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Abstract—Neural networks have recently been attracting 

attention again as classifiers with high accuracy, so called 

“deep learning,” which is applied in a wide variety of fields. 

However, this advanced machine learning algorithms are 

vulnerable to adversarial perturbations. Although they cannot 

be recognized by humans, these perturbations deliver a fatal 

blow to the estimation ability of classifiers. Thus, while humans 

perceive perturbed examples as being the same as the original 

natural examples, sophisticated classifiers identify them as 

completely different examples. Although several defensive 

measures against such adversarial examples have been 

suggested, they are known to fail in undesirable phenomena, 

gradient masking. Gradient masking can neutralize the useful 

gradient for adversaries, but adversarial perturbations tend to 

transfer across most models, and these models can be deceived 

by adversarial examples crafted based on other models, which 

is called a black-box attack. Therefore, it is necessary to 

develop training methods to withstand black-box attacks and 

conduct studies to investigate the weak points of current NN 

training. This paper argues that no special defensive measures 

are necessary for NN to fall into gradient masking, and it is 

sufficient to slightly change the initial learning rate of Adam 

from the recommended value. Moreover, our experiment 

implies that gradient masking is a type of overfitting. 

 

Index Terms—Adam, adversarial examples, gradient 

masking, machine learning, neural network.  

 

I. INTRODUCTION 

Deep learning is a state-of-the-art classification algorithm. 

Since Hinton et al. [1] succeeded in deepening neural 

networks (NNs) and this achieved the highest accuracy in 

the machine learning field, deep learning has been attracting 

interest in many fields and has dramatically improved image 

recognition, speech recognition, object detection, and 

bioinformatics [2]. 

However, Szegedy et al. [3] first pointed out that this 

sophisticated algorithm may be vulnerable to adversarial 

examples. They crafted small perturbations enough to be 

unrecognizable to humans, but significant enough to cause 

deep neural networks (DNNs) to misclassify, and they 

applied the perturbations to the original image. Such 

transformed examples are called adversarial examples, and 

have attracted much attention recently. 

What problems can we consider when adversarial 

examples are abused in the real world? If an authentication 

system mounting deep learning is targeted, this system may 
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allow miscreants to access important information or 

buildings. If self-driving vehicles are targeted, they may 

misrecognize signs or situations and cause severe accidents. 

In addition, other destructive attacks may be possible, 

because deep learning can be used in various applications. 

Deep learning has already begun to be applied in the real 

world, so these risks must be eliminated beforehand. 

Many researchers have studied adversarial examples, 

including how to craft adversarial examples artfully and 

how to defend DNNs from the adversary to prevent the 

above-mentioned cases. An adversarial perturbation is 

usually crafted with the gradient of the DNN’s output 

probability distributions with respect to input images. Some 

examples of adversarial crafting methods based on the 

above considerations have been proposed. Szegedy et al. [3] 

crafted adversarial examples with a box-constrained 

L-BFGS algorithm. They consider the problem of crafting 

adversarial examples as the minimization of example 

changes with a target label different from the original label 

as a constraint. To realize this, the objective function is 

formulated as the distance from the original example to the 

adversarial example with the loss function as a penalty 

function. Goodfellow et al. [4] suggested a method of 

crafting adversarial examples, the so-called “Fast Gradient 

Sign.” This technique uses the sign of the gradient of the 

output probability distribution. Moosavi-Dezfooli et al. [5] 

proposed DeepFool, which can create finer perturbations 

than Fast Gradient Sign. In their approach, Newton’s 

method was applied to produce very small but fatal 

perturbations. Papernot et al. [6] proposed a crafting method 

accessing the Jacobean of output probability distributions 

with respect to input images. This is known as 

Jacobian-based Saliency Map Attack (JSMA) and enables 

attackers to misclassify adversarial examples as any target 

labels. Moreover, Carlini et al. [7] also expanded the 

crafting method of Szegedy et al. [3] and improved the 

penalty function, the representation of the distance, and so 

on. Universal perturbation [8] uses DeepFool and updates a 

perturbation repeatedly to create network-specific 

perturbations. Interestingly, the generalizability of the 

universal perturbations across different networks is 

demonstrated. 

Furthermore, crafting algorithms directly utilizing no 

autologous gradient have also been studied recently. 

Papernot et al. [9] developed a black-box attack, requiring 

no gradient information of any defender. In this algorithm, 

the attacker has its own DNNs, uses a few initial examples 

different from the defender’s DNNs. And, this let its DNNs 

learn by checking the answers of defender DNNs. The fact 

that many adversarial examples for a certain model usually 

have the capacity to transfer to others is well-known [4], 

[10], [11], so adversaries do not need to access the defender 

DNN’s architecture information. 
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On the other hand, methods of defending against 

adversarial examples have also been developed. Goodfellow 

et al. [4] also suggested adversarial learning, which trains 

DNNs with both the natural sample and adversarial sample, 

in their paper. Defensive distillation [12], [13] is one of the 

most common methods. This approach makes use of 

distillation, which was originally introduced to transfer the 

learned information from one NN to another [14], as a 

defense technique, and the applicability to defending against 

Fast Gradient Sign [4] and JSMA [6] was demonstrated. 

Sengupta et al. [15] applied Bayesian game theory to defend 

DNNs. Given that a defender has some strategy for selecting 

DNNs and an attacker has the corresponding universal 

perturbations [8], the optimum strategy for the defender is 

sought. However, there is no proposal for a method that can 

reliably protect against the various attacks listed above. The 

protection to adversarial examples is an open problem. 

Moreover, unfortunately, many potential defense 

mechanisms are said to fall into the category of gradient 

masking [9], which neutralizes the effective gradient to craft 

an adversarial example at the expense of the error rate. In 

this paper, we reveal, to some extent, what gradient masking 

is. It is known that gradient masking is developed relatively 

easily by NNs when they are trained to defend themselves. 

However, we found that when Adam [16] is used in the 

training phase on the MNIST dataset and the initial learning 

rate is varied slightly, gradient masking occurs. We also 

show that gradient masking may be the same phenomenon 

as overfitting. The occurrence of gradient masking is well 

known, but the mechanism has not been reported. 

Understanding what gradient masking is may assist future 

studies of more-appropriate learning methods to combat 

adversarial examples. 

 

II. ATTACK METHODS 

We introduce adversarial examples after explaining a 

basic approach to craft adversarial examples, on which most 

current methodologies are based. 

A. Principle of Attack Methods 

Recent studies revealed a severe vulnerability to 

adversarial examples. Moreover, unfortunately, adversarial 

examples are crafted easily and quickly, so they are likely to 

be a threat to systems incorporating DNNs. The basic 

principle is introduced below. 

In the field of classifications, NNs learn a probability 

distribution to express what an input is, and the class of the 

highest probability is chosen as a recognized class. Formally, 

given that the input space is 𝑋, the output label space 𝑇, the 

dataset is 

       

and 𝜙  is the learned probability distribution function, 

output of NNs. The output is 

          (2) 

where 𝜃 is the parameter determining the architecture of an 

NN. NNs are made to learn to match 𝑡𝑖  and 𝑦𝑖   𝑖 =

1, … , 𝑛 . To do so, the cross-entropy loss function 

           (3) 

where 𝑡𝑖 ′  is the one-hot expression of 𝑡𝑖 , is usually 

minimized with respect to 𝜃. So, in the learning epoch, we 

calculate the partial differential 

                 (4) 

and update 𝜃. 

Most adversarial examples are crafted by abusing the 

learned probability distribution or this loss function. For 

example, the probability distribution function gradient with 

respect to 𝑥  supplies attackers with potentially useful 

information. This is because the gradient to reduce the 

probability of a recognized class. In other words, we can 

craft adversarial perturbations by calculating 

                 (5) 

An adversarial example is crafted by applying an 

adversarial perturbation to a normal example. The 

adversarial examples are hardly any difference for human 

and they correctly recognize them owing to the very small 

perturbations. However, DNNs are forced to misclassify the 

adversarial examples. This indicates that DNNs may not be 

able to acquire the correct features of an input to learn it 

correctly. 

Although many crafting methods for adversarial examples 

were suggested, shown in our introduction, we discussed the 

simplest methods to simplify the explanation of gradient 

masking. 

B. Fast Gradient Sign Method 

The fast gradient sign method (FGSM) [4] utilizes the 

sign of the adversarial gradient. This adversarial strategy 

crafts an optimal max-norm constrained perturbation  

           (6) 

where 𝜃 is the parameters of a model, 𝑥 is the input to the 

model, 𝑦 is the label associated with 𝑥, 𝐽 𝜃, 𝑥, 𝑦  is the 

cost function used to train the neural network, and 𝜖 is the 

perturbation magnitude enough to be nearly 

indistinguishable for a human but to force DNNs to 

misrecognize. This attack is developed to demonstrate that 

the linear nature of the activation functions causes DNN 

vulnerability to adversarial perturbation and they argued that 

a tiny perturbation on the high-dimension input space grows 

into a visible perturbation through propagation. Equation (6) 

implies changing the color of all pixels simultaneously by 

±𝜖 uniformly, which implies making many small changes 

to an image. 

 

III. EXPERIMENTS 

We now set up experiments to show the following 
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phenomena. 

1) When NNs learn with a non-recommended initial 

learning rate of Adam, NNs are less vulnerable to 

FGSM.  

2) The phenomenon of gradient masking is similar to 

overfitting. 
 

 
Fig. 1. Test error rate when the initial learning rate of Adam is varied. Line colors indicate different learning epochs. It is noted that both axes are logarithmic. 

(a) Effect of varied learning rate about the error rate of natural MNIST images. 

(b) Effect of varied learning rate about the error rate of MNIST images perturbed by FGSM. Epsilon of FGSM is 0.25. 

 

Our experiments made use of well-studied handwritten 

digits, the MNIST dataset. The image data are composed of 

28×28 = 784 pixels and labeled with multiple integers from 

0 to 9. The number of the training data samples was 50,000 

and the test data was 10,000 in our experiments. The NN 

architectures used in our experiments were fully-connected 

feed-forward NNs, shown in Table I. The batch size was 

125 samples and learning epoch is 100000, unless otherwise 

noted. 

A. Valid Adam Initial Learning Rate 

First, we examined the tolerance of NNs to FGSM and 

DF with different popular optimizers, including mini batch 

optimization, momentum [17], AdaGrad [18], and Adam 

[16]. In this experiment, all hyper parameters were set to 

recommended values. The test error rate of FGS images is 

shown in Table II. NNs trained without Adam 

misrecognized FGS images almost completely, as explained 

in [4]. However, when learning with Adam, the test error 

rate of FGS images tends to be a little lower. So, we decided 

to verify the learning rate of Adam. The update rule of 

Adam is below.  

Initialization: 𝑚0 ← 0,    𝑣0 ← 0,    𝑡 ← 0 

while 𝜃𝑡  not converged do 

𝑡 ← 𝑡 + 1 

𝑚𝑡 ←
1

1 − 𝛽1
𝑡  𝛽1𝑚𝑡−1 +  1 − 𝛽1 𝛻𝜃 𝐽𝑡 𝜃𝑡   

𝑣𝑡 ←
1

1 − 𝛽2
𝑡
 𝛽2𝑣𝑡−1 +  1 − 𝛽2 𝛻𝜃 𝐽𝑡 𝜃𝑡 

2  

𝛼𝑡 ← 𝛼
 1 − 𝛽2

𝑡

1 − 𝛽1
𝑡  

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼𝑡

𝑚𝑡

 𝑣𝑡 + 𝜖
 

end while 

In this algorithm, 𝑡 is a time step, 𝛽1 is the exponential 

decay rate for momentum, which is recommended to be 0.9, 

𝛽2 is the exponential decay rate for the learning rate, which 

is recommended to be 0.999, and 𝜖 is the value to escape 

the not-a-number condition, which is recommended to be 

10
-8

.  

We tested the tolerance of NNs to FGSM with various 

initial learning rates of Adam. The perturbation magnitude 

was set to 0.25. Since [16] recommends that the initial 

learning rate be 0.001, we validated a sufficiently wide 

range for the first time. Yet, as it was difficult to be fooled 

particularly around 0.01, we decided to investigate in the 

range from 0.1 to 0.00075, which includes the recommended 

value. We had NNs learn the MNIST dataset and examined 

the test error rate of natural and FGS images. Besides the 

error rate, the number of valid FGS images was calculated 

based on the fact that if the gradient with respect to the 

example is zero, FGSM cannot craft any adversarial 

example, because FGSM makes use of the gradient, as 

explained in Section II.B.  

TABLE I: ARCHITECTURE OF FULLY-CONNECTED NNS 

Layer Description 

Input layer 28×28 

1st hidden layer FC(600)+ReLU 
2nd hidden layer FC(128)+ReLU 

Output layer FC(10)+Softmax 

The network has four layers including input and output layers. FC means 

fully-connected layers and the number means the number of units. 

 

TABLE II: COMPARISON BETWEEN OPTIMIZATION METHODS OF ERROR 

RATE OF TWO TYPE OF IMAGES 

Methods Natural images FGS images 

Mini batch 2.36 99.9 

Momentum 1.99 99.5 

AdaGrad 2.05 99.9 
Adam 1.68 90.4 

 The units in the table are in percent. 

 

When the initial learning rate was more than 0.075, the 

test error rate of natural images reached 60% or higher (see 

Fig. 1(a)). This implies a very large initial learning rate of 

Adam makes it impossible to learn, because weight vectors 

of NNs cannot converge to the proper local minimum. As 

the initial learning rate decreased, the test error rate of 

natural images also decreased and was less than 3% with an 

initial learning rate less than 0.01. However, the behavior of 
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the test error rate curves of FGS images differed from the 

above one absolutely. High error rates of FGS images were 

acquired with a large learning rate, and the number of 

images crafted successfully by FGSM was less than 40% 

(see Fig. 1(b)), because, from the first, they cannot learn 

anything and the learned probability distribution might be 

uniform. On the other hand, test error rates of FGS images 

were also high when the initial learning rate was close to the 

recommended value, as expected from the previous 

experiment. In this case, FGSM naturally succeeded in 

crafting valid adversarial examples with 90% probability. 

Surprisingly, when the initial learning rate was set to around 

0.01, the test error rate of FGS images was obviously lower. 

In this instance, FGSM could not craft valid images, with 

20% probability or less, and the test error rate of natural 

images was somewhat higher than the one with the 

recommended initial learning rate. This implies that a 

particular initial training rate of Adam causes gradient 

masking.  

 
Fig. 2. Test error rate of FGS images when epsilon of FGSM is varied, which 

is reflected in the line colors.  The orange line is the case when the initial 

learning rate is 0.01, while the blue line is the case when the initial learning 

rate α is 0.001. The color density represents the magnitude of perturbation ε. 

 

 
Fig. 3. Error rate of FRS images when initial learning rate of Adam is varied. FRSM was executed on the training images. 

(a) Effect of varied learning rate about the error rate of MNIST images perturbed by FRSM. The color of line represents the learning epochs.  

(b) Comparison of changes in random noise immunity during the learning process. The orange line is the case when the initial learning rate is 0.01, 

while the blue line is the case when the initial learning rate 𝛼 is 0.001. The color density represents the magnitude of perturbation 𝜖.  

 

B. Gradient Masking 

Because no paper has studied how to develop gradient 

masking, we examined the above phenomenon in more 

detail. So, the resistance of the above NNs to the random 

perturbation, instead of the gradient-based perturbation, was 

examined. We crafted a max-norm constrained perturbation 

and applied it to an image. This method uses a random 

perturbation instead of the gradient-based perturbation of 

FGSM, so it is named the Fast Random Sign Method 

(FRSM) after FGSM in this paper. Calculating the training 

error rate of FRS images enables us to examine how far the 

decision boundary extends around an input point. In other 

words, when the training error rate of FRS images with 𝜖 is 

very low, this implies that the boundary surrounding a data 

point extends by more than 𝜖 on average. We also show the 

case of FGS images as comparison in Fig. 2. As the initial 

learning rate of Adam increased and the test error rate of 

natural images increased, the training error rate of FRS 

images increased (see Fig. 3(a)). This implies that gradient 

masking brings the decision boundary closer to the training 

data points. Also, for the training epochs (see Fig. 3(b)), 

while the error rate curves of FRS images were flat with an 

initial learning rate of 0.001, the error rate slope increased 

with an initial learning rate of 0.01. This implies that 

gradient masking occurred, thus further constricting the 

decision boundary around the training data points.  

 

IV. DISCUSSION 

So far, gradient masking was thought to occur when 

DNNs are trained to defend themselves. However, we found 

that this phenomenon occurs under normal learning 

conditions without special regularizations or defense 

strategies to adversarial gradients. Our paper demonstrates 

that training with Adam and the non-recommended initial 

learning rate prevents FGSM but reduces accuracy, i.e., 

gradient masking takes place. This implies that potential 

defense mechanisms induce NNs to converge to particular 

local solutions, and the minimum is not guided only by 

defense methodologies.  

What characteristic of Adam caused this phenomenon? 

Adam has two exponential moving averages of gradient and 

square of gradient. In other words, the algorithm of Adam is 

divided into two parts, momentum and RMSprop [19]. 

Momentum allows more efficient search by increasing the 

inertia of the gradient, and RMSprop automatically adjusts 
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the learning rate from the latest gradient information.  

Because, in the above experiment, NNs trained with 

momentum were almost fooled by FGSM, unlike Adam, we 

investigated whether RMSprop shows the same tendency as 

Adam. Indeed, training with RMSprop was as difficult to 

fool as Adam was. On the other hand, AdaGrad, which 

adaptively changes the learning rate for each weight from 

the sum of all gradients calculated in the past, did not give 

this result. This implies that adaptive changing of the 

learning rate for each weight from the sum of the immediate 

gradients generated gradient masking.  

Although it is not shown in this paper, we compared our 

learning, which sets the learning rate to 0.01, to adversarial 

training [4] to evaluate the security level. In the case of 

setting epsilon to 0.25 with 𝐿∞ norm, our method reduced 

the test error rate of FGS images to 5%, while adversarial 

training reduced it to only about 10%. 

 

V. CONCLUSION 

We found that the initial learning rate of Adam affected 

gradient masking without applying any defense technique. 

This implies that gradient masking is not necessarily a 

byproduct of the defense to adversarial examples. Moreover, 

gradient masking showed the same tendency as overfitting 

in our experiment. We should examine the hyper-parameters 

carefully in these studies because the result of neural 

network training depends on them complicatedly. 
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