



Abstract—A column reduction technique for an in-memory

machine-learning classifier in 6T SRAM cells is discussed in this

paper, based on an error-tolerant boosting algorithm (a.k.a.,

error-adaptive classifier boosting, EACB). The proposed

technique is mainly applied to the in-memory machine-learning

classifier system wherein the weight of the linear model is

restricted to 1 bit applicable for standard 6T SRAM cells,

employing the EACB algorithm to recognize downsampled

handwritten digits. First, the number of columns of the boosted

classifier is pruned. Second, three methods: greedy search, fast

version of greedy search, and worst-care optimization, are

discussed and implemented. Finally, the reduction effects of the

proposed methods are compared. The simulation results show

that besides the 11.50% column reduction from pruning, the

proposed methods can further reduce 3.23%, 5.14%, and 5.49%

of the column number on average, respectively, with a similar

accuracy to ensure that the corresponding part of the model can

be reduced to achieve better energy saving.

Index Terms—In-memory, machine learning, column

reduction, error-adaptive classifier boosting.

I. INTRODUCTION

Scaling of memory technology increases the crisis of

operating power and hardware variability in fields like the

Internet of Things and sensor networks, where the constraints

of energy cost and hardware reliability are most rigorous. To

overcome such challenges, directions of in-memory

computation, where the computation is performed within the

memory (SRAM bit-cell), are becoming more highlighted

recently.

Fig. 1 shows the concepts of the in-memory computation

process and conventional compute-out-of-memory

(out-memory) process. The goal of the process in Fig. 1 is to

recognize images with a size of 128 × 128 pixels. The

conventional out-memory process first serially accesses data

from the memory and then performs a computation for

recognition. During this process, the frequent data access

makes it cost lots of energy, up to 100 nJ, to recognize one

image. However, the computation of in-memory processes is

performed within the memory (SRAM cells), which can avoid

the frequent access and only costs 1 nJ per image inference.

Manuscript received January 12, 2018; revised March 10, 2018.

J. Xi is with the Department of Computer Science and Engineering,

Fukuoka Institute of Technology, Fukuoka, Japan and the School of

Electronic and Optical Engineering, Nanjing University of Science and

Technology, Nanjing, China (e-mail: mfm16104@bene.fit.ac.jp).

H. Yamauchi is with the Department of Computer Science and

Engineering, Fukuoka Institute of Technology, Fukuoka (e-mail:

yamauchi@fit.ac.jp).

Fig. 1. Comparison between the out-memory process and in-memory

process.

In recent years, there have been noteworthy studies in

in-memory computation related fields. In 2014, Kang et al. [1]

proposed the concept of in-memory computation, which is

performed inside the memory (SRAM cells). A behavioral

model for circuit nonlinearity was presented to research its

impact. The demonstrated system used a standard memory

and parallel structure device and achieved 63% energy saving

compared with the conventional system for pictures of size

256 × 256 pixels. In 2015, Wang et al. [2] proposed an

error-adaptive classifier boosting (EACB) algorithm to train

an error-tolerant system with a performance of 65× reduction

of the required memory and 10× energy saving, compared

with conventional boosting algorithms (i.e., AdaBoost and

FilterBoost). Kang et al. [3] proposed a novel VLSI design

specialized for convolutional neural networks by employing

in-memory computation. The demonstrated system reached

an accuracy of 99% on the MNIST database, achieving an

energy delay product reduced by 24.5×, energy cost reduced

by 5.0×, and a 4.9× higher throughput compared with the

conventional systems. In 2016, Rieutort-Louis et al. [4]

proposed a large-area system for image sensing and detection,

integrating sensors and thin-film transistor circuits to achieve

detection and classification for images from data of sensors.

The proposed system reached an accuracy performance of

more than 85%–95%, which is at a similar level of an ideal

support vector machine classifier. The proposed system

reduced the total signal numbers by 3.5×–9× from 36 sensors

in the large-area electronics domain by detecting the shapes of

images and employing the EACB algorithm. Zhang et al. [5]

proposed an in-memory machine-learning classifier where the

computation is embedded into standard 6T SRAM cells and

the demonstrated digit recognition system for the MNIST

database achieved an accuracy of over 90% with features

reduced to 9 × 9 by employing 18 iterations of EACB and

achieving 113× energy saving compared with the

conventional ideal digital SRAM cell system.

However, only a few studies focus on the reduction of

model complexity to reach a higher level of energy saving,

A Column Reduction Technique for an In-Memory

Machine-Learning Classifier

Jiazhen Xi and Hiroyuki Yamauchi

International Journal of Machine Learning and Computing, Vol. 8, No. 2, April 2018

127doi: 10.18178/ijmlc.2018.8.2.675

which is the exact purpose of this work. The proposed

technique is mainly applied to the in-memory

machine-learning classifier system implemented in 6T SRAM

cells employing the EACB algorithm [2].

II. SYSTEM SUMMARY

A. System Diagram

Our system uses the MNIST dataset [6] of 28 × 28 images

of 0–9 digits, and the evaluation is mainly based on the final

recognition accuracy and corresponding column number of

the boosted model, which reflects the energy costs of the

system. The diagram of the system is shown in Fig. 2.

Fig. 2. System diagram.

First, the original images are downsampled to several

smaller sizes, 11 × 11, 9 × 9, 7 × 7, and 5 × 5, applicable for

the standard 6T SRAM cell structure. Then, they are flattened

to 1 × m and transformed to a word-line voltage vector

connected to SRAM bit-cells, wherein the time-dependent

variability with different strengths (0–200 mV) is added to

simulate the SRAM bit-cell (see Fig. 3). The time-dependent

variability occurs in SRAM bit-cells, and we assume that it is

approximately normally distributed. Its strength is described

by ∆V, the standard deviation of variation, in the following

sections of this paper.

Fig. 3. The effect of downsampling and time-dependent variability.

B. In-Memory Model Diagram

Weak basic linear classifiers are restricted to 1 bit to be

suitable for the structure of bit-cells, employing a constrained

resolution regression algorithm [7].

Their weights are trained from t (the maximum is selected

to be 18 in simulation) iterations of the EACB. All t trained

weak classifiers compose one boosted strong classifier. All

pairs of digits are represented by 45 boosted classifiers which

compose an EACB model. The in-memory model diagram is

shown in Fig. 4.

Fig. 4. In-memory model diagram.

C. Inference Flow

The inference process comprises three steps:

 Step 1: all weak classifiers of a boosted classifier

make −1/1 decisions for the input image.

 Step 2: weighted decisions are added to be −1/1 as the

decision of a boosted classifier.

 Step 3: applying all-versus-all (AVA) voting, 45

decisions of boosted classifiers make a 10-class

inference of 0–9 digits.

III. COLUMN REDUCTION TECHNIQUE

A. Baseline Performance

Using the same EACB algorithm and binary linear model

setup, the baseline model employs m rows and 45 × t columns,

where m is dependent on the image’s size and t is represented

for EACB iterations for each boosted classifier. The

following demonstration in this paper takes one dataset of

D(11,0), which represents 11 × 11 pixel images and

time-dependent variability of ∆V = 0, as an example for

simplicity. For D(11,0), the baseline model reaches an

accuracy of 93.5% with 585 columns (t = 13) and 121 rows.

Fig. 5 shows the accuracy performance by the EACB iteration

t.

Fig. 5. Baseline accuracy by iterations.

To avoid underfitting and accuracy loss, t = 13 with

International Journal of Machine Learning and Computing, Vol. 8, No. 2, April 2018

128

maximum train accuracy is selected to be the baseline EACB

iteration. As Fig. 5 shows, the convergence comes quite

earlier than the maximum point, making it possible to reduce

the redundant columns between the convergence point and the

actual selected point.

B. Pruning Columns for Different Boosted Classifiers

Fig. 6. Conventional same iterations versus iterations of the best accuracy.

Fig. 7. Accuracy with pruning versus accuracy without pruning.

Within the AVA voting strategy, the original 10-class

classification problem is divided into 45 binary classification

tasks. However, the difficulties for different binary tasks are

different and the best EACB iteration for each boosted

classifier also varies. Thus, the first step to reduce the

columns is by pruning the columns for different boosted

classifiers. Figure 6 shows the comparison of columns of

fixed same iterations and columns with pruning for D(11,0).

The criterion of pruning is simply selecting iterations of

the best train accuracy of each boosted classifier rather than

the conventional same fixed EACB maximum iteration.

A comparison of the accuracy of the model with or

without pruning by iteration is shown in Fig. 7. Both models

have the same level of accuracy and the model with pruning

gets earlier convergence compared with the model without

pruning. For D(11,0), this reduces 206 columns from

585–379.

C. Reducing Columns by Greedy Search

The proposed greedy search method is based on an

assumption that if there is an optimum point between t = 1(45

columns maximum) and the current pruned columns (i.e., 379

columns), the total number of columns can be optimized. For

D(11,0), the greedy search starts from 45 columns and ends at

379 columns.

The basic idea of the proposed greedy search is to

iteratively add a column to a boosted classifier, which brings

about the best accuracy gain until its column number reaches

the result with pruning.

For D(11,0), first, initialize the number of columns of each

boosted classifier to 1. Then, calculate each AVA accuracy if

only one column is added to each boosted classifier. Only add

one column to the boosted classifier with the best AVA

accuracy. Iteratively repeat this process until the end, and then

select the earliest iteration with a similar accuracy as the final

result. The pseudocode is shown in Fig. 8.

Fig. 8. Greedy search column reduction method.

For D(11,0), this reduces 11 columns from 379–368; the

result is shown in Fig. 9.

Fig. 9. Accuracy by iteration of greedy search.

// Greedy search

input:

col
prn

 // column number of pruned model

output:

col
grd

 // column number of greedy model

acc
final

 // accuracy of greedy search by iteration

 // init

 1 for i from 1 to 45

 2 col
grd

[i] = 1

 3 endfor

 4 acc
final

 = zeros(1,1 + sum(col
prn

) – sum(col
grd

))

 5 iter = 1

 6 acc
final

[iter] = calcAccAVA(col
grd

)

 // iter

 7 while sum(col
grd

) < sum(col
prn

)

 // one step greedy

 8 iter = iter + 1

 9 acc
test

 = zeros(1,45)

10 for i from 1 to 45

11 if col
grd

[i] < col
prn

[i]

12 col
grd

[i] = col
grd

[i] + 1

13 acc
test

[i] = calcAccAVA(col
grd

)

14 col
grd

[i] = col
grd

[i] – 1

15 endif

16 endfor

17 i
max

 = argmax(acc
test

)

18 col
grd

[i
max

] = col
grd

[i
max

] + 1

19 acc
final

[iter] = max(acc
test

)

 // end of one step greedy

20 endwhile

International Journal of Machine Learning and Computing, Vol. 8, No. 2, April 2018

129

The curve labeled with “greedy-opt” represents the

accuracy changing with the total column number (iteration of

greedy search), and it reaches the same accuracy (“similar

Acc”) as the result with pruning within less iterations, which

achieves the reduction for the columns. The curve labeled

with “w/ pruning” and “wo/ pruning” is the same as the result

with and without pruning. It shows that the accuracy path of

the greedy search is nearer to the top-left corner within most

of the iterations, meaning that with the same columns, it finds

a column setting with a higher accuracy than the pruned result

by the greedy search. Figure 10 shows the result of column

number of each boosted classifier by greedy search labeled as

the same rule for D(11,0).

Fig. 10. Column number for each boosted classifier by greedy search.

Fig. 11. Greedy search (fast) column reduction method.

However, there is a problem with the method: it calculates

the AVA accuracy 45 times for each step, which brings about

quite large time consumption. To solve this, we can modify

the proposed greedy search method to a fast version as in the

pseudocode shown in Fig. 11.

For simplicity here, lines 1–6 of the pseudocode of the

greedy search are abstracted as procedure “init()” which is

exactly the same in the three proposed methods and will be

omitted in the following pseudocodes. Similarly, lines 8–19

of the pseudocode of the greedy search are abstracted as

procedure “oneStepGrd()” representing one single step of the

greedy search, which is employed again in the fast version of

the greedy search at line 8. The modification part as well as

the logic of the fast version of the greedy search is described

at lines 20–30.

We observed that column updating tends to be fixed at the

same boosted classifier within a few iterations. So, in each

iteration after the column is updated, just add one column

again to the same boosted classifier and calculate the AVA

accuracy and repeat until the accuracy is no longer larger than

the last step. For D(11,0), the fast version shows a similar

result to the normal greedy search (see Figs. 12 and 13), while

saving over 50% of the time consumed on average.

Fig. 12. Accuracy by iteration of greedy search (fast).

Fig. 13. Column number for each boosted classifier by greedy search (fast).

D. Reducing Columns by Worst-Care

Different binary classification tasks (P versus Q) bring

about different classification difficulties, leading to variations

in the accuracy for each binary task. Figure 14 shows a

comparison between a binary accuracy variation boxplot and

final AVA accuracy (solid circles) for different down-sizes

and ∆V setups.

Fig. 14. Comparison between the binary accuracy variation boxplot and final

AVA accuracy for different down-sizes and ∆V setups.

// Greedy search fast version

input: col
prn

 output: col
grdfast

, acc
final

 // init

 1 col
grdfast

, acc
final

, iter = init(col
prn

)

 // iter

 7 while sum(col
grdfast

) < sum(col
prn

)

 // one step greedy

 8 col
grdfast

, acc
final

, iter, i
max

 = oneStepGrd()

 // end of one step greedy

 // fast

20 while col
grdfast

[i
max

] < col
prn

[i
max

]

21 col
grdfast

[i
max

] = col
grdfast

[i
max

] + 1

22 acc
fast

 = calcAccAVA(col
grdfast

)

23 if acc
fast

 > acc
final

[iter]

24 iter = iter + 1

25 acc
final

[iter] = acc
fast

26 else

27 col
grdfast

[i
max

] = col
grdfast

[i
max

] – 1

28 break

29 endif

30 endwhile

31 endwhile

International Journal of Machine Learning and Computing, Vol. 8, No. 2, April 2018

130

It is shown that in most cases, the worst binary

classification accuracy of boosted classifiers is the upper

bound of the final AVA accuracy. So, we assume that there

are some redundant columns of boosted classifiers with an

accuracy better than the worst one; based on this assumption,

we propose the worst-care reduction method. Similarly, the

search starts from 45 columns and ends at 379 columns. The

pseudocode is shown in Fig. 15.

Fig. 15. Worst-care column reduction method.

The basic idea of the proposed worst-care method is to

iteratively add a column to a boosted classifier whose train

binary accuracy is the worst until its column number reaches

the result with pruning. For D(11,0), first, initialize the

number of columns of each boosted classifier to 1. Then,

compare the train accuracy of each boosted classifier. Only

add one column to the boosted classifier with the worst train

accuracy. Iteratively repeat this process until the end, and then

select the earliest iteration with a similar accuracy as the final

result. For D(11,0), this reduces 14 columns from 379–365.

The result of the worst-care method for D(11,0) is shown in

Fig. 16.

Fig. 16. Accuracy by iteration of worst-care.

Similarly, the curve labeled with “worst-care-by-iter”

represents the accuracy changing with the total column

number (iteration of worst-care), and it reaches the same

accuracy (“similar Acc”) as the result with pruning within less

iterations which achieves the reduction for the columns. The

curve labeled with “w/ pruning” and “wo/ pruning” is also the

result with and without pruning.

Figure 17 shows the result of column number of each

boosted classifier by worst-care labeled as the same rule for

D(11,0).

Fig. 17. Column number for each boosted classifier by worst-care.

IV. SIMULATION RESULT

Here, we apply the proposed column reduction methods to

different downsampling sizes and time-dependent variability

setups, namely, sizes of 11 × 11, 9 × 9, 7 × 7, and 5 × 5 and ∆V

= 0 mV, 50 mV, 100 mV, 150 mV, and 200 mV. The

simulation result mainly focuses on the reduced column

number as well as the accuracy difference compared with the

performance of the baseline model after applying the

proposed column reduction methods. The overall result is

shown in Fig. 18.

In Fig. 18, the figure at the top shows the comparison of

the AVA accuracy and the figure at the bottom shows the total

used column number. As labeled in the legend, each bar from

left to right represents the result of the baseline model, pruned

model, greedy search applied model, fast greedy search

applied model, and worst-care applied model. This shows that

after applying the proposed methods, the column number is

reduced for different setups with a similar accuracy compared

with the baseline.

Fig. 18. Overall result of the comparison of the test accuracy and column

numbers.

Fig. 19 is the boxplot of the test accuracy difference and

// Worst-care

input: col
prn

 output: col
wc

, acc
final

 // init

 1 col
wc

, acc
final

, iter = init(col
prn

)

 // iter

 7 while sum(col
wc

) < sum(col
prn

)

 8 iter = iter + 1

 9 acc
binary

 = ones(1,45)

10 for i from 1 to 45

11 if col
wc

[i] < col
prn

[i]

12 col
wc

[i] = col
wc

[i] + 1

13 acc
binary

[i] = calcAccBin(col
wc

)

14 col
wc

[i] = col
wc

[i] – 1

15 endif

16 endfor

17 i
min

 = argmin(acc
binary

)

18 col
wc

[i
min

] = col
wc

[i
min

] + 1

19 acc
final

[iter] = calcAccAVA(col
wc

)

20 endwhile

International Journal of Machine Learning and Computing, Vol. 8, No. 2, April 2018

131

reduced column numbers compared with the baseline model.

Five entries, namely, Baseline, Pruned, Greedy Search,

Greedy Search fast version, and Worst-care, are compared.

Fig. 19 also shows that the accuracy of different models is

in a similar range and the model applied worst-care achieves

the least accuracy loss, within 0.4%, compared with the

baseline, and achieves the most robust result of column

reduction. Greedy search and fast greedy search reach similar

accuracy results, whereas the fast version achieves better

results on column reduction.

Fig. 19. Boxplot of the test accuracy difference and reduced column numbers

compared with the baseline model.

Fig. 20. Boxplot of the column number reduction percentage compared with

the baseline model.

Fig. 20 is the boxplot of the column number reduction

percentage compared with the baseline model, and the line

marked triangle is the mean value of each result.

Fig. 20 also shows that the pruning process contributes

11.50% column reduction on average, and greedy search, fast

greedy search, and worst-care contribute extra 3.23%, 5.14%,

and 5.49% column reduction on average of the total number

of columns of the baseline model.

V. CONCLUSION

In this paper, a column number reduction technique for an

in-memory machine-learning classifier based on a 6T SRAM

cell structure was proposed. In the first stage of pruning, the

column number of each boosted classifier is pruned,

achieving 11.50% column reduction. In the second stage of

reduction, three methods were proposed and 3.23%, 5.14%,

and 5.49% of the columns were reduced on average,

achieving the purpose of column reduction for higher-level

energy saving with the accuracy at a similar level.

REFERENCES

[1] M. Kang, S. K. Gonugondla, M. S. Keel, and N. R. Shanbhag, “An

energy-efficient memory-based high-throughput vlsi architecture for

convolutional networks,” in Proc. International Conf. on Acoustics,

Speech and Signal Processing, 2015, pp. 1037-1041.

[2] Z. Wang, R. E. Schapire, and N. Verma, “Error adaptive classifier

boosting (EACB): leveraging data-driven training towards hardware

resilience for signal inference,” IEEE Trans. on Circuits and Systems I:

Regular Papers, vol. 62, no. 4, pp. 1136-1145, April 2015.

[3] M. Kang, M. S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz, “An

energy-efficient VLSI architecture for pattern recognition via deep

embedding of computation in sram,” in Proc. IEEE International Conf.

on Acoustics, Speech and Signal Processing, 2014, pp. 8326-8330.

[4] W. Rieutort-Louis, T. Moy, Z. Wang, S. Wagner, J. C. Stum, and N.

Verma, “A large-area image sensing and detection system based on

embedded thin-film classifiers,” IEEE Journal of Solid-State

Circuits, vol. 51, no. 1, pp. 281-290, Jan. 2016.

[5] J. Zhang, Z. Wang, and N. Verma, “A machine-learning classifier

implemented in a standard 6T SRAM array,” in Proc. IEEE

Symposium on VLSI Circuits (VLSI-Circuits), 2016, pp. 1-2.

[6] Y. LeCun, and C. Cortes, “MNIST handwritten digit database,” AT&T

Labs, 2010.

[7] Z. Wang and N. Verma, “A low-energy machine-learning classifier

based on clocked comparators for direct inference on analog sensors,”

IEEE Trans. on Circuits and Systems I: Regular Papers.

Jiazhen Xi is a master student in the Department of

Computer Science and Engineering, Fukuoka Institute

of Technology (FIT). He is pursuing a double master

degree offered by FIT and Nanjing University of

Science and Technology (NUST) together.

He received his bachelor degree in NUST in 2015.

Currently, his research field includes in-memory

machine learning systems and related cost reduction

techniques.

His interests of research are machine learning, signal processing, signal

inference, compressed sensing, application of machine learning in hardware

domain, especially high applicable low energy cost application and Internet

of Things.

Hiroyuki Yamauchi received the Ph.D. degree in

engineering from Kyushu University, Fukuoka, Japan,

in 1997. In 1985 he joined the Semiconductor Research

Center, Panasonic, Osaka, Japan. From 1985 to 1987 he

had worked on the research of the submicron MOS FET

model-parameter extraction for the circuit simulation

and the research of the sensitivity of the scaled sense

amplifier for ultrahigh-density DRAM's. From 1988 to

1994, he was engaged in research and development of

16-Mb CMOS DRAM's including the battery-operated high-speed 16 Mbit

CMOS DRAM and the ultra low-power, three times longer, self-refresh

DRAM. He also invented the charge-recycling bus architecture in 1994

which was used as a reference to develop the technologies for NVIDIA GPU

bus designs and low-voltage operated high-speed VLSI's, including

0.5V/100MHz-operated SRAM and Gate-Over-Driving CMOS architecture.

After experienced general manager for development of various embedded

memories, eSRAM, eDRAM, eFlash, eFeRAM, and eReRAM for system

LSI in Panasonic, he has moved to Fukuoka Institute of Technology as a

professor since 2005. His current interests are focused on study for variation

tolerant memory circuit designs and power aware machine-learning model

for in-memory artificial intelligence (AI) inference system of everything era.

He holds 212 Patents including 87 U.S. Patents and has presented over 70

journal papers and proceedings of international conferences including 11 for

ISSCC and 11 for Symposium on VLSI Circuits. Dr. Yamauchi received the

1996 Remarkable Invention Award from Science and Technology Agency of

Japanese government and the highest ISOCC2008 and ISOCC2013 Best

Paper Award.

International Journal of Machine Learning and Computing, Vol. 8, No. 2, April 2018

132

