how much the speed of the 

previous iteration is, and it is one of the important 

parameters of the particle swarm optimization. In particle 

swarm optimization (PSO), the ability of global search and 

local search can be balanced by adjusting the size of it. The 

analysis shows that, in the early stage of particle swarm 

optimization, the selection of the larger inertia weight value 

can make the algorithm have a strong global search ability; 

In the latter part of the particle swarm optimization 

algorithm, the smaller inertia weight value can make the 

particle converge to the global optimal. In addition, when 

we update particles every time, we divide the governing 

relation of particles and add the non-dominated solutions 

into our file solutions, and the non-dominating solution is 

the solution of our approximate Pareto frontier, which is the 

best solution in this generation.  

Therefore, the update of our inertia weight is divided into 

two kinds: A kind of inertia weight to file update solutions, 

to strengthen the local search ability, so the update formula 

such as (9); another is non-file update solutions, due to the 

non-dominated solution is the solution file, in order not to 

lose the diversity of population, we enhance the global 

search ability of non-file solution, the inertia weight the 

update formula is (10). 

 max max min

max

-( - ) iter
=

iter

  





 min max min

max

+( - ) iter
=

iter

  





where iter  is the number of current iterations, and 
maxiter  is 

the maximum number of iterations; 
max  and 

min  are the 

maximum and minimum of  . 

C. Simplified Mesh Reduction 

After the particle update and cross operation, we choose 

the non-dominant solution as our file solution. With the 

increase of the number of iterations, the file solution will 

also increase, the distribution of the solution is more dense 

and the calculation cost increases. Therefore, we use the grid 

reduction strategy. The existing grid reduction strategy is 

triggered when the file solution exceeds the upper limit. 

Every time a file solution is discarded, it will trigger almost 

every upper limit in the later period, and the calculation 

frequency is very high. Once the file solution changes, the 

grid needs to be maintained so that the grid is likely to need 

to be rebuilt. Therefore, we improve the grid policy: We 

delete multiple solutions each time the grid is triggered, 

which reduces the grid trigger frequency and reduces the 

computational cost. The concrete steps are as follows: 

 Step 1: The maximum minimum value 
,maxif  on each 

target is calculated, 
,minif , i is the target dimension; 

 Step 2: We set up a grid coordinate system. The average 

of each target is divided into SSS equal points, and the 

distance between each point of each target is 

,max ,mini if f
d

sss


 , Grid coordinates are 

,min , ( 1,2,..., )if j d j sss   ; 

 Step 3: Calculate the grid coordinates for each file 

solution. Each file solution is assigned to our grid 

coordinate system( Different file solutions may have the 

same grid coordinates); 

 Step 4: We delete the file solution with the same grid 

coordinates. If we include extremal solution (boundary 

solution), we preserve the extreme value solution. 

Otherwise, we randomly select the same coordinate 

solution, and all other same coordinate solutions are 

discarded.  

D. Introducing a Normal Distribution Crossover 

Operator 

Because we need to enhance the diversity of the 

population, we introduce the normal distribution crossover 

operator (NDX) with a certain probability in the algorithm. 

In order to avoid the fact that the later algorithm is not close 

to the real Pareto frontier, we increase the probability of 

introducing the crossover operator in the later period of the 

algorithm. We use an increase in the probability of a linear 

increase in the number of iterations by 
0P , such as formula 

(11). And a random [0,1]P  is generated, and when the P is 

less than 
0P , the formula(12) is executed. 


0

max

iter
P k

iter
                                



1, 2, 1, 2,

1,

1, 2, 1, 2,

2,

( ) | (0,1) |
'

2 2

( ) | (0,1) |
'

2 2

i i i i

i

i i i i

i

p p p p N
x k

p p p p N
x k

 
  


    



         

where k  and 'k  are two different proportionality 

coefficients, which are defined by ourselves. | (0,1) |N  is a 

normal distribution random variable; 
1,ip  and 

2,ip  are the 

two parent of the ith variable; iter is the number of current 

iterations; 
maxiter  is the maximum number of iterations. 

E. Gene Exchange 

In order to improve the performance of the algorithm, we 

introduced the gene exchange in the file learning. We can 

improve the efficiency of search by exchanging information 
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between the archival solutions of the elite. When all 

particles fly once, if the file solution has exceeded 100(to 

ensure sufficient diversity to avoid precocious maturity), if 

there is a grid reduction strategy, then gene exchange is 

performed after grid reduction strategy (the file after the grid 

is reduced is smaller and the solution is more representative). 

The following steps are as follows: 

 Step 1: A random integer m(1 n d  , d is a decision 

space dimension. is generated), based on the random 

number m, to determine the corresponding M decision 

variable for each file solution. 

 Step 2: Based on this decision variable, the decision 

variables in the last file solution are used in turn to 

replace the corresponding decision variables in the 

previous file solution and produce a new solution. 

 Step 3: We calculate the corresponding target vector of 

the new solution. If the new target vector is better than 

the old target vector, then the decision variable in the 

previous file solution will use the new value, otherwise 

the old value will be used. After all the files are updated, 

delete those dominated files. 

F. Algorithm flow 

 Step 1: Initialization parameters: Initial iteration number 

=1iter , Maximum iteration number 

max 1000iter  ,
max 0.9  ,

min 0.1  , The maximum upper 

limit of the file solution 
dangmax =100 , The learning factor 

1 20, 2c c   of the algorithm, Grid equal number 

30sss  , Population size 300N  , Cross coefficient of 

normal distribution =0.9k , '=1.481k , Coefficient of 

variation  0.05P  ; 

 Step 2: Before the iteration, Produce N particles by the 

formula (8),and their fitness values are kept in our f 

matrix; 

 Step 3: The initial screening solution added to the file to 

ensure that the file solution only retained the non-

dominant solution(non-inferior solution); 

 Step 4: It begins to circulate update iterations and 

randomly selects a particle in the file solution as a global 

optimal. In the multi-objective problem, the individual 

optimality is no longer effective, so we no longer choose 

the individual optimal; 

 Step 5: The multiplicity of the solution is increased by 

adding random reinitialization before the particle is 

updated. Setting up P0=0.05; 

 Step 6: According to formula (6) and (7) updating 

particle velocity and location, we have the particles that 

exceed the decision space. We reverse the particle 

velocity and set the location of these particles as 

boundary particles; 

 Step 7: According to the formula (11) and (12), new 
solutions and files are solved to produce new solutions; 

 Step 8: According to every particle we update, if the 

particle dominates some solutions in the file solution, we 

delete these solutions and add the new solution to the 

file. If the particles are dominated by the file solution, 

we abandon the particle; 

 Step 9: According to 2.5, the strategy of gene exchange 

was carried out to update the file solution; 

 Step 10: If 
max<=iter iter , return to step 4, otherwise jump 

out of the loop and get the Pareto optimal solution. 
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Fig. 1. Comparison of test functions on 4 algorithms. 

 

TABLE I: IGD INDEX STATISTICS 

Test function Comparison method Algorithm 

C-MOPSO MOPSO NSGA-II MOEA/D 

ZDT1 Mean 5.289e-04 8.491e-04 8.407e-04 2.965e-02 

Std 6.254e-05 4.464e-04 1.256e-04 5.412e-04 

p-value 9.607e-29 2.585e-11 7.559e-26 3.383e-52 

ZDT2 Mean 6.962e-04 7.810E-04 7.458e-03 1.757e-02 

Std 1.652e-04 2.403E-04 8.507e-03 7.056e-04 

p-value 3.255e-20 3.762E-17 4.402e-05 2.829e-42 

ZDT3 Mean 1.418e-02 2.401e-02 1.242e-02 1.885e-02 

Std 1.776e-04 1.729e-03 1.278e-03 6.247e-03 

p-value 6.266e-57 6.202e-35 1.779e-30 2.685e-16 

ZDT6 Mean 7.833e-04 3.895e-04 1.921e-02 4.800e-02 

Std 2.619e-04 5.566e-05 2.376e-02 6.866e-04 

p-value 3.392e-16 2.134e-26 1.238e-04 2.888e-55 

DTLZ1 Mean 7.514e-04 4.628e+00 2.843e-02 3.266e-01 

Std 7.547e-05 5.185e+00 1.117e-01 1.394e-01 

p-value 8.885e-31 3.450e-05 1.740e-01 1.744e-13 

DTLZ4 Mean 4.581e-04 3.697e-02 8.933e-04 9.625e-04 

Std 1.124e-04 1.807e-02 8.690e-04 8.221e-04 

p-value 8.301e-20 4.722e-12 4.413e-06 5.170e-07 

 

IV. PERFORMANCE TEST AND ANALYSIS OF EXPERIMENTAL 

RESULTS 

A. Test Functions, Test Environments, and Performance 

Indicators 

In order to verify the effectiveness of the improved multi-

objective particle swarm optimization algorithm, we choose 

the typical multi-objective test function set ZDT [14] and 

DTLZ [15], the representative six kinds of multi-objective 

functions (ZDT1, ZDT2, ZDT3, ZDT6, DTLZ1, ZTLZ4) to 

carry out experimental simulation comparison. In this paper, 

Our m=12 and  in DTLZ4.  

We use the comprehensive index (Inverted Generational 

Distance, IGD) [16] to evaluate the proposed algorithm. The 

test environment is: Windows10, CPU is Intel Xeon-E3-

1240v5, 3.5GHZ, and 8G. The test software is MATLAB 

2014A. IGD is a metric to measure the distance between the 

real Pareto frontier and the approximate Pareto frontiers 

obtained by the algorithm. The lower the IGD value, the 

better the convergence and diversity of the approximate 

Pareto fronts obtained by the algorithm, and the closer to the 

real Pareto frontiers. The calculation formula is as follows: 



| |
*

* 1

( , )

( , )
| |

P

i

i

d P P

IGD P P
P






Among them: P is an ideal set of uniform sampling, *P  is 

a set of myopic Pareto solutions obtained through the 

algorithm, | |P  is the size of the population *P , *( , )id P P  is 

the minimum Euclidean distance between 
iP  and population 

*P . 

B. Results and Analysis of Simulation Experiment 

Three kinds of multi-objective classical algorithms are set 

up in this paper to analyze the chaos based multi-objective 

particle swarm optimization (CMOPSO) algorithm. It 

includes multi-objective particle swarm optimization 

(MOPSO), non-dominated sorting algorithm NSGA-II [17] 

and multi objective evolutionary algorithm MOEA/D [18]. 

The parameters of the algorithm are set to: =1iter , 

max 1000iter  , 
max 0.9  ,

min 0.1  , The maximum upper 

limit 
dangmax =100  of the solution, 

1 20, 2c c  , 30sss  , 

300N  , =0.9k , '=1.481k , The mutation probability is 

0.05P  , The optimal solution and the real optimal solution 

are shown in Fig. 1. 

From Fig. 1, we can see that under the ZDT series of two 

test functions, all the results are better than other algorithms. 

In particular, the three functions of ZDT1, ZDT3 and ZDT6 

are almost close to the real Pareto frontiers. 

C. Performance Comparison of Multiobjective 

Optimization Problems 

The 4 algorithms run 30 times separately, the average 
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value of the IGD performance index (Mean), the standard 

deviation (Std), as shown in Table I. The blackbody coarse 

font is the optimal value obtained by each algorithm on the 

same test problem. The p-value value is the p-value value of 

the 5%t- test that we have shown the significant level of this 

algorithm and other contrast algorithms on the same test 

problem. 

From Table I, we can see that after 30 times of variance 

and double tail detection, the mean and variance of C-

MOPSO on two-dimensional multi-target test functions 

ZDT1, ZDT2 and ZDT6 are superior to those of other 

algorithms. Due to the dominance relationship between the 

optimal solutions of our ZDT3 functions, we get a certain 

gap between the obtained solutions and the optimal 

solutions. But for the governing solutions, the solution is 

better than NSGA- II. In 3D, the mean of CMOPSO is better 

than our other algorithms by comparing the four algorithms 

of two functions. The following figure is a comparison of 

the rate of convergence and the size of the IGD index of the 

various algorithms of the same function at each iteration. 
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Fig. 2. IGD index changes. 

 

From Fig. 2, we can see that the ZDT3 function is 

discontinuous and the optimal solution is continuous, but the 

effect is better. By comparing the convergence rate and 

effect of the IGD index of the four algorithms on six 

functions (ZDT1, ZDT2, ZDT3, ZDT6, DTLZ1, DTLZ4), 

the algorithm proposed in this paper is superior to the other 

three algorithms. 

 

V. CONCLUSION 

In order to improve the efficiency of solving multi-

objective optimization problems, a multi-objective 

optimization algorithm of chaotic particle swarm 

optimization is proposed in this paper. In this algorithm, a 

method of initializing particle swarm based on chaotic 

sequence is presented to select the global optimal particle 

randomly and guide the evolution direction of the 

population. The cross strategy of normal distribution is 

adopted to increase the diversity of the solution. And we add 

the grid reduction strategy to reduce the computational cost. 

Because of better solution in the decision space, there is a 

good one dimension or multidimensional, so we add the 

gene exchange to improve the convergence speed. The 

results of comparison test show that the proposed algorithm 

can obtain high quality Pareto sets with better convergence, 

more uniform distribution and wider coverage. The next step 

is to improve the performance of the algorithm for the multi-

objective problem of higher dimension, and apply it to the 

engineering design in order to realize its social value. 
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