

Abstract—Problem of transferring and testing self-driving

algorithms developed in virtual environment to a physical

environment is explored by transferring a Convolutional

Neural Network based self-driving car steering algorithm from

virtual environment to physical RC card based environment

for validation and testing as a step on the way for full scale self-

driving car tests. In the process a novel approach for synthetic

training data generation from single camera is developed, thus

reducing the real world physical requirements for the

algorithm and demonstrating the improved self-driving

algorithm development pipeline from fully virtual

environments to scaled physical models, to full self-driving cars,

potentially leveraging the global developer community for

development.

Index Terms—Convolutional neural network, training data

generation, self-driving cars, virtual and physical models.

I. INTRODUCTION

The development of better and safer self-driving cars has

been a focus for many companies, governments and research

institutions around the world. A strong focus is on achieving

smart, energy efficient, safe, cooperative and low cost

mobility, as evidenced, by international strategic documents

[1]. The highest level of vehicle automation [2], towards

which the research and development are geared is the 5th

level, “Full driving automation”, which does not require a

driver and does not require a person to intervene in the

decision making process. Such level of automation requires

a high amount of components to be developed and tested,

and also the testing with actual cars can be expensive,

dangerous and even illegal. Thus any significant success in

this field has been mostly shown by large companies with

significant resources (e.g. Google, Tesla, NVidia, Volvo,

etc.). To combat this trend and allow more people to

contribute to this complex problem a movement of

developing virtual self-driving car algorithms and test them

in virtual environments, has emerged. Massive Open Online

Courses (MOOC) have been developed [3] where students

can develop their own algorithms for self-driving cars and

both train and test their neural network based solutions in

the virtual environment. This approach provides a large

amount of algorithms solving specific problems in the

global self-driving picture, but two main problems remain –

is it possible to transfer the algorithms from the virtual to the

real world and is it feasible, from the perspective of the

Manuscript received January 18, 2018; revised March 7, 2018.

The authors are with the Institute of Electronics and Computer Science,
Dzerbenes 14, Riga, Latvia (e-mail: naurisdorbe@gmail.com, e-mail:

ram3a12@gmail.com, krisjanis.nesenbergs@gmail.com).

computing power required, as real world vehicles can have

limited computing power because of size, energy

requirements and cost.

In this article we explore these questions by examining an

image processing and convolutional neural network (CNN)

based self-driving car steering algorithm developed in a

virtual environment, developing a real-world physical car

model (RC), and transferring the algorithm to the physical

model for real world testing. In the process we also develop

an improved method for generating augmented CNN

training data from a single camera, thus reducing the real-

world hardware requirements while still preserving the

benefits of multiple virtual cameras for a more stable vehicle

trajectory. The model cars use a combined data processing

approach with a low power local computer and wireless

communication to a more powerful server and the process is

geared towards preserving the lessons and work done in the

virtual environment and minimizing the steps required for

the transfer to physical environment.

As a result, this article shows that it is possible to develop

physical RC testbed as an intermediary between fully virtual

environments for development of self-driving car algorithms

and expensive real car testing thus reducing the entry

barriers for self-driving car algorithm developers and testing

of the resulting algorithms during each step of the

development pipeline.

II. ALGORITHM IN VIRTUAL ENVIRONMENT

The first step in the proposed self-driving car

development pipeline is developing an algorithm in a virtual

environment. In this work the specific algorithm selected for

implementation is a neural network based behavioral

cloning algorithm implemented in the Udacity self driving

car virtual environment [3].

Behavioral cloning approach means, that instead of

basing complex decisions on a full model of the

environment, the system is developed to provide similar

behavior than a human would, based solely on some input

data. In this specific case, the algorithm only considers

image input and provides steering angle and acceleration

data output, thus cloning basic driving tasks.

In general behavioral cloning based on visual input is a

non-trivial task involving complex processing of high

resolution frames. This task is made significantly easier by

the introduction of neural networks allowing training the

algorithm by example and potentially generalizing it to

unseen environments.

The success of training a neural network to drive like a

human is highly dependent on the ability to provide precise

Prospects of Improving the self-Driving Car Development

Pipeline: Transfer of Algorithms from Virtual to Physical

Environment

Nauris Dorbe, Ingars Ribners, and Krisjanis Nesenbergs

International Journal of Machine Learning and Computing, Vol. 8, No. 2, April 2018

181doi: 10.18178/ijmlc.2018.8.2.684

mailto:naurisdorbe@gmail.com
mailto:ram3a12@gmail.com

quality training data, robust training process protecting the

neural network from over-fitting or under-fitting and the

speed and latency of inference for the final result to be

applicable to real-time driving systems.

Fig. 1. Architecture of the neural network used.

Thus a CNN based algorithm was developed and

implemented in the virtual environment based on the work

of M. Bojarski et al. [4] at NVidia Corporation. The original

model was developed for an end-to-end learning solution

aimed at learning to select steering angle based on input of

three cameras (left, right and center).

Even though our model similar, it differs in size and input

data normalization. The full architecture of our neural

network is shown in Fig. 1. In order to decrease over-fitting

a Dropout [5] was introduced after first and third Dense

layers. Additionally we introduced Scaled Exponential

Linear Unit (SELU) activations instead of Rectified Linear

Unit (ReLU) activations [6]. The network was trained for

steering first and for both steering and velocity afterwards,

providing sufficient basis for reinforcement learning.

The source code for our implementation of the virtual

environment is available at [7].

The training work-flow in the virtual environment is

shown in Fig. 2. Training follows the numbering in graph.

First we choose training mode and first track to gather

training data and train it with additional data augmentation

then we test our model in autonomous mode in second track.

Fig. 2. Training work-flow in the virtual environment.

Data augmentation is one of the key aspects for training

both in the virtual environment and later in the physical

environment, because it provides robustness and re-usability

by adding noise, changing the lighting conditions of the

image, randomized movement of the camera and random

shadows. Also the data augmentation reduces the amount of

training data, that needs to be gathered reducing the data

gathering time to less than an hour.

Thanks to multi-threading and python generator we were

able to create effective training flow which loaded,

preprocessed, augmented input images from local directories

in background using CPU without sacrificing GPU

utilization time and filling whole RAM with input images.

We trained our model only about 54 seconds which are 24

epochs on GTX NVidia 1080 and i7-6800K.

III. SINGLE CAMERA DATA GENERATION METHOD

The original algorithm by M. Bojarski et al. [4] was

developed with powerful hardware in mind, including three

separate video cameras for visual input, multiple Graphic

Processing Units (GPU) for training the neural network and

a lot of gathered real-life training data. Two side cameras

were only used for training and were not used for actual

driving, thus reducing their utility.

In order to reduce the complexity of the steps in the

pipeline and lower the real world hardware and data

bandwidth requirements for the hardware steps thus, also

reducing real world costs, an improved visual input

generation method was developed requiring only a single

camera.

The original requirement for three cameras stems from

the problem, that training data from a single camera only

contains information about how to stay on the preferred

trajectory, but not, how to return to it from sub-optimal car

placement, such as on the side of the road, which can can

happen in real world driving because of drift introduced by

non-perfect steering precision and road conditions. The two

additional cameras thus introduced additional training data

for returning to the trajectory from the left and right side

respectively by increasing or decreasing the training steering

angle by a constant amount calculated based on the car

geometry.

This works, because the original measured steering angle

α is increased or decreased by a constant angle Δα as if the

center and heading of the car was placed at one of the side

cameras as seen in Fig. 3, thus producing three times as

many training data sets with additional information on how

to return to the selected trajectory emulating additional

"virtual" cars on the left and right of the actual car.

Our method data gathering method relies on the fact that

the width of the camera sensor is several orders of

magnitude smaller that the distance to the heading point,

thus resulting in a small distance between the front and back

side of the virtual camera denoted with in Fig. 4. Thus the

image from the left and right cameras can be safely

approximated as an image from a camera faced the same

way as the central camera, and only shifted to left or right,

respectively. As a result, if the single central camera, has a

sufficiently wide field of view, the sides of the resulting

International Journal of Machine Learning and Computing, Vol. 8, No. 2, April 2018

182

image can be cut and used for generating simulated left and

right camera images for use with the appropriate augmented

angles (
Δα+α and

Δα α respectively) as seen in Fig. 4.

Fig. 3. Schematic of three camera placement (green), destination point (red),

and both the real car placement and "virtual" car placements related to side
cameras.

Fig. 4. Virtual left and right camera data generation from a single image

from central camera.

This simple method for side camera image generation

allowed us to successfully train the neural network with only

one real camera input.

IV. HARDWARE

After the algorithm was implemented in the virtual

environment, where it was possible to test and debug it

much faster than in actual hardware it was necessary to

build a 1/18 scale model hardware platform as a next step in

the development pipeline.

As the basis for the platform a Wltoys A969 [8] Radio

Controlled (RC) car was selected.

The original Wltoys RC and motor control unit was

removed and a replacement mini-car board control board

was developed allowing fully programmable control. To

provide the high level control to the car a Raspberry Pi

Version 2 mini-computer was fitted as well.

A standard Raspberry Pi Camera v1.3 with a "fisheye"

lens with a 180 degree view angle was selected to capture

road scene. This camera has the advantage of using the

Raspberry Pi camera port instead of USB connection,

providing faster data rates and also has night vision

capabilities which might be beneficial for future work. The

wide angle lens was selected in order to support the multiple

camera view data generation method described above as the

camera itself provides a narrow field of view. This

introduces lens distortion to the captured image, which was

corrected using chessboard pattern image as a baseline [9].

This requires taking multiple pictures from different angles

of the chess board and counting corners inside them. We can

then observe how distance between corners changes at

different places and calculate distortion. This was achieved

using OpenCV [10] function "findChessboardCorners()" for

automatic chess corner detection in image, and

"calibrateCamera()" for camera calibration using these

points. The resulting distortion coefficients can be used to

un-distort images with function "undistort()". The source

code for the calibration used is available at calibrate_git

[11].

For wireless communication a WI-FI dongle was used to

receive control signals from Logitech steering unit and for

sending captured pictures from the model car to the server

for displaying and for neural network training in learning

mode.

The model chassis is equipped with a powerful brushed

motor (size 390) powered from a 7.4V LiPo battery.

Average measured current for maximum speeds and loads of

this model car is around 12A with peaks of up to 16-20A.

Estimated theoretical maximum current of such motor is

27A so a specific h-bridge circuit that tolerates such currents

was developed. For driving the steering motor a standard

1.5A L298N h-bridge board was used controlling the

original model car 5 wire servo motor. In additional a PID

controller for steering angle feedback was developed as 5-

wire servos don't have it built in and a similar feedback

controller was developed for the speed control of the main

motor using motor current as simple speed feedback. To

measure voltage an ADS1015 12-bit board from Adafruit

was used.

Fig. 5. Hardware solution schematic.

The overall hardware schematic can be seen in Fig. 5.

Additionally an ultrasonic sensor was added as a front

collision sensor for future Reinforcement Learning research.

V. EXPERIMENT

To test how the algorithm developed in the virtual

environment will function on the model hardware a

supporting software system (Fig. 6) was set up including a

server with connected steering wheel for training the model

car capable of supporting multiple clients (car models) thus

providing a platform not only for this work, but also future

research in multi-agent Reinforcement Learning.

Because after transferring the neural network from virtual

environment to the hardware model car we have no

applicable training data, it must be gathered again. The

gathered training data is basically video frames labeled with

steering angle. It is important, that the resulting model is not

tied to specific steering angles as those are hardware

dependent and can change across different vehicles. To

overcome this issue the steering angle for data labels is

International Journal of Machine Learning and Computing, Vol. 8, No. 2, April 2018

183

converted to curvature which is 1 divided by turning circle

radius (based on bicycle model) using formula

 tan rad α
C =

L
 where L is wheelbase and α is steering if

distance from the center of the mass to back wheels is not

given and

2

1

tan

C =

L
A +

rad α

 where A is distance from

the center of the mass to back wheel when it is given (Note

that the second formula has the danger of division by zero).

Fig. 6. Overview of experimental setup.

During the hardware experiment for the data improved

data gathering method from single camera left and right

frames were labeled with +/- 18% of the measured steering

angle respectively. This number is derived from the amount

of pixels cut from the sides of the full frame - the full frame

width is 280 pixels and we divide it in three sections of 200

pixels each. The resulting shift from center frame to left and

right is around 14.3%. We add extra 3.7% to simulate more

aggressive returning back to center and this results in 18%.

To achieve high quality realistic and smooth training data

for behavioral cloning, so that the model can learn best

practices of driving and not input mistakes, an interface for

Logitech G27 steering wheel to control the model car

instead of simple keyboard input was used.

The model car was trained in a test track by driving the

car in one direction and then the model was validated by

allowing the car to drive in the opposite direction by itself.

For a training loss function a Mean Square Error

2

1

1 n

i i

i=

MSE = C Y
n

 was used where n is the size of the

sample set, Ci is the correct value and Yi is the predicted

value. The MSE was calculated for training and validation

data and used for training early stopping, when MSE values

for training data were lower than MSE values for validation

data.

VI. RESULTS AND CONCLUSIONS

A self driving car algorithm was successfully developed

in a virtual environment and transferred to a physical model

car, which based on the pre-trained model was successfully

used for behavioral cloning as the first step in transferring

algorithms from virtual environment to full size self-driving

cars.

A novel approach for synthetic training data generation

from single camera was developed, thus reducing the real

world physical requirements for the algorithm. Additionally

the physical proof-of-concept model car required a small

amount of computing power and was able to cope with

latency introduced by actual communication channels

instead of virtual ones. Even though the initial idea to

combat over-fitting was introducing Dropout, in practice it

proved inefficient for this scenario and SELU approach

provided much better results even though it was a little

slower.

Tests showed, that ultrasonic sensors used were not

appropriate for scale models because of noise from other

components and close proximity.

The trained models were evaluated on different tracks

and/or in different conditions (lighting, direction etc.). The

success of the training was validated as the capability of the

model car to independently stay in the track lane and finish

the track [12].

VII. DISCUSSION

This work could serve as a base for future work in multi-

agent reinforcement learning system where each agent will

be connected to already existing server - client architecture.

Server will keep central model which will be update

continuously based on client feedback. At the same time

clients will also keep local models for effective inference.

Model cars will be able to learn to drive based on indoor

navigation system which is already implemented. Feedback

from navigation system will be used as a reward function.

Goal of this future project is to create safe learning

algorithm where cars would be able to learn to drive by

themselves without threatening other drivers and learn not

only from their local data but data from other cars as well.

To make this process fast and reliable both supervised and

human feedback (while learning) methods will be used in

hybrid system similar to [13]. A future goal is to transfer the

results down the pipeline to an actual self driving car which

is already prepared for cooperative driving.

ACKNOWLEDGMENT

This work is supported in part by the Latvian National

research program SOPHIS under grant agreement No. 10-

4/VPP-4/11.

REFERENCES

[1] European Commission, “Directorate-General for Mobility and
Transport, A European strategy on cooperative intelligent transport

systems, a milestone towards cooperative, connected and automated

mobility no com/2016/0766,” EUR-Lex, 2016.
[2] Taxonomy and definitions for terms related to driving automation

systems for on-road motor vehicles, SAE International, 2016.
[3] Udacity. (2017). Self-driving car engineer nanodegree. [Online].

Available: https://www.udacity.com/course/self-driving-car-engineer-

nanodegree--nd013
[4] M. Bojarski, D. D. Testa, D. Dworakowski et al., (2016). End to end

learning for self-driving cars. [Online]. Available:
https://arxiv.org/pdf/1604.07316.pdf

International Journal of Machine Learning and Computing, Vol. 8, No. 2, April 2018

184

[5] N. Srivastava, G. Hinton, A. Krizhevsky et al., “Dropout: A simple

way to prevent neural networks from overfitting,” Journal of machine

learning research, vol. 15, no. 1, pp. 1929-1958, 2014.
[6] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-

normalizing neural networks,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

[7] N. Dorbe, “Virtual environment implementation source code,”

Naurislv/P3-Behavioral-Cloning, 2017.
[8] Wltoys. (2017). A969 RC Car. [Online]. Available:

https://www.banggood.com/Wltoys-A969-Rc-Car-118-2_4Gh-4WD-
Short-Course-Truck-p-916962.html

[9] Y. B. Wu, S. X. Jiang, Z. K. Xu, S. Zhu and D. H. Cao, “Lens

distortion correction based on one chessboard pattern image,”
Frontiers of Optoelectronics, vol. 8, no. 3, pp. 319-328, 2015.

[10] OpenCV. (2017). Camera calibration. [Online]. Available:
http://docs.opencv.org/2.4/modules/calib3d/doc

/camera_calibration_and_3d_reconstruction.html

[11] Nauris Dorbe, “Camera calibration source code,” Available:
Naurislv/P4-Advanced-Lane-Finding, 2017.

[12] Nauris Dorbe. (2017). Experimental result video. [Online]. Available:
https://www.youtube.com/watch?v=dtxsSOoHhQQ and

https://www.youtube.com/watch?v=T5G2UocGi-s

[13] Kory W Mathewson, Patrick M Pilarski. (2017). Actor-critic

reinforcement learning with simultaneous human control and

feedback. [Online]. Available: https://arxiv.org/pdf/1703.01274.pdf

Nauris Dorbe was born in Talsi, Riga, 1992.
Currently he is studying doctor studies in computer

science. Presently, his professional occupation is
machine learning engineer, assistant researcher. He

is interested in space tech, self-driving cars, machine

learning, enterprise big data solutions.

Ingars Ribners was born in Riga, Latvia. Currently

he is working on PhD studies in computer science.

Present his professional occupation is assistant
researcher. He is interested in self-driving vehicles,

cooperative driving and multiagent systems
modeling.

Krisjanis Nesenbergs was born in Latvia, Riga,
1985. Currently he is working on PhD studies in

computer science. Presently, his professional
occupation is researcher. He is interested in human-

computer interaction, CPS, wearable systems,

artificial intelligence, sensor networks.

International Journal of Machine Learning and Computing, Vol. 8, No. 2, April 2018

185

