
  

 

Abstract—In recent years some comparative studies have 

explored the use of parallel ant colony optimization (ACO) 

algorithms over the traditionally sequential ACOs to solve the 

traveling salesman problem (TSP). However, these studies did 

not take a systematical approach to assess the performance of 

both algorithms on a comparable ground. In this paper, we aim 

to make a comparison of both the quality of the solutions and the 

running time as a result of the application of a sequential ACO 

and a parallel ACO to Eil51, Eil76 and KroA100 on a 

normalized and thus, comparable ground. Our study reaffirmed 

that the parallel algorithm is superior in computing efficiency 

over the sequential algorithm, particularly for larger TSPs. We 

also found that such a comparison could be meaningless if the 

size of the TSPs keeps increasing. We revealed that the worst 

solution among 10 repeated runs obtained from the parallel 

ACO was still better than the best solution among 10 repeated 

runs obtained from the sequential ACO, though both did not 

reach the global optimal solution within 300 iterations. The 

proposed parallel ACO has a very high consistency because at 

least one best solution was found within an error of 0.5% to the 

global optimal solution in every three repeats for all three cases. 

 
Index Terms—Ant colony optimization, traveling salesman 

problem, parallel computing, sequential computing. 

 

I. INTRODUCTION 

The traveling salesman problem (TSP) is described as: 

given a list of cities and their pairwise distances, find the 

shortest possible tour that visits each city exactly once and 

then returns to its original city [1]. TSP is a classic problem in 

combinatorial optimization called NP-complete problems, 

which is hardly solvable efficiently by any analytical 

algorithm [2]. Hence, a variety of heuristic algorithms have 

been devised to produce approximate solutions good enough 

for application in TSPs [3], [4]. Genetic algorithm (GA) and 

ant colony optimization (ACO) and their variations are among 

the heuristic algorithms that have been widely used in solving 

various cases of TSPs [5]-[10]. 

ACO is a multi-agent system stimulating the searching 

actions of some ant species, i.e., ants deposit pheromone on 
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their paths in order to mark the favorable trail that can be 

followed by other members of the colony. The shortest route 

is eventually taken by all the ants to transport food from the 

source to the nest the most efficiently. ACO simulates such a 

process using a number of artificial ants to build-up the 

shortest route as the solution to a given optimization problem 

[6], [11]-[13]. Different ACO algorithms have been proposed 

and produced satisfactory outcomes in solving various TSPs, 

but many ACO algorithms exhibit stagnation at the local 

optima and slow convergence. Even more challenging in 

sequential ACO algorithms is the direct conflict between 

improving stagnation at the local optima and accelerating 

convergence. Avoiding local stagnation requires adding other 

disturbing operations into an ACO algorithm, but such an 

action inevitably prolongs the convergence [8], [9]. Given the 

multi-agent nature of ACOs, a few recent studies have 

explored the likelihood of efficiently applying parallel ACO 

algorithms to solve TSPs [14]-[19]. 

Among these cases of parallel ACO experiments, Tan et al. 

in [14] focused their study on exploring how much speed-up 

could be made in running a parallel Max-Min Ant System 

(MMAS) implemented in MapReduce to solve Oliver30, St70, 

Tsp225 and Rat783 by increasing the number of processors in 

the computer cluster. This study showed that more processors 

should bring higher speed-ups for all four cases. However, 

this study did not present any statistical detail on the quality of 

the solutions and the average running time resulting from both 

the sequential and parallel MMASs on the same TSP. Wu et al. 

reported an experiment comparing both the quality of the 

solution and the average running time from running a 

sequential ACO and MapReduce-based parallel ACO to solve 

Gr666 [15]. From the outcomes of this sole TSP, it indicated 

that the parallel ACO performed better than the sequential 

ACO in both the quality of the solution and computing 

efficiency. Unfortunately, the comparison was based on data 

from this single case. Like [14], the study reported in [16] 

compared the outcomes of parallel ACOs with different 

number of ants and clusters of computers by assuming that 

both sequential and parallel ACOs have the same accuracy in 

the quality of their solutions for the selected TSPs. In [17], 

some outcomes from a parallel MMAS based on Spark 

MapReduce applied to five cases of TSPs were reported. 

However, it focused on reaching the global optimal solution 

with a random number of ants assigned to the different cases 

without rationalization. It also did not present any statistical 

details for further comparison. As all efforts on exploring 

parallel ACO algorithms for solving TSPs or alike in 

distributed and/or cloud environments are still in their infant 
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stages, gaps in the above-mentioned studies are 

understandable, and only through making more efforts these 

and new gaps in this emerging area can be bridged. 

In this paper, we try to fill some of these gaps by making a 

comparison of both the quality of the solutions and the 

running time resulting from applying a sequential ACO and a 

MapReduce-based parallel ACO to three cases of TSPs 

(Eil51, Eil76 and KroA100) on a normalized and thus, 

comparable ground. Firstly we aimed to quantify the relevant 

differences in the running time between the sequential and 

parallel ACOs for different-sized TSPs, so as to minimize the 

dependence on the computing environments exhibited in 

previous studies based on a comparison of the absolute 

running time. Secondly we aimed to answer the seemingly 

contradictory assumption or opinion on the quality of the 

solutions to TSPs obtained from both the sequential and 

parallel ACOs in the previous studies. Lastly, incorporating 

the detailed outcomes of this study with those from previous 

studies, we discuss the balance between the accuracy and 

consistency of parallel ACOs for TSPs in an effort on guiding 

the future studies in this emerging area of research and 

applications. 

In the next section of the paper we briefly describe the 

processes of the metaheuristic ACO algorithm for TSPs with 

necessary modifications in applications. The MapReduce 

framework was then introduced to convert a traditional 

sequential ACO into a parallel ACO. Our simulation settings 

are described, and simulation results of using both ACO 

algorithms used to solve Eil51, Eil76 and KroA100 are 

presented. Based on these results, comparisons and 

discussions are then made with the outcomes of previous 

studies. Conclusions are drawn in the the last section of this 

paper. 

 

II. SEQUENTIAL METAHEURISTIC ACO ALGORITHM FOR 

TSPS 

Since the 1990s, many ACO algorithms have been devised 

to solve various optimization problems including TSPs, such 

as the Ant System (AS), Max-Min Ant System (MMAS) and 

Ant Colony System (ACS) [11]-[13]. These attempts can be 

generalized as a metaheuristic algorithm for TSPs, which is 

shown in Algorithm 1. 

 
Set parameters, initialize pheromone trails 

while termination condition not met do 

Construct AntSolutions (AS) for TSP 

Apply LocalOptimalOperator (optional) 

Update Pheromones 

endwhile 

Terminate with AS as the solution 

Algorithm 1. The metaheuristic ACO algorithm used for TSPs. 

 

After initialization, the metaheuristic algorithm iterates 

over three phases; in each iteration, a number of solutions are 

constructed by the ants; these solutions are then improved 

through a local optimal operator and finally, the pheromone is 

updated. 

Different mathematical models have been proposed to 

control this metaheuristic process, but the backbone is around 

the following main controllers. 

 In construction of a solution, the ants select the next city to 

be visited through a stochastic mechanism. The probability 

for ant k in city i to move to the next city j is determined by 

 

  
                     (1) 

 

where Sk is the intersection of the candidate list of city i and 

the set of cities that ant k has not visited yet, α and β control 

the relative importance of the pheromone versus the heuristic 

information 

ijd
ij
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 , which depends on the distance dij 

between cities i and j, and ij is the pheromone associated with 

the path joining cities i and j. 

 For the next iteration, the pheromone values ij are updated 

by all the m ants that have built a solution at the end of 

current iteration by 
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where  is the evaporation rate and
k

ij is the quantity of 

pheromone laid on the edge (i, j) by ant k expressed as 

 

/       if  ant visited edge (  in its tour

0             otherwise,

k

ij

Q L k i, j) ,
k


  



    (3) 

 

where Q is a constant and Lk is the length of the tour 

constructed by ant k. 

The probability-based stochastic controller (1) has been 

proven prone to stagnation at local maxima when being used 

alone. Therefore, even though stated as optional, various local 

optimal operators have been incorporated with the basic ACO 

so as to further improve the performance of the ACOs [8]-[10]. 

However, the more sophisticated the local optimal operator, 

the slower the whole ACO process. Particularly for sequential 

ACOs, a sophisticated local optimal operator may lead to a 

higher quality of solution to TSPs, but it prolongs the process 

significantly, especially for large TSPs. 

As our main goal is to compare the performance between 

the sequential and parallel ACO algorithms used for TSPs, 

large TSPs and sophisticated local optimal operators were not 

selected in this study to avoid the obvious bias against 

sequential ACO algorithms. In fact, Eil51, Eil76 and 

KroA100 were selected because these cases are within the 

range that sequential ACO algorithms have performed best 

[8], [9]. 

As ACOs are prone to local maxima, as-observed in many 

existing studies [9], [10], [19], we make a small change to the 

basic ACO for TSPs in Algorithm 1 to deal with such 

stagnation. In the probability-based stochastic controller (1), 

instead of directing ant k in city i to next city j according to the 

highest probability k
ijp , we make a pool of three potential 

cities with the three highest probability k
ijp  and direct ant k in 

city i to next city j by a random pick from the pool. Such a 
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simple modification to the basic ACO should diversify the 

search performed by subsequent ants during the iteration to 

some extent, which should reduce the likelihood for several 

ants to produce identical solutions in the same iteration, hence 

improving the stagnation at the local maxima. We call this 

modified algorithm the Random on Best Probability ACO or 

RBPACO. The flowchart of this sequential RBPACO is 

presented in Fig. 1. 
 

 
Fig. 1. The flowchart of the sequential RBPACO algorithm used for TSPs. 

 

III. MAPREDUCE FRAMEWORK AND THE PARALLEL ACO 

ALGORITHM FOR TSPS 

MapReduce is a distributed computing framework 

proposed by Google in 2004 [20], [21]. MapReduce consists 

of two major procedures called the Map Stage and the Reduce 

Stage, which are connected by other linking services, as 

illustrated in Fig. 2. 

In the beginning, the input is split into a number of parallel 

parts (or Splits), which are then fed to the Map process that 

performs business processing such as sorting, filtering and 

relisting, assisted by linking services (or Shuffle) to generate 

concurrent Map tasks. All independent Map tasks are 

transferred to the Reduce Stage for further processing, 

including merging the results with the same key carried from 

Map tasks, and outputting the final result. 
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Fig. 2. The operational flowchart of the MapReduce framework. 

The sequential RBPACO algorithm used for TSPs can be 

converted to a parallel RBPACO algorithm fitting to the 

MapReduce framework. Fig. 3 shows the operational 

flowchart of the converted parallel RBPACO algorithm in 

MapReduce. Different tasks are performed at each of these 

steps. 

 

 
Fig. 3. The flowchart of the parallel RBPACO algorithm used for TSPs in 

MapReduce. 

 

 In the initialize step, the specified data files are fetched 

into the systems and all the required parameters for the 

ACO-TSP are initialized. This is a part of the Map Stage. 

 The Map step decomposes the information of the involved 

cities and ties each city with its coordinates. This is also a 

part of the Map Stage. 

 The Combine step computes distances between any two 

cities and creates the sorted city lists for individual cities. 

This is also a part of the Map Stage. 

 The Reduce step coordinates the execution of the 

RBPACO on concurrent processors for individual ants 

until the end of the entire iteration with the optimum output, 

which also marks the end of the Reduce Stage. 

 

IV. EXPERIMENTAL SETTINGS AND SIMULATION RESULTS 

Both the sequential and parallel RBPACO algorithms were 

implemented using Java with JDK1.6. The parallel RBPACO 

was built on Hadoop-1.2.1 as a virtual cloud computing 

platform for concurrent processing. The hardware was a 

Lenovo R680 server with 4 × 8 CPU cores and a total memory 

of 1024 GB. 

The three TSPs, Eil51, Eil76 and KroA100, are selected 

from TSPLIB [22]. The parameters used for the individual 

problems are listed in TABLE I. Note that for leveling the 

ground for comparison, we deliberately set most parameters 

the same and use an ant/city load factor of 1 in all cases. This 

should ensure that exactly one ant starts at one city during the 
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parallel processing, hence to eliminate the unevenness created 

by using different load factors for the different cases in the 

previous studies. 
 

TABLE I: THE PARAMETERS USED FOR SIMULATING RBPACO FOR TSPS. 

TSP n m   q0 0  Q m/n load 

Eil51 51 51 1 2 0.5 0.1 0.1 100 1 

Eil76 76 76 1 2 0.5 0.1 0.1 100 1 

KroA100 100 100 1 2 0.5 0.1 0.1 100 1 

 

For both the sequential and parallel RBPACOs, the 

maximum number of iterations was set to 300 for all three 

cases, and each case was repeated 10 times for 

self-verification and assessing the quality of the solutions later. 

All the ants were placed in the same city at the beginning of 

the execution for the sequential RBPACO, whereas one ant 

was placed in each city to start the parallel processing. The 

statistical results of our simulations for both algorithms are 

given in Table II and Table III. Note the relative errors of the 

actual solutions were normalized with their corresponding 

known global optimal values. 

 
TABLE II: THE SIMULATION FOR THE SEQUENTIAL RBPACO (10 RUNS PER CASE) 

TSP Solution (relative error %) Time (ms) Global 

optimal  Best Worst  Mean Best Worst Mean 

Eil51 436 (2.3%) 452 (6.1%) 442 (3.8%) 3243 3293 3267 426 

Eil76 555 (3.2%) 579 (7.6%) 565 (5.1%) 10344 10735 10474 538 

KroA100 22390 (5.2%) 23387 (9.9%) 22796 (7.1%) 23354 23354 23354 21282 

 
TABLE III: THE SIMULATION FOR THE PARALLEL RBPACO (10 RUNS PER CASE) 

TSP Solution (relative error %) Time (ms) Global optimal  

Best Worst  Mean Best Worst Mean 

Eil51 427 (0.2%) 435 (2.1%) 431 (1.2%) 2686 2810 2704 426 

Eil76 540 (0.4%) 551 (2.4%) 545 (1.3%) 5692 5818 5748 538 

KroA100 21296 (0.1%) 22165 (4.1%) 21576 (1.4%) 11687 11744 11707 21282 

 

V. COMPARISON AND DISCUSSION 

A. Computing Efficiency 

All the previous studies show that parallel ACOs are faster 

than sequential ACOs for TSPs [14]-[17]. Although there 

were mismatched settings between the sequential and parallel 

ACO algorithms in these studies, the general trend points to 

the fact that the larger the TSP, the more efficient the parallel 

computing. The outcome from our study not only reaffirms 

this general trend, but also allows a quantitative comparison 

to be made on a levelled ground between the two algorithms. 

 

 
Fig. 4. Aomparison of the computing cost between the sequential and 

parallel RBPACOs (time saved shown as a percentage). 

 

For Eil51, the smallest TSP among the three cases, the 

parallel ACO saved only 17% of computing time over the 

sequential ACO (Fig. 4). This small difference is likely due to 

the extra overhead required by the MAP Stage in the parallel 

paradigm. By increasing the size of the TSP to 76 (Eil76), a 

45% saving in the computing time over the sequential ACO 

was achieved by the parallel ACO, and a 50% saving in the 

computing time was even recorded for a TSP size of 100 in 

KroA100. However, if we notice that the computing time of 

the sequential ACO for KroA100 was fixed at 23354 ms after 

300 iterations for each run (TABLE II), such a comparison for 

larger TSPs seems meaningless. This indicates that larger 

TSPs may be beyond the reach of (some) sequential ACOs in 

terms of the computing efficiency. 

B. Quality of Solutions 

Some previous studies simply assume that the quality of the 

solutions from obtained both sequential and parallel ACOs 

are similar [14], [16] whereas others showed parallel ACOs 

produced better solutions than sequential ACOs, at least 

among the best solutions [15], [17]. Even in the latter cases, 

the comparison was based on the mismatched settings 

between the sequential and parallel ACO algorithms. 
 

 
Fig. 5. A comparison of the relative accuracy of the solutions obtained from 

the sequential and parallel RBPACOs used for TSPs. 
 

Our results confirm that the parallel RBPACO produced 

consistently better solutions than the sequential one did, 

though both did not reach the global optimal solution in 300 

iterations used for Eil51, Eil76 and KroA100 (TABLES II & 

III). From the 10 repeated runs, the best solutions from the 

parallel algorithm used for Eil51, Eil76 and KroA100 are all 

within an error of 0.5% to the global optimal solutions, 

respectively and even the worst ones are around 4% or less, 

with an average error of less than 1.5% (TABLE III). On the 

contrary, the best obtained from the sequential algorithm is 

with an error of about 2.3% for the smallest TSP (Eil51) and 
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the worst is around 10% for the largest TSP (KroA100) 

(TABLE II). The most convincing fact is that the best 

solutions to the three TSPs obtained from the sequential ACO 

are still worse than the worst solutions to the same cases 

obtained from the parallel algorithm (Fig. 5). 

In the parallel ACO, each of the cities has one ant to search 

its own path and thus, all the ants are more likely to go through 

a much larger variety of routes, a case of from-many-to-many, 

when compared with the situation of the sequential ACO, 

where all the ants begin their search from the same city, a case 

of from-one-to-many. Thus, the parallel algorithm should, in 

theory, return a better solution than or at least the same as the 

sequential one can does under the comparable conditions. 

C. Accuracy and Consistency of the Parallel ACO 

In our experiments, the known global optimal solution to 

any of the three cases was not reached in 10 repeated runs of 

the parallel RBPACO within 300 iterations each run. The best 

solution for Eil51 is within an error range of 0.2-2.1% to the 

global optimal with an average error of 1.2%; that for Eil76 is 

within an error range of 0.4-2.4% to the global optimal with 

an average error of 1.3%; that for KroA100 is within an error 

range of 0.1-4.1% to the global optimal with an average error 

of 1.4%. In KroA100, the second worst solution has an error 

of 1.9%, meaning the worst solution with an error of 4.1% 

may be an exception (Fig. 6). Nonetheless, the average errors 

of these three cases show high consistency at around 1.3%, 

regardless of the size of the TSP. In our cases, we found that at 

least one best solutions within an error of 0.5% to the global 

optimal solution was reached in every three repeats for all 

three cases, a very high level of consistency. 
 

 
Fig. 6. The relative accuracy of the solutions obtained from the parallel 

RBPACO. 
 

We indeed tried to simulate Eil51, Eil76 and KroA100 

using the parallel RBPACO with 800 iterations and found the 

global optimal solutions occasionally. However, the running 

time was more than doubled over that found for 300 iterations. 

Other studies have reported that the global optimal is reached 

for several TSPs using various hybrid algorithms combining 

ACO with GA [8], [9], but the running time will be 

significantly increased. In real applications, the decision 

becomes if it is worth of spending more time in the hope of 

getting the global optimal over quickly finding a near-best 

solution to a given problem. 

 

VI. CONCLUSIONS 

It is reaffirmed that the parallel algorithm is superior in 

computing efficiency over the sequential algorithm, 

particularly for larger TSPs. However, such a comparison 

may become meaningless if the size of TSPs keeps increasing. 

This is because large TSPs may be beyond the feasibility of 

applying sequential ACO algorithms in solving these 

problems. It is confirmed that the parallel ACO produces 

more accurate solutions than the sequential ACO, though both 

did not reach global optimal solutions within 300 iterations. 

The more convincing fact is that the worst solution among the 

10 repeated runs obtained from the parallel ACO is still better 

than the best solution obtained from the 10 repeated runs in 

the sequential ACO. In 10 repeated runs, the mean best 

solutions of these three cases are around 1.3% to their global 

optimal solutions regardless of the size of the TSP. At least 

one best solution is within an error of 0.5% to the global 

optimal solution in every three repeats for all three cases, 

which is remarkably consistent. 
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