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Abstract—A column reduction technique for an in-memory 

machine-learning classifier in 6T SRAM cells is discussed in this 

paper, based on an error-tolerant boosting algorithm (a.k.a., 

error-adaptive classifier boosting, EACB). The proposed 

technique is mainly applied to the in-memory machine-learning 

classifier system wherein the weight of the linear model is 

restricted to 1 bit applicable for standard 6T SRAM cells, 

employing the EACB algorithm to recognize downsampled 

handwritten digits. First, the number of columns of the boosted 

classifier is pruned. Second, three methods: greedy search, fast 

version of greedy search, and worst-care optimization, are 

discussed and implemented. Finally, the reduction effects of the 

proposed methods are compared. The simulation results show 

that besides the 11.50% column reduction from pruning, the 

proposed methods can further reduce 3.23%, 5.14%, and 5.49% 

of the column number on average, respectively, with a similar 

accuracy to ensure that the corresponding part of the model can 

be reduced to achieve better energy saving. 

 
Index Terms—In-memory, machine learning, column 

reduction, error-adaptive classifier boosting. 

 

I. INTRODUCTION 

Scaling of memory technology increases the crisis of 

operating power and hardware variability in fields like the 

Internet of Things and sensor networks, where the constraints 

of energy cost and hardware reliability are most rigorous. To 

overcome such challenges, directions of in-memory 

computation, where the computation is performed within the 

memory (SRAM bit-cell), are becoming more highlighted 

recently. 

Fig. 1 shows the concepts of the in-memory computation 

process and conventional compute-out-of-memory 

(out-memory) process. The goal of the process in Fig. 1 is to 

recognize images with a size of 128 × 128 pixels. The 

conventional out-memory process first serially accesses data 

from the memory and then performs a computation for 

recognition. During this process, the frequent data access 

makes it cost lots of energy, up to 100 nJ, to recognize one 

image. However, the computation of in-memory processes is 

performed within the memory (SRAM cells), which can avoid 

the frequent access and only costs 1 nJ per image inference. 
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Fig. 1. Comparison between the out-memory process and in-memory 

process. 

 

In recent years, there have been noteworthy studies in 

in-memory computation related fields. In 2014, Kang et al. [1] 

proposed the concept of in-memory computation, which is 

performed inside the memory (SRAM cells). A behavioral 

model for circuit nonlinearity was presented to research its 

impact. The demonstrated system used a standard memory 

and parallel structure device and achieved 63% energy saving 

compared with the conventional system for pictures of size 

256 × 256 pixels. In 2015, Wang et al. [2] proposed an 

error-adaptive classifier boosting (EACB) algorithm to train 

an error-tolerant system with a performance of 65× reduction 

of the required memory and 10× energy saving, compared 

with conventional boosting algorithms (i.e., AdaBoost and 

FilterBoost). Kang et al. [3] proposed a novel VLSI design 

specialized for convolutional neural networks by employing 

in-memory computation. The demonstrated system reached 

an accuracy of 99% on the MNIST database, achieving an 

energy delay product reduced by 24.5×, energy cost reduced 

by 5.0×, and a 4.9× higher throughput compared with the 

conventional systems. In 2016, Rieutort-Louis et al. [4] 

proposed a large-area system for image sensing and detection, 

integrating sensors and thin-film transistor circuits to achieve 

detection and classification for images from data of sensors. 

The proposed system reached an accuracy performance of 

more than 85%–95%, which is at a similar level of an ideal 

support vector machine classifier. The proposed system 

reduced the total signal numbers by 3.5×–9× from 36 sensors 

in the large-area electronics domain by detecting the shapes of 

images and employing the EACB algorithm. Zhang et al. [5] 

proposed an in-memory machine-learning classifier where the 

computation is embedded into standard 6T SRAM cells and 

the demonstrated digit recognition system for the MNIST 

database achieved an accuracy of over 90% with features 

reduced to 9 × 9 by employing 18 iterations of EACB and 

achieving 113× energy saving compared with the 

conventional ideal digital SRAM cell system. 

However, only a few studies focus on the reduction of 

model complexity to reach a higher level of energy saving, 
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which is the exact purpose of this work. The proposed 

technique is mainly applied to the in-memory 

machine-learning classifier system implemented in 6T SRAM 

cells employing the EACB algorithm [2]. 

 

II. SYSTEM SUMMARY 

A. System Diagram 

Our system uses the MNIST dataset [6] of 28 × 28 images 

of 0–9 digits, and the evaluation is mainly based on the final 

recognition accuracy and corresponding column number of 

the boosted model, which reflects the energy costs of the 

system. The diagram of the system is shown in Fig. 2. 

 
Fig. 2. System diagram. 

First, the original images are downsampled to several 

smaller sizes, 11 × 11, 9 × 9, 7 × 7, and 5 × 5, applicable for 

the standard 6T SRAM cell structure. Then, they are flattened 

to 1 × m and transformed to a word-line voltage vector 

connected to SRAM bit-cells, wherein the time-dependent 

variability with different strengths (0–200 mV) is added to 

simulate the SRAM bit-cell (see Fig. 3). The time-dependent 

variability occurs in SRAM bit-cells, and we assume that it is 

approximately normally distributed. Its strength is described 

by ∆V, the standard deviation of variation, in the following 

sections of this paper. 

 

 
Fig. 3. The effect of downsampling and time-dependent variability. 

B. In-Memory Model Diagram 

Weak basic linear classifiers are restricted to 1 bit to be 

suitable for the structure of bit-cells, employing a constrained 

resolution regression algorithm [7]. 

Their weights are trained from t (the maximum is selected 

to be 18 in simulation) iterations of the EACB. All t trained 

weak classifiers compose one boosted strong classifier. All 

pairs of digits are represented by 45 boosted classifiers which 

compose an EACB model. The in-memory model diagram is 

shown in Fig. 4. 
 

 
Fig. 4. In-memory model diagram. 

C. Inference Flow 

The inference process comprises three steps: 

 Step 1: all weak classifiers of a boosted classifier 

make −1/1 decisions for the input image. 

 Step 2: weighted decisions are added to be −1/1 as the 

decision of a boosted classifier. 

 Step 3: applying all-versus-all (AVA) voting, 45 

decisions of boosted classifiers make a 10-class 

inference of 0–9 digits. 

 

III. COLUMN REDUCTION TECHNIQUE 

A. Baseline Performance 

Using the same EACB algorithm and binary linear model 

setup, the baseline model employs m rows and 45 × t columns, 

where m is dependent on the image’s size and t is represented 

for EACB iterations for each boosted classifier. The 

following demonstration in this paper takes one dataset of 

D(11,0), which represents 11 × 11 pixel images and 

time-dependent variability of ∆V = 0, as an example for 

simplicity. For D(11,0), the baseline model reaches an 

accuracy of 93.5% with 585 columns (t = 13) and 121 rows. 

Fig. 5 shows the accuracy performance by the EACB iteration 

t. 
 

 
Fig. 5. Baseline accuracy by iterations. 

 

To avoid underfitting and accuracy loss, t = 13 with 
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maximum train accuracy is selected to be the baseline EACB 

iteration. As Fig. 5 shows, the convergence comes quite 

earlier than the maximum point, making it possible to reduce 

the redundant columns between the convergence point and the 

actual selected point. 

B. Pruning Columns for Different Boosted Classifiers 

 
Fig. 6. Conventional same iterations versus iterations of the best accuracy. 

 

 
Fig. 7. Accuracy with pruning versus accuracy without pruning. 

 

Within the AVA voting strategy, the original 10-class 

classification problem is divided into 45 binary classification 

tasks. However, the difficulties for different binary tasks are 

different and the best EACB iteration for each boosted 

classifier also varies. Thus, the first step to reduce the 

columns is by pruning the columns for different boosted 

classifiers. Figure 6 shows the comparison of columns of 

fixed same iterations and columns with pruning for D(11,0). 

The criterion of pruning is simply selecting iterations of 

the best train accuracy of each boosted classifier rather than 

the conventional same fixed EACB maximum iteration. 

A comparison of the accuracy of the model with or 

without pruning by iteration is shown in Fig. 7. Both models 

have the same level of accuracy and the model with pruning 

gets earlier convergence compared with the model without 

pruning. For D(11,0), this reduces 206 columns from 

585–379. 

C. Reducing Columns by Greedy Search 

The proposed greedy search method is based on an 

assumption that if there is an optimum point between t = 1(45 

columns maximum) and the current pruned columns (i.e., 379 

columns), the total number of columns can be optimized. For 

D(11,0), the greedy search starts from 45 columns and ends at 

379 columns. 

The basic idea of the proposed greedy search is to 

iteratively add a column to a boosted classifier, which brings 

about the best accuracy gain until its column number reaches 

the result with pruning. 

For D(11,0), first, initialize the number of columns of each 

boosted classifier to 1. Then, calculate each AVA accuracy if 

only one column is added to each boosted classifier. Only add 

one column to the boosted classifier with the best AVA 

accuracy. Iteratively repeat this process until the end, and then 

select the earliest iteration with a similar accuracy as the final 

result. The pseudocode is shown in Fig. 8. 

 

 
Fig. 8. Greedy search column reduction method. 

 

For D(11,0), this reduces 11 columns from 379–368; the 

result is shown in Fig. 9. 
 

 
Fig. 9. Accuracy by iteration of greedy search. 

// Greedy search  

input:  

col
prn

 // column number of pruned model 

output: 

col
grd

 // column number of greedy model 

acc
final

 // accuracy of greedy search by iteration 

 // init 

 1 for i from 1 to 45 

 2        col
grd

[i] = 1 

 3 endfor 

 4 acc
final

 = zeros(1,1 + sum(col
prn

) – sum(col
grd

)) 

 5 iter = 1 

 6 acc
final

[iter] = calcAccAVA(col
grd

) 

 // iter 

 7 while sum(col
grd

) < sum(col
prn

) 

 // one step greedy 

 8  iter = iter + 1 

 9  acc
test

 = zeros(1,45) 

10  for i from 1 to 45 

11   if col
grd

[i] < col
prn

[i] 

12   col
grd

[i] = col
grd

[i] + 1 

13   acc
test

[i] = calcAccAVA(col
grd

) 

14   col
grd

[i] = col
grd

[i] – 1 

15  endif 

16 endfor 

17 i
max

 = argmax(acc
test

) 

18 col
grd

[i
max

] = col
grd

[i
max

] + 1 

19 acc
final

[iter] = max(acc
test

) 

 // end of one step greedy 

20 endwhile 
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The curve labeled with “greedy-opt” represents the 

accuracy changing with the total column number (iteration of 

greedy search), and it reaches the same accuracy (“similar 

Acc”) as the result with pruning within less iterations, which 

achieves the reduction for the columns. The curve labeled 

with “w/ pruning” and “wo/ pruning” is the same as the result 

with and without pruning. It shows that the accuracy path of 

the greedy search is nearer to the top-left corner within most 

of the iterations, meaning that with the same columns, it finds 

a column setting with a higher accuracy than the pruned result 

by the greedy search. Figure 10 shows the result of column 

number of each boosted classifier by greedy search labeled as 

the same rule for D(11,0). 

 

 
Fig. 10. Column number for each boosted classifier by greedy search. 

 

 
Fig. 11. Greedy search (fast) column reduction method. 

 

However, there is a problem with the method: it calculates 

the AVA accuracy 45 times for each step, which brings about 

quite large time consumption. To solve this, we can modify 

the proposed greedy search method to a fast version as in the 

pseudocode shown in Fig. 11. 

For simplicity here, lines 1–6 of the pseudocode of the 

greedy search are abstracted as procedure “init()” which is 

exactly the same in the three proposed methods and will be 

omitted in the following pseudocodes. Similarly, lines 8–19 

of the pseudocode of the greedy search are abstracted as 

procedure “oneStepGrd()” representing one single step of the 

greedy search, which is employed again in the fast version of 

the greedy search at line 8. The modification part as well as 

the logic of the fast version of the greedy search is described 

at lines 20–30. 

We observed that column updating tends to be fixed at the 

same boosted classifier within a few iterations. So, in each 

iteration after the column is updated, just add one column 

again to the same boosted classifier and calculate the AVA 

accuracy and repeat until the accuracy is no longer larger than 

the last step. For D(11,0), the fast version shows a similar 

result to the normal greedy search (see Figs. 12 and 13), while 

saving over 50% of the time consumed on average. 
 

 
Fig. 12. Accuracy by iteration of greedy search (fast). 

 

 
Fig. 13. Column number for each boosted classifier by greedy search (fast). 

D. Reducing Columns by Worst-Care 

Different binary classification tasks (P versus Q) bring 

about different classification difficulties, leading to variations 

in the accuracy for each binary task. Figure 14 shows a 

comparison between a binary accuracy variation boxplot and 

final AVA accuracy (solid circles) for different down-sizes 

and ∆V setups. 
 

 
Fig. 14. Comparison between the binary accuracy variation boxplot and final 

AVA accuracy for different down-sizes and ∆V setups. 

// Greedy search fast version 

input: col
prn

 output: col
grdfast

, acc
final

  

 // init 

 1 col
grdfast

, acc
final

, iter = init(col
prn

) 

 // iter 

 7 while sum(col
grdfast

) < sum(col
prn

) 

 // one step greedy 

 8  col
grdfast

, acc
final

, iter, i
max

 = oneStepGrd() 

 // end of one step greedy 

 // fast 

20  while col
grdfast

[i
max

] < col
prn

[i
max

] 

21  col
grdfast

[i
max

] = col
grdfast

[i
max

] + 1 

22  acc
fast

 = calcAccAVA(col
grdfast

) 

23    if acc
fast

 > acc
final

[iter] 

24    iter = iter + 1 

25    acc
final

[iter] = acc
fast

 

26   else 

27    col
grdfast

[i
max

] = col
grdfast

[i
max

] – 1 

28    break 

29   endif 

30 endwhile 

31 endwhile 
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It is shown that in most cases, the worst binary 

classification accuracy of boosted classifiers is the upper 

bound of the final AVA accuracy. So, we assume that there 

are some redundant columns of boosted classifiers with an 

accuracy better than the worst one; based on this assumption, 

we propose the worst-care reduction method. Similarly, the 

search starts from 45 columns and ends at 379 columns. The 

pseudocode is shown in Fig. 15. 

 

 
Fig. 15. Worst-care column reduction method. 

The basic idea of the proposed worst-care method is to 

iteratively add a column to a boosted classifier whose train 

binary accuracy is the worst until its column number reaches 

the result with pruning. For D(11,0), first, initialize the 

number of columns of each boosted classifier to 1. Then, 

compare the train accuracy of each boosted classifier. Only 

add one column to the boosted classifier with the worst train 

accuracy. Iteratively repeat this process until the end, and then 

select the earliest iteration with a similar accuracy as the final 

result. For D(11,0), this reduces 14 columns from 379–365. 

The result of the worst-care method for D(11,0) is shown in 

Fig. 16. 

 

 
Fig. 16. Accuracy by iteration of worst-care. 

 

Similarly, the curve labeled with “worst-care-by-iter” 

represents the accuracy changing with the total column 

number (iteration of worst-care), and it reaches the same 

accuracy (“similar Acc”) as the result with pruning within less 

iterations which achieves the reduction for the columns. The 

curve labeled with “w/ pruning” and “wo/ pruning” is also the 

result with and without pruning. 

Figure 17 shows the result of column number of each 

boosted classifier by worst-care labeled as the same rule for 

D(11,0). 
 

 
Fig. 17. Column number for each boosted classifier by worst-care. 

 

IV. SIMULATION RESULT 

Here, we apply the proposed column reduction methods to 

different downsampling sizes and time-dependent variability 

setups, namely, sizes of 11 × 11, 9 × 9, 7 × 7, and 5 × 5 and ∆V 

= 0 mV, 50 mV, 100 mV, 150 mV, and 200 mV. The 

simulation result mainly focuses on the reduced column 

number as well as the accuracy difference compared with the 

performance of the baseline model after applying the 

proposed column reduction methods. The overall result is 

shown in Fig. 18. 

In Fig. 18, the figure at the top shows the comparison of 

the AVA accuracy and the figure at the bottom shows the total 

used column number. As labeled in the legend, each bar from 

left to right represents the result of the baseline model, pruned 

model, greedy search applied model, fast greedy search 

applied model, and worst-care applied model. This shows that 

after applying the proposed methods, the column number is 

reduced for different setups with a similar accuracy compared 

with the baseline. 
 

 
Fig. 18. Overall result of the comparison of the test accuracy and column 

numbers. 

 

Fig. 19 is the boxplot of the test accuracy difference and 

// Worst-care 

input: col
prn

 output: col
wc

, acc
final

  

 // init 

 1 col
wc

, acc
final

, iter = init(col
prn

) 

 // iter 

 7 while sum(col
wc

) < sum(col
prn

) 

 8 iter = iter + 1 

 9 acc
binary

 = ones(1,45) 

10  for i from 1 to 45 

11   if col
wc

[i] < col
prn

[i] 

12   col
wc

[i] = col
wc

[i] + 1 

13   acc
binary

[i] = calcAccBin(col
wc

) 

14   col
wc

[i] = col
wc

[i] – 1 

15  endif 

16 endfor 

17 i
min

 = argmin(acc
binary

) 

18 col
wc

[i
min

] = col
wc

[i
min

] + 1 

19 acc
final

[iter] = calcAccAVA(col
wc

) 

20 endwhile 
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reduced column numbers compared with the baseline model. 

Five entries, namely, Baseline, Pruned, Greedy Search, 

Greedy Search fast version, and Worst-care, are compared. 

Fig. 19 also shows that the accuracy of different models is 

in a similar range and the model applied worst-care achieves 

the least accuracy loss, within 0.4%, compared with the 

baseline, and achieves the most robust result of column 

reduction. Greedy search and fast greedy search reach similar 

accuracy results, whereas the fast version achieves better 

results on column reduction. 

 

 
Fig. 19. Boxplot of the test accuracy difference and reduced column numbers 

compared with the baseline model. 

 

 
Fig. 20. Boxplot of the column number reduction percentage compared with 

the baseline model. 

 

Fig. 20 is the boxplot of the column number reduction 

percentage compared with the baseline model, and the line 

marked triangle is the mean value of each result. 

Fig. 20 also shows that the pruning process contributes 

11.50% column reduction on average, and greedy search, fast 

greedy search, and worst-care contribute extra 3.23%, 5.14%, 

and 5.49% column reduction on average of the total number 

of columns of the baseline model. 

 

V. CONCLUSION 

In this paper, a column number reduction technique for an 

in-memory machine-learning classifier based on a 6T SRAM 

cell structure was proposed. In the first stage of pruning, the 

column number of each boosted classifier is pruned, 

achieving 11.50% column reduction. In the second stage of 

reduction, three methods were proposed and 3.23%, 5.14%, 

and 5.49% of the columns were reduced on average, 

achieving the purpose of column reduction for higher-level 

energy saving with the accuracy at a similar level. 
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