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Abstract—Problem of transferring and testing self-driving 

algorithms developed in virtual environment to a physical 

environment is explored by transferring a Convolutional 

Neural Network based self-driving car steering algorithm from 

virtual environment to physical RC card based environment 

for validation and testing as a step on the way for full scale self-

driving car tests. In the process a novel approach for synthetic 

training data generation from single camera is developed, thus 

reducing the real world physical requirements for the 

algorithm and demonstrating the improved self-driving 

algorithm development pipeline from fully virtual 

environments to scaled physical models, to full self-driving cars, 

potentially leveraging the global developer community for 

development. 

 

Index Terms—Convolutional neural network, training data 

generation, self-driving cars, virtual and physical models.  

 

I. INTRODUCTION 

The development of better and safer self-driving cars has 

been a focus for many companies, governments and research 

institutions around the world. A strong focus is on achieving 

smart, energy efficient, safe, cooperative and low cost 

mobility, as evidenced, by international strategic documents 

[1]. The highest level of vehicle automation [2], towards 

which the research and development are geared is the 5th 

level, “Full driving automation”, which does not require a 

driver and does not require a person to intervene in the 

decision making process. Such level of automation requires 

a high amount of components to be developed and tested, 

and also the testing with actual cars can be expensive, 

dangerous and even illegal. Thus any significant success in 

this field has been mostly shown by large companies with 

significant resources (e.g. Google, Tesla, NVidia, Volvo, 

etc.). To combat this trend and allow more people to 

contribute to this complex problem a movement of 

developing virtual self-driving car algorithms and test them 

in virtual environments, has emerged. Massive Open Online 

Courses (MOOC) have been developed [3] where students 

can develop their own algorithms for self-driving cars and 

both train and test their neural network based solutions in 

the virtual environment. This approach provides a large 

amount of algorithms solving specific problems in the 

global self-driving picture, but two main problems remain – 

is it possible to transfer the algorithms from the virtual to the 

real world and is it feasible, from the perspective of the 
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computing power required, as real world vehicles can have 

limited computing power because of size, energy 

requirements and cost. 

In this article we explore these questions by examining an 

image processing and convolutional neural network (CNN) 

based self-driving car steering algorithm developed in a 

virtual environment, developing a real-world physical car 

model (RC), and transferring the algorithm to the physical 

model for real world testing. In the process we also develop 

an improved method for generating augmented CNN 

training data from a single camera, thus reducing the real-

world hardware requirements while still preserving the 

benefits of multiple virtual cameras for a more stable vehicle 

trajectory. The model cars use a combined data processing 

approach with a low power local computer and wireless 

communication to a more powerful server and the process is 

geared towards preserving the lessons and work done in the 

virtual environment and minimizing the steps required for 

the transfer to physical environment. 

As a result, this article shows that it is possible to develop 

physical RC testbed as an intermediary between fully virtual 

environments for development of self-driving car algorithms 

and expensive real car testing thus reducing the entry 

barriers for self-driving car algorithm developers and testing 

of the resulting algorithms during each step of the 

development pipeline. 

 

II. ALGORITHM IN VIRTUAL ENVIRONMENT 

The first step in the proposed self-driving car 

development pipeline is developing an algorithm in a virtual 

environment. In this work the specific algorithm selected for 

implementation is a neural network based behavioral 

cloning algorithm implemented in the Udacity self driving 

car virtual environment [3]. 

Behavioral cloning approach means, that instead of 

basing complex decisions on a full model of the 

environment, the system is developed to provide similar 

behavior than a human would, based solely on some input 

data. In this specific case, the algorithm only considers 

image input and provides steering angle and acceleration 

data output, thus cloning basic driving tasks. 

In general behavioral cloning based on visual input is a 

non-trivial task involving complex processing of high 

resolution frames. This task is made significantly easier by 

the introduction of neural networks allowing training the 

algorithm by example and potentially generalizing it to 

unseen environments. 

The success of training a neural network to drive like a 

human is highly dependent on the ability to provide precise 
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quality training data, robust training process protecting the 

neural network from over-fitting or under-fitting and the 

speed and latency of inference for the final result to be 

applicable to real-time driving systems. 
 

 
Fig. 1. Architecture of the neural network used. 

 

Thus a CNN based algorithm was developed and 

implemented in the virtual environment based on the work 

of M. Bojarski et al. [4] at NVidia Corporation. The original 

model was developed for an end-to-end learning solution 

aimed at learning to select steering angle based on input of 

three cameras (left, right and center). 

Even though our model similar, it differs in size and input 

data normalization. The full architecture of our neural 

network is shown in Fig. 1. In order to decrease over-fitting 

a Dropout [5] was introduced after first and third Dense 

layers. Additionally we introduced Scaled Exponential 

Linear Unit (SELU) activations instead of Rectified Linear 

Unit (ReLU) activations [6]. The network was trained for 

steering first and for both steering and velocity afterwards, 

providing sufficient basis for reinforcement learning. 

The source code for our implementation of the virtual 

environment is available at [7]. 

The training work-flow in the virtual environment is 

shown in Fig. 2. Training follows the numbering in graph. 

First we choose training mode and first track to gather 

training data and train it with additional data augmentation 

then we test our model in autonomous mode in second track. 
 

 
Fig. 2. Training work-flow in the virtual environment. 

Data augmentation is one of the key aspects for training 

both in the virtual environment and later in the physical 

environment, because it provides robustness and re-usability 

by adding noise, changing the lighting conditions of the 

image, randomized movement of the camera and random 

shadows. Also the data augmentation reduces the amount of 

training data, that needs to be gathered reducing the data 

gathering time to less than an hour. 

Thanks to multi-threading and python generator we were 

able to create effective training flow which loaded, 

preprocessed, augmented input images from local directories 

in background using CPU without sacrificing GPU 

utilization time and filling whole RAM with input images. 

We trained our model only about 54 seconds which are 24 

epochs on GTX  NVidia 1080 and i7-6800K. 

 

III. SINGLE CAMERA DATA GENERATION METHOD 

The original algorithm by M. Bojarski et al. [4] was 

developed with powerful hardware in mind, including three 

separate video cameras for visual input, multiple Graphic 

Processing Units (GPU) for training the neural network and 

a lot of gathered real-life training data. Two side cameras 

were only used for training and were not used for actual 

driving, thus reducing their utility. 

In order to reduce the complexity of the steps in the 

pipeline and lower the real world hardware and data 

bandwidth requirements for the hardware steps thus, also 

reducing real world costs, an improved visual input 

generation method was developed requiring only a single 

camera. 

The original requirement for three cameras stems from 

the problem, that training data from a single camera only 

contains information about how to stay on the preferred 

trajectory, but not, how to return to it from sub-optimal car 

placement, such as on the side of the road, which can can 

happen in real world driving because of drift introduced by 

non-perfect steering precision and road conditions. The two 

additional cameras thus introduced additional training data 

for returning to the trajectory from the left and right side 

respectively by increasing or decreasing the training steering 

angle by a constant amount calculated based on the car 

geometry. 

This works, because the original measured steering angle 

α  is increased or decreased by a constant angle Δα  as if the 

center and heading of the car was placed at one of the side 

cameras as seen in Fig. 3, thus producing three times as 

many training data sets with additional information on how 

to return to the selected trajectory emulating additional 

"virtual" cars on the left and right of the actual car. 

Our method data gathering method relies on the fact that 

the width of the camera sensor is several orders of 

magnitude smaller that the distance to the heading point, 

thus resulting in a small distance between the front and back 

side of the virtual camera denoted with   in Fig. 4. Thus the 

image from the left and right cameras can be safely 

approximated as an image from a camera faced the same 

way as the central camera, and only shifted to left or right, 

respectively. As a result, if the single central camera, has a 

sufficiently wide field of view, the sides of the resulting 
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image can be cut and used for generating simulated left and 

right camera images for use with the appropriate augmented 

angles (
Δα+α and 

Δα α  respectively) as seen in Fig. 4. 

 

 
Fig. 3. Schematic of three camera placement (green), destination point (red), 

and both the real car placement and "virtual" car placements related to side 
cameras. 

 

 
Fig. 4. Virtual left and right camera data generation from a single image 

from central camera. 

 

This simple method for side camera image generation 

allowed us to successfully train the neural network with only 

one real camera input. 

 

IV. HARDWARE 

After the algorithm was implemented in the virtual 

environment, where it was possible to test and debug it 

much faster than in actual hardware it was necessary to 

build a 1/18 scale model hardware platform as a next step in 

the development pipeline. 

As the basis for the platform a Wltoys A969 [8] Radio 

Controlled (RC) car was selected. 

The original Wltoys RC and motor control unit was 

removed and a replacement mini-car board control board 

was developed allowing fully programmable control. To 

provide the high level control to the car a Raspberry Pi 

Version 2 mini-computer was fitted as well. 

A standard Raspberry Pi Camera v1.3 with a "fisheye" 

lens with a 180 degree view angle was selected to capture 

road scene. This camera has the advantage of using the 

Raspberry Pi camera port instead of USB connection, 

providing faster data rates and also has night vision 

capabilities which might be beneficial for future work. The 

wide angle lens was selected in order to support the multiple 

camera view data generation method described above as the 

camera itself provides a narrow field of view. This 

introduces lens distortion to the captured image, which was 

corrected using chessboard pattern image as a baseline [9]. 

This requires taking multiple pictures from different angles 

of the chess board and counting corners inside them. We can 

then observe how distance between corners changes at 

different places and calculate distortion. This was achieved 

using OpenCV [10] function "findChessboardCorners()" for 

automatic chess corner detection in image, and 

"calibrateCamera()" for camera calibration using these 

points. The resulting distortion coefficients can be used to 

un-distort images with function "undistort()". The source 

code for the calibration used is available at calibrate_git 

[11]. 

For wireless communication a WI-FI dongle was used to 

receive control signals from Logitech steering unit and for 

sending captured pictures from the model car to the server 

for displaying and for neural network training in learning 

mode. 

The model chassis is equipped with a powerful brushed 

motor (size 390) powered from a 7.4V LiPo battery. 

Average measured current for maximum speeds and loads of 

this model car is around 12A with peaks of up to 16-20A. 

Estimated theoretical maximum current of such motor is 

27A so a specific h-bridge circuit that tolerates such currents 

was developed. For driving the steering motor a standard 

1.5A L298N h-bridge board was used controlling the 

original model car 5 wire servo motor. In additional a PID 

controller for steering angle feedback was developed as 5-

wire servos don't have it built in and a similar feedback 

controller was developed for the speed control of the main 

motor using motor current as simple speed feedback. To 

measure voltage an ADS1015 12-bit board from Adafruit 

was used. 

 

 
Fig. 5. Hardware solution schematic. 

 

The overall hardware schematic can be seen in Fig. 5. 

Additionally an ultrasonic sensor was added as a front 

collision sensor for future Reinforcement Learning research. 

 

V. EXPERIMENT 

To test how the algorithm developed in the virtual 

environment will function on the model hardware a 

supporting software system (Fig. 6) was set up including a 

server with connected steering wheel for training the model 

car capable of supporting multiple clients (car models) thus 

providing a platform not only for this work, but also future 

research in multi-agent Reinforcement Learning. 

Because after transferring the neural network from virtual 

environment to the hardware model car we have no 

applicable training data, it must be gathered again. The 

gathered training data is basically video frames labeled with 

steering angle. It is important, that the resulting model is not 

tied to specific steering angles as those are hardware 

dependent and can change across different vehicles. To 

overcome this issue the steering angle for data labels is 
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converted to curvature which is 1 divided by turning circle 

radius (based on bicycle model) using formula 

  tan rad α
C =

L
 where L is wheelbase and α  is steering if 

distance from the center of the mass to back wheels is not 

given and 

  
2

1

tan

C =

L
A +

rad α

 
 
 
 

 where A is distance from 

the center of the mass to back wheel when it is given (Note 

that the second formula has the danger of division by zero). 

 

 
Fig. 6. Overview of experimental setup. 

 

During the hardware experiment for the data improved 

data gathering method from single camera left and right 

frames were labeled with +/- 18% of the measured steering 

angle respectively. This number is derived from the amount 

of pixels cut from the sides of the full frame - the full frame 

width is 280 pixels and we divide it in three sections of 200 

pixels each. The resulting shift from center frame to left and 

right is around 14.3%. We add extra 3.7% to simulate more 

aggressive returning back to center and this results in 18%. 

To achieve high quality realistic and smooth training data 

for behavioral cloning, so that the model can learn best 

practices of driving and not input mistakes, an interface for 

Logitech G27 steering wheel to control the model car 

instead of simple keyboard input was used. 

The model car was trained in a test track by driving the 

car in one direction and then the model was validated by 

allowing the car to drive in the opposite direction by itself. 

For a training loss function a Mean Square Error 

 
2

1

1 n

i i

i=

MSE = C Y
n

  was used where n is the size of the 

sample set, Ci is the correct value and Yi is the predicted 

value. The MSE was calculated for training and validation 

data and used for training early stopping, when MSE values 

for training data were lower than MSE values for validation 

data. 

 

VI. RESULTS AND CONCLUSIONS 

A self driving car algorithm was successfully developed 

in a virtual environment and transferred to a physical model 

car, which based on the pre-trained model was successfully 

used for behavioral cloning as the first step in transferring 

algorithms from virtual environment to full size self-driving 

cars. 

A novel approach for synthetic training data generation 

from single camera was developed, thus reducing the real 

world physical requirements for the algorithm. Additionally 

the physical proof-of-concept model car required a small 

amount of computing power and was able to cope with 

latency introduced by actual communication channels 

instead of virtual ones. Even though the initial idea to 

combat over-fitting was introducing Dropout, in practice it 

proved inefficient for this scenario and SELU approach 

provided much better results even though it was a little 

slower. 

Tests showed, that ultrasonic sensors used were not 

appropriate for scale models because of noise from other 

components and close proximity. 

The trained models were evaluated on different tracks 

and/or in different conditions (lighting, direction etc.). The 

success of the training was validated as the capability of the 

model car to independently stay in the track lane and finish 

the track [12]. 

 

VII. DISCUSSION 

This work could serve as a base for future work in multi-

agent reinforcement learning system where each agent will 

be connected to already existing server - client architecture. 

Server will keep central model which will be update 

continuously based on client feedback. At the same time 

clients will also keep local models for effective inference. 

Model cars will be able to learn to drive based on indoor 

navigation system which is already implemented. Feedback 

from navigation system will be used as a reward function. 

Goal of this future project is to create safe learning 

algorithm where cars would be able to learn to drive by 

themselves without threatening other drivers and learn not 

only from their local data but data from other cars as well. 

To make this process fast and reliable both supervised and 

human feedback (while learning) methods will be used in 

hybrid system similar to [13]. A future goal is to transfer the 

results down the pipeline to an actual self driving car which 

is already prepared for cooperative driving. 
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