
  

 

Abstract—Human beings are exposed every day to 

bio-aerosols in their personal and professional life. The 

European Commission has issued regulations for protecting 

employees in the workplace from biological hazards. Airborne 

fungi can be detected and identified by an image-acquisition and 

interpretation system. In this paper, we present recent results on 

the development of an automated image acquisition, sample 

handling and image-interpretation system for airborne fungi 

identification. We explained the application domain and 

described the development issues. The development strategy and 

the architecture of the system are described, and results are 

presented. 

 
Index Terms—Health monitoring, Microscopic image 

acquisition, microbiological sample handling, image analysis, 

image interpretation, case-based object recognition, case-based 

reasoning. 

 

I. INTRODUCTION 

Airborne microorganisms are ubiquitously present in 

various indoor and outdoor environments. The potential 

implication of fungal contaminants in bio-aerosols on 

occupational health has been recognized as a problem in 

several working environments. The exposure of workers to 

bio-aerosols is a concern, especially in composting facilities, 

in agriculture, and in municipal waste treatment. The 

European Commission has therefore issued guidelines 

protecting employees in the workplace from airborne 

biological hazards. In fact, the number of incidents of 

building-related sickness, especially in offices and residential 

buildings, is increasing. Some of these problems are attributed 

to biological agents, especially to airborne fungal spores. 

However, the knowledge of health effects of indoor fungal 

contaminants is still limited. One of the reasons for this 

limitation is that appropriate methods for rapid and long-term 

monitoring of airborne microorganisms are not available. 

In addition to the detection of parameters relevant to 

occupational and public health, in many controlled 

environments, the number of airborne microorganisms must 

be kept below the permissible or recommended values, e.g. in 

clean rooms, in operating theatres, and in domains of the food 
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and pharmaceutical industry. Consequently, the continuous 

monitoring of airborne biological agents is a necessity for the 

detection of risks to human health as well as for the flawless 

operation of technological processes. 

At present, a variety of methods are used for the detection 

of fungal spores. The culture-based methods depend on the 

growth of spores on an agar plate and on the counting of 

colony-forming units [1]. 

Culture-independent methods are based on the enumeration 

of spores under a microscope, the use of a polymerase chain 

reaction or on DNA hybridization for the detection of fungi 

[1]. However, all these methods are limited by 

time-consuming procedures of sample preparation in the 

laboratory. This paper describes the development and the 

realization of an automated image-acquisition and sample 

handling unit of biologically dangerous substances and the 

automated analysis and interpretation of microscope images 

of these substances.  

In the system described here, contaminated air containing 

bio-aerosols are collected in a defined volume via a carrier 

agent. Bio-aerosols are recorded by an image-acquisition unit, 

counted, and classified. Their nature is determined by means 

of an automated image-analysis and interpretation system. Air 

samples are automatically acquired, prepared and transferred 

by a multi-axis servo-system to an image-acquisition unit 

comprised of a standard optical microscope with a digital 

colour camera. 

In Section II we give general remarks to the image analysis 

of microorganism. Related work is described in Section III. 

Then we described development issues in Section IV and 

system requirements in Section V. The automated probe 

handling and imaging unit is described in Section VI. 

The variability of the biological objects is very broad. 

Given the constraints of the image acquisition, this variability 

is found in the appearance of the objects as well. There are no 

general features allowing one to discern the type of the 

detected fungi. In the system employed here, images are 

stored, and a more generalized description of the different 

appearances of the same objects is used. We will describe this 

novel case-based reasoning approach of the image analysis 

and its interpretation in Section VII. Finally, we will 

summarize our work in Section VIII. 

 

II. GENERAL COMMENTS ON THE IMAGE ANALYSIS OF 

MICROORGANISM 

Classification of airborne fungal spores from 

environmental samples present the image analyst with 
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inherent difficulties. Most of these difficulties concern the 

automatic identification of microorganism in general [2]. For 

example, the types and numbers of objects (different fungal 

species) that may be present in any one air-sample are both 

unknown and effectively unlimited. Also, intraspecies 

variation of characteristics (such as size, color or texture of 

spores) can be large and may depend on several factors. 

Furthermore, the bulk size of two targeted species may be an 

order of magnitude or more apart, making it difficult to decide 

e.g. on an optical magnification setting. The dynamic and 

variable nature of the microorganism thus presents a 

formidable challenge regarding the design of a robust image 

interpretation system with the ideal characteristics of high 

analysis accuracy but wide generalization ability. The 

difficulties can be summarized as follows: 

 Intraspecies variation due to natural phenomenon, i.e., 

life-cycle, environmental effects 

The dynamic nature of living organisms results in 

properties such as size or color of the microorganism being 

statistically variable. Different growth condition of 

microorganism may result in uncharacteristically large or 

small specimens – resulting in data outliers. Ultimately, under 

these circumstances, the classification accuracy of an image 

interpretation system will rely on the training database 

capturing as much of this variability as possible.  

 Intraspecies variation due to predation, fragmentation 

etc. 

Often atypical characteristics occur due to predation, 

environmental factors, or aging. 

 To stain or not to stain? 

Many species appear clear/opaque at the resolutions used, 

making imaging and analysis very difficult. Staining can help 

to increase the resolution of the fungal material and to 

distinguish between viable and non-viable organisms. 

Depending on the application, different stains must be used. 

At present 10-20 different stains are frequently used for 

staining fungal spores. They include "all-purpose"-stains such 

as lactophenol cotton blue, which stains fungal elements blue. 

The staining procedure takes only 1 to 2 minutes. The 

application of fluorescence stains allows discriminating 

between living and dead cells. However, the use of 

epifluorescence microscopy in an automated system is more 

expensive and requires additional hardware. While it is 

common to stain specimen samples prior to analysis, staining 

puts special demands on an automated sample handling, 

image acquisition system and image interpretation system. 

 Choosing an appropriate optical resolution for imaging 

The wide variation of the size of targeted species 

necessitates a choice of optical magnification that may not be 

optimal for any species. For example, to analyze the fine 

internal structures of species such as Wallemia sebi, a 1000x 

magnification would be required. Fusarium spores are the 

largest spores among the spores considered in this study. They 

would require only a 200x magnification instead of a 1000x 

magnification. 

 Imaging 3-dimensional objects 

A spore is a 3-dimensional object. Imagine a spore which 

has an ellipsoid shape. Depending on its position, the object 

can appear as a round object or as an elongated object in a 2-D 

image. Many species have a significant length in the third 

dimension, often greater than the depth-of-field of the 

imaging device, making their representation as a 2-D image 

difficult. As such, significant areas of the specimen will be out 

of focus. If only one kind of specimen appears in an image, 

focusing may not be so difficult. However, in a real air sample, 

different specimen can appear. In this case, a single focus 

level may not be sufficient. Various levels of focus may be 

necessary which will result in more than one digital image for 

one sample. 

 How to get a clean sample from the air sample? 

Samples of bioaerosols will contain a wide range of objects 

(organic and inorganic particles). Filters will be needed to 

remove particles larger than the objects of interest. But this 

will generally not prevent the image from containing 

non-targeted species. Non-targeted species/objects will 

generally needed to be classified. Normally, the should be 

covered by water and a cover glass. To realize this in an 

automated handling system is not easy since handling glass by 

means of handling devices is difficult. 

 

III. RELATED WORKS 

Several case studies have been done on identifying fungi or 

other microorganisms. In [3], an image analysis method was 

described for the identification of colonies of nine different 

Penicillium species as seen after growth on a standard 

medium. In [4], a study of image analysis based on 

fluorescence microscopy images was described for the 

improvement of the exposure assessment of airborne 

microorganism. Semiautomatic image analysis techniques 

were applied to segment the contour of fungal hyphae in [5]. 

Yeast cells were analyzed by image analysis techniques in [6]. 

Different Fusarium species macroconidia were analyzed in 

[7]. The work aimed at designing an automated procedure for 

collecting and documenting microscopic pictures of 

Fusarium conidia, determining various morphological 

parameters and statistically evaluating the effectiveness of 

those characteristics in differentiating the most important 

pathogenic Fusarium species occurring on wheat in Germany.  

The work which is most closely related to our work is that 

described in [8]. The ability of an image analysis routine to 

differentiate between spores of eleven allergenic fungal 

genera was tested using image analysis based on seven basic 

and up to 17 more complex features, extracted from digitized 

images. Fungal spores of Alternaria, Cladosporium, 

Fusarium, Aspergillus, Botrytis, Penicillium, Epicoccum, 

Exserohilum, Ustilago, Coprinus and Psilocybe were 

examined in a series of experiments designed to differentiate 

between spores at the genus and species level. No specific 

algorithm for image enhancement and image segmentation is 

described in this work. It appears that only the feature 

measurement had been automated. The object area was 

labelled interactively. From the fungal spores, seven basic 

features including length, width, width/length ratio, area, 

form factor (circularity), perimeter and roundness, and 17 

more complex features including equivalent circular diameter, 

compactness, box area, radius, modification ratio, sphericity, 

convex hull area, convex hull perimeter, solidity, concavity, 
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convexity, fiber length, fiber width were extracted. Linear and 

quadratic discriminant analyses were used for classification. 

It is interesting to note that the authors created a sufficiently 

large database of fungi spores for their analysis. The number 

of spores used in this study ranges from 200 to 1000 samples. 

The classification accuracy according to a particular class 

ranged from 56% to 93% for general comparison and from 

26% to 97% for species comparison. The results showed that 

not for all classes the right features for classification were 

selected. Rather, it appeared that all common features that are 

known in pattern recognition for the description of a 2-D 

objects were applied to the images. No specific features have 

been developed that described the properties of the different 

fungi genera and species. For example, considering species 

Fusarium, the septation is a highly discriminating feature but 

no such description was included in the feature list [8]. 

Many successful case studies have been conducted to 

automate the identification of fungi and microorganism in 

general. In these studies, imaging methods for microorganism, 

automatic focusing methods, image analysis, feature 

description and classification have been developed. Most of 

these studies used 500x to 1,500x magnification for image 

acquisition. The most used feature descriptors are the area 

size and the shape factor of circularity. The colour 

information was used only in [3], and was neglected in all 

other studies. Not all publications included microscopic 

images of the microorganism; therefore, we cannot evaluate 

the quality of the images. In most of the cases, the digitized 

images were not highly structured. The objects and the 

background appeared homogenous allowing to apply a simple 

thresholding technique for image segmentation. In general, 

these studies are characterized by applying standard image 

analysis and feature extraction procedures to the images. 

Neither a specific feature set for fungi identification has been 

developed nor a good feature set for the description of 

microorganism has been found yet as evidenced by [7] and 

[8]. 

The difference to our work is that in most of these studies, 

images are created for only one species and not for a variety of 

distinct species, except for the work in [8]. The creation of 

digitized images for a variety of distinct species is much 

harder since the species differ in size and dimension and, 

therefore, the selection of an optical resolution that will show 

the image details of the different species in sufficient 

resolution is not easy. Also, the image analysis is much more 

difficult since for all the different objects a sufficient image 

quality should be reached after image segmentation.  

 

IV. DEVELOPMENT ISSUES 

We decided to start the development of our system based 

on a data set of fungi spore images taken in the laboratory 

under optimal conditions and constant climate conditions. 

The data set should represent the prototypical appearance of 

the different kind of fungi strains and serve as a gold standard.  

The objects in the images are good representatives of the 

various kinds of fungal spores cultured under optimal 

conditions and constant climate conditions. However, as it 

can be seen from the images of Alternaria alternata and 

Ulocladium botrytis that none of the objects in the image 

looks like another. There is no clear prototypical object. We 

can see a high biological variability and younger and older 

representatives of the fungal strains. Depending on the image 

acquisition conditions we see objects from the side and from 

the top and this influences the appearance of the objects. 

Generalization about the objects cannot be done manually, 

rather, each case that appears in practice should be stored in 

the system and the system should learn more generalized 

descriptions of the different appearance of the same objects 

over time. All this suggests that a case-based reasoning 

approach for the image interpretation [9] should be taken 

rather than a generalized approach. Case-Based Reasoning 

[10] is used when generalized knowledge is lacking. The 

method works on a set of cases previously processed and 

stored in a case base. A new case is interpreted by searching 

for similar cases in the case base. Among this set of similar 

cases, the closest case with its associated result is selected and 

presented on a display. 

For the kind of images created in the laboratory, we had to 

develop an image analysis procedure. It is then necessary to 

describe the images by image features and to develop a 

feature extraction procedure which can automatically extract 

the features from the images. The features and the feature 

values extracted from the images together with the name of 

the fungal spores make up an initial description of the data. 

We do not know if all image features are indeed necessary. 

However, we extracted as many image features as possible 

from the images that appear meaningful in some way to ensure 

that we can mine the right case description from the database. 

From this initial description of the data, we need to identify 

good representative descriptions for the cases by using case 

mining methods [10]. Based on this information we generated 

the case-based reasoning system. 

After reaching a sufficient classification accuracy, we 

started to include real air samples into the system by adapting 

the prototypical representations of fungi spores to the real 

ones. 

 

V. S  R 

The system to be developed should allow to collect dust and 

biological aerosols in well-defined volumes over microscope 

slides, deposit them there, image them with an appropriate 

method, count and classify them with an automated image 

analysis and interpretation method, to determine the 

following parameters from the images: 

 Total number of airborne particles 

 Classification of all particles according to their size and 

shape 

 Classification of biological particles according to their 

size and shape, e.g. spores, fragments of fungal mycelia, 

and fragments of insects 

 Number of respirable particles 

 Total number of airborne particles of biological origin 

 Number of dead particles of biological origin 

 Number of viable and augmentable particles of 

biological origin  

 Identification of species or genera exploiting the 

characteristic shapes of spores and pollen 
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 Proportion of airborne abiotic and biotic particles 

 The proportion of dead and viable airborne 

microorganisms. 

At the beginning of the project, the following requirements 

concerning the optical and the mechanical system were 

defined: 

 Colour images should be produced to facilitate the 

separation of dead and living objects. 

 It should be possible to generate images in at least three 

defined depths of field. 

 A marker liquid like lactophenol should be used to 

further enhance the separation of dead and living objects 

(blue colour for living objects). For this purpose, a cover 

slip is necessary to uniformly distribute the marker drop 

on the object slide. 

 The object slide should be covered with an adhesive to 

fix the airborne germs. 

Six fungal strains representing species with different spore 

types were identified as important species in different 

environments (Tab. I) By our industrial project partner 

JenaBios GmbH. A database of images from the spores of 

these species was produced and was the basis of our 

development. The number of imaged spore per species was 

about 30-50. Since no commercial system was known 

fulfilling all requirements, a corresponding system was 

developed which is described as follows. 

 

TABLE I. STRAINS OF EMPLOYED FUNGI AND SELECTED PROPERTIES OF SPORES 

Species Strain no. Spore shape Spore colour Spore size [µm]  

Alternaria alternata J 37 (A1) septated, clavate to ellipsoidal  pale brown 18 – 83 × 7-18  

Aspergillus niger i400 (B2) spherical, ornamented with warts and spines brown  Ø 3.5 - 5  

Rhizopus stolonifer J 07 (A) irregular in shape, often ovoid to elliptical, striate  pale brown 7-15 × 6-8 

Scopulariopsis brevicaulis J26 (A) spherical to ovoid rose-brown 5-8 × 5-7  

Ulocladium botrytis i171(B) septated, ellipsoidal olive-brown 18-38 × 11-20 

Wallemia sebi J 35 (A) cubic to globose pale-brown Ø 2.5 – 3.5  

1(A): from culture collection of JenaBios GmbH, Jena, Germany 

2(B): from the fungal stock collection of the Institute of Microbiology, University of Jena, Jena, Germany 
 

VI.
 

THE AUTOMATED PROBE HANLING AND IMAGING 

SYSTEM

 

A.
 

The Microscopic Image-Acquisition System 

Following the specifications given in Section II, we 

developed an automated sample-handling and digital 

image-acquisition system for taking microbiological material 

from air samples. An existing optical Leitz microscope was 

upgraded and its hardware expanded. A lens from Olympus 

with a magnification of 60X and a numerical aperture of 0.7 

was used. Its focal length of 1.7 mm provided sufficient 

clearance between the lens and the object slide including the 

cover glass to avoid collisions due to their variability in 

thickness. The lens was inserted in an autofocusing device 

from Physik Instrumente (PI, Karlsruhe, Germany) which was 

mounted on the lens revolver. A motorized xy-table from 

Märzhäuser (Wetzlar, Germany) with a controller was used to 

arbitrarily shift the object slide in both x and y-direction. For 

the digital image acquisition, a 1.4 Mpixel colour digital 

camera from Soft Imaging System (SIS, Münster, Germany) 

was used. Our estimates showed that a pixel number larger 

than 1.4 Mpixel is sufficient for the given magnification. Fig. 

1 demonstrates that the optical resolution is sufficient to 

recognize details in spores like Ulocladium. 

 
Fig. 1. Image demonstrating the resolution of the optical microscope used. 

The microscopical image displays spores of Ulocladium. The field of view is 

134×100 µm². The sample was prepared by AUA/JenaBios, lens Olympus 

60X/0.70. The resolution of this image is 5 μm. 

The functions of image acquisition and image storage, 

movement of the specimen in x and y-direction, and 

auto-focusing in the z-direction are controlled by the 

AnalySIS Pro software from SIS. A pattern of images at any 

image position can be freely programmed and stored in a 

macro-code. This holds true also for the number of images to 

be captured. If necessary, it is possible to automatically 

capture images at different depths of focus around the 

optimum position. By the automatic shading correction, the 

effect of an inhomogeneous illumination of the object can be 

removed. 
 

 
Fig. 2. Object slide of standard size 76×26×1 mm³ with a central sticky layer 

11; Image obtained from Umweltanalytik Holbach. 

B. The Automatic Sample-Acquisition and Handling 

System 

The following chapter describes the main units and 

functions of the demonstration set-up realized during the 

project. A stock of special object slides covered with a sticky 

layer and obtained from Umweltanalytik Holbach 11, (Fig. 

2) is kept in a slide storage. A sliding gripper takes the lowest 

slide in the storage and transports it into the slit impactor 

obtained from Umweltanalytik Holbach (Fig. 3). The object 

slides are separated by distance holders with a corresponding 

recess, to avoid sticking between the slides. The distance 

holder is removed by the same gripper, now moving in the 

opposite direction and depositing the distance holder into a 

box. The distance holders can be used again when the slide 

deposit is reloaded. 

In the slit impactor (Fig. 3), the air, potentially containing 
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airborne germs, is guided into the sticky area of the object 

slide by the air stream generated by an air pump. After a few 

tens of seconds adjusted appropriately, the pump is switched 

off and the object slide is transported to the pipetting unit 

driven by the dosing pump (Cavro XL 3000 obtained from 

Tecan Systems San Jose, Ca, USA). To achieve this, the 

object slide must change its transporting axis and thus its 

direction of movement. From a thin nozzle, one drop of 

lactophenol is deposited on the sticky area of the object slide. 

The object slide is afterwards transported through the 

coordinate origin to the cover-slip gripper unit. This gripper 

acts as a low-pressure sucker and takes one cover glass from 

the deposit and places it with one edge first on the object slide. 

Then the cover glass can drop, down on the object slide and 

flattens the drop so that it will be distributed all over the sticky 

area forming a thin layer. In this way, the airborne germs 

collected on the sticky layer are immersed in the lactophenol. 

In lactophenol, living germs take on a blue colour. The object 

slide is then transported back to the coordinate origin where it 

again changes its direction of movement by 90° and is 

transported to the xy-table of the microscope where the slide 

is received and directly transported into a position underneath 

the lens. To this end, an additional module was integrated into 

the AnalySIS Pro software. It controls the manual or 

automated shift of the xy-table between the image-acquisition 

position under the lens and the loading position, where the 

object slide is shifted from the object-slide preparation unit to 

the xy-table. After the object slide has reached the image 

acquisition position, the microscope camera then takes the 

images at the programmed slide positions after auto-focusing 

of the microscope lens at each position. The cycle of shifting 

the xy-table of the defined positions, auto focusing, image 

acquisition, and storage is programmable in a macro-code 

integrated into the AnalySis Pro software. This can also be 

done for other procedures like shading correction or image 

acquisition at different z-positions. After finishing the 

imaging sequence, the slide is transported away from the 

xy-table with a special arm and dropped into a box. While the 

image grabbing procedure by the microscope unit is still 

underway, the object-slide preparation unit already starts with 

the preparation of a new object slide. The object-slide 

preparation and manipulation are performed by a hardware 

controller and by custom software written in C++. The 

transfer from the AnalySIS Pro software to the C++ software 

and vice versa is controlled by a communication protocol as 

an interface between both software units. Altogether six 

different mechanical axes must be handled, not counting the 

axes of the xy-table (Fig. 4). The unit for object-slide 

preparation and the expanded microscope are shown in Fig. 

5a and Fig. 5b. 
 

 
Fig. 3. Slit impactor for collection of airborne particles 11; Image obtained 

from Umweltanalytik Holbach. 

 
Fig. 4. Top view of the mechanical unit for moving object slides, indicating 

also the position of the cover-glass storage, the dosing pump for lactophenol, 

the slit impactor or air collector, and the storage for the object slides. The 

numerals 1 – 5 indicate the sequences of the movements; axis No. 6 is not 

shown. 
 

 
Fig. 5a. Prototype set-up showing the dosing pump (arrow 1), several axes, 

the optical microscope with xy-table (arrow 2), and the digital camera 

(CC-12, arrow 3). The auto-focusing unit holds the lens (arrow 4). 

 

 
Fig. 5b. Microscope with camera and x-y table. 

VII. IMAGE ANALYSIS 

Once an image has been taken it transferred to the 

image-analysis unit for further processing. We will describe 

the overall architecture of the system [13] and its single 

components in the next sections. 

A. The Architecture 

The architecture of the system is shown in Figure 6. Objects 

are recognized in the microscopic image by a case-based 

object-recognition unit [14]. This unit has a case-base of 

shapes (case base_1) for fungi spores and determines on a 

similarity-based inference if there are objects in the image that 

have a similar shape as the ones stored in the case base. In this 

case, the objects are labelled and transferred for further 

processing to the feature-extraction unit. To ensure proper 
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performance of this unit, the general appearance of the shapes 

of the fungi spores must be learned. To this end, we have 

developed a semi-automated procedure [14] that allows 

acquisition of the shape information from the raw image data 

and learning of groups of shape-cases and general shape-cases. 

A more detailed description of the case-based 

object-matching unit can be found in Section VII B. 

The feature-extraction procedures are based on the 

knowledge of an expert. Note that a particular application 

requires special feature descriptors. Therefore, not all 

possible feature-extraction procedures can be implemented in 

such a system from the beginning. Our aim was to develop a 

special vocabulary and the associated feature-extraction 

procedures for application in fungi identification, as 

described in Section VII C. 
 

Case-Base Maintenance

Image 
Data Base

Feature_Extr_1

Case Base_2 
Feature+Weights

Feature 

Up-date Feature 
Weights

CBR

Similarity Given 
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Determine 
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Feature_Extr_n

...

Expert Rating

Install New  Feature

Critique
Class

Yes

Case-Based Object 
Recognition

Case-Base_1
Shapes

 
Fig. 6. System architecture. 

 

Suppose that fungi species are wrongly identified by the 

system. Then a case-based maintenance process will start. 

First the system developer must check whether new features 

must be acquired for each case, or whether the whole case 

representation should be updated based on the learning 

procedures. The feature weights are learnt, as well as a subset 

of relevant features (see Section VII D). To acquire new 

features means that necessary feature-extraction procedures 

must be developed and that of all cases the new features must 

be calculated and inputted into the existing case description. 

Therefore, the digital images acquired so far are retained in 

the image-database. Then, the case representation, as well as 

the index structure, must be updated. This ensures that we can 

generate step-by-step a system that can describe the 

variability of the different biological objects that may appear. 

B. Case-Based Object Recognition 

The objects in the image are highly structured. Our study 

has shown that the images specified in Fig. 8 cannot be 

segmented by thresholding. The objects in the image may be 

occluded, touching, or overlapping. It can also happen that 

only part of the object appears in the image. Therefore, we 

decided to use a case-based object recognition procedure [14] 

for the detection of objects in the image. 

A case-based object-recognition method uses cases that 

generalize the original objects and compares them with the 

objects of the image (Fig. 7). During this procedure, a score is 

calculated that describes the quality of the fit between the 

object and the case. The case can be an object model which 

describes the inner appearance of the object as well as its 

contour. In our case, the appearance of the objects can be very 

diverse. The shape seems to be the feature that generalizes the 

objects. Therefore, we decided to use contour models. We do 

not use the grey values of the model, but instead the object’s 

edges. In determining the score of the match between the 

contour of the object and the case, we use a similarity measure 

based on the scalar product that measures the average angle 

between the vectors of the template and the object. 

 

 
Fig. 7. The principle of case-based object-recognition architecture. 

 

C. Case-Base Generation 

The acquisition of the case is done semi-automatically. 

Prototypical images were shown to an expert. The expert 

manually traced the contour of the object by means of the 

cursor on the computer. Afterwards, the number of contour 

points is reduced for data-reduction purposes by interpolating 

the marked contour by a first-order polynomial. The marked 

object shapes are then aligned by the Procrustes Algorithm 

[15]. From the sample points, the direction vector is 

calculated. From a set of shapes, general groups of shapes are 

learnt by conceptual clustering, which is a hierarchical 

incremental clustering method [16]. The prototype of each 

cluster is calculated by estimating the mean shape [16] of the 

set of shapes in the cluster and is taken as a case model. 

D. Results for Case-Based Object Recognition 

We had a total of 10 images for each class at our disposal. 

From this set of images, two images were selected for case 

generation. In these two images, there were approx. 60 

objects. These objects were labelled and used for the case 

generation according to the procedure as described in Section 

VII C. The result was a database of cases. These cases were 

applied to the image for the particular class. 

The threshold for the score was set to 0.8. We calculated 

the recognition rate as the number of objects that were 

recognized in the image to the total number of objects in the 

images. Note that the recognition rate can be higher than 

100% since our matching procedure also fires in image 

regions where no objects are present due to background noise. 

The aim is to configure the case-based object-recognition unit 

in such a way that the number of false alarms is low. The 

results of the matching process are shown in Figs. 8 and 9. 

The highest recognition rate can be achieved for the objects 

Aspergillus niger and Scopularioupsi since the shape of these 

objects does not vary much. This is also expressed by the 

number of models, see Table II. These classes have the lowest 

number of cases. For those classes where the variation of the 
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shape of the objects is high, the number of the cases is also 

high. The recognition rate shows that we did not have enough 

cases to recognize the classes with a good recognition rate 

(see Ulocladium botrytis and Alternaria alternata). Therefore, 

we needed to increase the number of cases. For this task, we 

developed an incremental procedure for the case acquisition 

in our tool. Objects that had not been recognized well were 

displayed automatically for tracing and then the similarity to 

all other shapes were calculated. The clustering was done in 

an incremental fashion as well 16. This procedure will 

ensure that we can learn the natural variation of the shape 

during the usage of the system. 

E. Case Description and Feature Extraction 

We chose an attribute-value pair-representation of the case 

description. The case consisted of the solution, i.e., the type of 

fungi spores and the features describing the visual properties 

of the object (see Fig. 9). From each recognized object a set of 

features was extracted. One feature is the case number which 

represents the shape of the object, the similarity score 

between the actual shape and the shape in the case base, the 

size of the object, various grey-scale features, and the texture 

inside the object. For the description of the texture, we used 

our texture descriptor based on random sets described in [17]. 

 

   
Alternaria alternata Aspergillus niger Rhizopus stolonifer 

   
Scopulariopsis brevicaulis Ulocladium botrytis Wallenia sebi 

Fig. 8. Recognized objects in the image. 
 

 

(b) Threshold for 

the minimal gradient 

= 24.53 

(c) Threshold for 

the minimal gradient 

= 100 

(d) Test image 

including the object 

numbers 

   
Recognition rate: 

112.5% 

Recognition rate: 

87.5% 

 

Fig. 9. Comparison of the matched objects by applying different thresholds 

for the minimal gradient. 
 

TABLE II: RESULTS OF MATCHING 

 

F. References 

Our case-based reasoning procedure to recognize spores 

relies on prototype-based classification schemes [21]. Usually, 

such schemes are generalized from a set of single cases. Here, 

we have prototypical cases represented as images that were 

selected by humans. This means that, when building our 

system, we started from the top and had to collect more 

information about the specific class during usage of the 

system. Since a human has selected the prototypical images, 

his decision on the importance of an image might be biased; 

moreover, selecting only one image might be difficult for a 

human. He might have stored more than one image as 

prototypical images. Therefore, we needed to check the 

redundancy of the many prototypes for one class before taking 

them all into the case base. According to this consideration, 

our system must fulfill the following functions: 

 Classification based on the nearest neighbor rule 

 Prototype selection by a redundancy-reduction algorithm; 

feature weighting to determine the importance of the 

features for the prototypes 

 Feature-subset to select the relevant features from the 

complete set of the respective domain. 

The classification method is based on the nearest-neighbor 

rule. Since the prototypes are available at the same time, we 

chose a decremental redundancy-reduction algorithm 

proposed by Chang [18] that deletes prototypes if the 

classification accuracy does not decrease. The feature-subset 

selection is based on the wrapper approach [19] and an 

empirical feature-weighting learning method [20] is used. 

Furthermore, cross-validation is used to estimate the 

classification accuracy. The prototype selection, the feature 

selection, and the feature-weighting steps are performed 

during each run of the cross-validation process. This rule 

classifies in the category of its nearest neighbor [21]. More 

precisely, we call a nearest neighbor to if, where i=1, 2, …n. 

The nearest neighbor rule classifies into category Cn where is 

the nearest neighbor to and belongs to class Cn. For the 

k-nearest neighbor, we require k-samples of the same class to 

satisfy the decision rule. As a distance measure, we used the 

Euclidean distance. The recognition rate was evaluated on a 

database of 50 samples for each class based on 

cross-validation. The result is shown in Table III. Based on 

this result, we can conclude that the classification accuracy is 

 

Classes 

Number of 

models 

Recognition rate 

Alternaria alternata 34 65.9 

Aspergillus niger 5 95.2 

Rhizopus stolonifer 22 87.7 

Scopularioupsi 8 94.5 

Ulocladium botrytis 30 77.2 

Wallenia sebi 10 90.3 
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higher than the recognition rate for some classes. This means 

that it is more difficult to recognize the objects that are most 

likely to be fungi spores than to classify them based on the 

extracted features. 

.In the display of the system, the operator will find the 

acquired image in one window and in the other window the 

determined fungi spores and their total number. The system 

called Fungi PAD correctly identified the name of the fungi 

spores and their number. 
 

TABLE III: CLASSIFICATION ACCURACY 

Classes Classification accuracy 

Alternaria alternata 90.4 

Aspergillus niger 95.0 

Rhizopus stolonifer 92.0 

Scopularioupsi 96.0 

Ulocladium botrytis 94.0 

Wallenia sebi 92.0 

 

VIII. CONCLUSIONS 

In this paper, a system for an automated image acquisition 

and analysis of hazardous biological material in the air is 

described. It consists of an image-acquisition unit, its 

sample-handling hardware, and the image-interpretation 

system. The sample-handling and image-acquisition unit 

collects the airborne germs, deposits them on an object slide, 

disperses them with a marker fluid, and takes digital images of 

the germs in a programmable pattern. The stored images are 

analysed in order to identify the germs based on a novel 

case-based object-recognition method. The case generation is 

done semi-automatically by manually tracing the contour of 

the object, by automated shape alignment and by shape 

clustering, and eventually by prototype calculation. Based on 

the acquired shape cases, the object-recognition unit 

identifies objects in the image that are likely to be fungi spores. 

The further examination of labelled objects is done by 

calculating more distinct object features, from which a 

prototype-based classifier determines the kind of fungi spores. 

After all, objects had been classified by their type, the number 

of one type of fungi spores is calculated and displayed for the 

operator on the computer screen.  

The recognition rate is good enough for on-line monitoring 

of environments. The final information can be used to 

determine the contamination of environments with biological 

hazardous material. It can be used for health monitoring as 

well as for process control. 
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