

Abstract—This paper is intended as a follow up to a previous

study of ours - Financial Time Series Forecasting - A Machine

Learning Approach. The aforementioned study evaluates

traditional machine learning techniques for the task of financial

time series forecasting. In this paper, we attempt to make use of

the same base dataset, with the difference of making use of a

novel branch of machine learning techniques known as Deep

Learning. These techniques have been introduced with the

objective of moving Machine Learning closer to one of its

original goals: Artificial Intelligence. These deep architectures

are known to excel in tasks such as image and text recognition,

but have not been exploited as much in the field of finance. In

particular, for this study we will be making use of Convolutional

Neural Networks (CNNs) to forecast the next period price

direction with respect to the current price. We achieve an

accuracy of 65% when forecasting the next month price

direction and 60% for the next week price direction forecast.

Whilst these results are anything but random, we are not able to

match or surpass results obtained by industry leading

techniques such as Logistic Regression and Support Vector

Machines.

Index Terms—Data science, deep learning, fintech, machine

learning, stock market.

I. INTRODUCTION

The Stock Market is known for its volatile and unstable

nature. A particular stock could be thriving on one day and

struggling on another. Big money is made from selling stocks

when they are at their highest and buying when they are at

their lowest. The logical question would be: “What Causes

Stock Prices To Change?”. At the most fundamental level, the

answer to this would be the demand and supply for a certain

stock affects the stock price. In reality, there are many

theories as to why stock prices change, but there is no single

theory that explains all, simply because not all stocks are

identical, and one theory that may apply for today, may not

necessarily apply for tomorrow.

Since the introduction of ANNs, other techniques such as

Support Vector Machines have been given more importance

importance and have achieved similar and better results in a

shorter timeframe. However, Deep learning has been getting a

considerable amount of attention in recent years. Namely

Google, Microsoft and Facebook are investing heavily in this

area, through a number of open source projects. Modelling

complex problems using ANNs necessitates the use of many

layers due to the nature of the problem at hand. The

Manuscript received July 24 2017; revised November 3, 2017.

The authors are with the Department of Artificial Intelligence, University

of Malta, Malta (e-mail: alexiei.dingli@um.edu.mt,

karl.sant-fournier.10@um.edu.mt).

introduction of deep learning techniques facilitates training of

these deep networks through a number of approaches. There

exist a number of deep architectures such as Deep Belief

Networks, Recurrent Neural Networks and Convolutional

Neural networks amongst others. For the purpose of this study,

we will be exploiting CNNs for classifying the next period

price direction.

II. LITERATURE REVIEW

In the field of deep learning, CNNs are inspired by the

visual cortex and are one of the most important deep learning

models. Since CNNs are based on the architecture of the

visual cortex, they are highly effective in tasks such speech

and Image classification [1]. Yan LeCunn is said to be one of

the fathers of deep learning, mostly due to his work with a

pioneering 7-Level CNN known as LeNet-5 in the year 1998

[2]. His work was applied by various banks in order to

recognise hand written digits on cheques. In a CNN, neurons

are arranged in such a way to have overlapping regions [3]

which allow for a local relationship between their

adjacent/neighbour nodes. The network consists of a

convolutional, pooling, ReLU, fully connected and loss layers

(See Fig. 1). Since the training of CNNs is computationally

expensive, a number of researchers have exploited the use of

GPU technology for parallel computation.

Moving over to the FinTech industry, [4] uses CNNs to

make predictions for stock price changes based on the image

of the time series plot. The author also attempts to colour code

the time series, however the results of this approach were not

positive. On the other hand, [5] use CNNs in a bank

telemarketing case study, whereby the aim is to predict

whether a customer will take up a particular marketing

campaign based on a number of numeric and nominal features

per customer. The results for this study yield an impressive

76.70% accuracy, which yields the highest accuracy amongst

7 classifiers. In order to incorporate external features in the

forecasting model, [6] use a deep convolutional neural

network to model short and long term influences of events of

stock price movements. Results from this study show that

CNNs can capture longer-term influence of news events than

standard feed-forward networks.

Many researchers have taken an SVM approach to

Financial time series forecasting. Whilst still using the CNN

layered architecture, [7] demonstrates the benefit of replacing

the softmax activation function with a linear support vector

machine. The learning minimizes a margin-based loss instead

of the cross-entropy loss. The author manages to achieve

small but consistent improvements in typical deep learning

problems such as MNIST and CIFAR-10.

Financial Time Series Forecasting – A Deep Learning

Approach

Alexiei Dingli and Karl Sant Fournier

International Journal of Machine Learning and Computing, Vol. 7, No. 5, October 2017

118doi: 10.18178/ijmlc.2017.7.5.632

mailto:karl.sant-fournier.10@um.edu.mt)

Fig. 1. System setup for bank telemarketing marketing study [5].

III. METHODOLOGY

A. Feature Extraction

As in any machine learning problem, once basic knowledge

in the subject area is acquired, the next step is identifying the

features to be used for our predictive model. At first glance,

one may note that the price of a stock is affected by a number

of phenomena. This section delves into the various data

sources used for experimentation, including information

relating to the stock itself along with other external data.

1) Historic prices & technical indicators

Historic stock prices are a good place to start, given that the

data is publicly available through a number of sources. One of

the most widely used mediums is yahoo finance, which

provides unlimited historic daily prices in csv format on

demand. A python API known as yahoo-finance is used to

retrieve these historic prices from 2003 till 2016, which are

then stored in our relational database for future use. These

historic prices are then used to formulate what are known as

technical indicators. These indicators consist of various

financial equations using historic prices which are used to

paint a clearer picture as to the condition of the company for

that point in time. Investopedia describe these indicators as

any class of metrics whose value is derived from generic price

activity. Technical indicators evaluate price levels, direction

and momentum amongst others. Rather than developing

custom functions for each indicator, a library called TA-Lib

was identified. This library openly provides 200 technical

indicators, and is designed in the form of an open source API.

Given that python is the language of choice for

experimentation, a Python wrapper for this API is used. The

technical indicators used in our approach include a

combination of momentum, volume, volatility and cycle

based indicators. As their name suggests, each class of

indicator focuses on a different aspect of market activity.

2) Currency exchanges

When investors purchase foreign equity, they are actually

placing a bet on two elements: one on the stock itself and the

other on the currency the stock trades in [8]. In order to

evaluate this hypothesis, we collect a number of the most

popular exchange rates to incorporate within our predictive

model. Currencies were collected from yahoo finance and

Quandl data repository, and these include: EUR/USD,

GBP/USD and BITCOIN/USD. As one may note, USD was

taken as the benchmark since it is one of the most prominent

currencies in the global stock exchange.

3) World indices

Investopedia describes an index as a measure of change in a

securities market [9]. Indices consist of a hypothetical

portfolio containing a group of securities that generally

represent the performance of the overall market. Typical

examples of such indices include the Standard & Poor’s 500

(S&P500), Dow Jones Industrial Average (DJIA) and the

Nasdaq Composite Index (NASDAQ-100).

4) Commodities

A number of popular commodities were selected as

features for our experiments. Prices for Gold and Oil

commodities are retrieved from the Quandl data repository,

store them in our relational database and incorporate them

into our dataset as time series data.

B. Feature Selection

Now that various data sources and features have been

identified, the next step is to integrate them with our dataset

and evaluate which are most important for the problem at

hand. In total, we have over 70 features comprising of

technical indicators (Overlap, Volume, Momentum,

Volatility and cycle), currency exchanges, commodity prices

and world in- dices. Rather than passing all features to our

predictive model we use feature selection techniques in order

to statistically identify the most relevant features for the data

at hand.

C. Dataset Balancing, Training, and Test Split

We will be utilising data from 2003 till 2013 (11 years) as

our training set and 2014 till 2016 (3 years) as our test set.

This ensures a substantial amount of data for training,

whereby 11 years of stock movements should cover a wide

range of long and short term trends. The remaining three years

will be used for testing, this approach will ensure that we are

forecasting and calculating our evaluation metrics on unseen,

out-of-sample data.

D. Forecasting Model

After having tested a number of state of the art machine

learning algorithms in our previous paper, a deep learning

approach will be taken to solve the problem of financial time

series forecasting. Various techniques will be tested out,

involving different combinations of the features mentioned in

Section III.A. We will be making use of a convolutional

neural network as our deep learning classifier. Given the state

of the art results being achieved through these techniques we

expect to achieve similar or better results than those obtained

using traditional machine learning methods.

Our CNN model is designed and developed using the

TensorFlow. This open source library facilitates the training

of deep neural network infrastructures such as CNNs. This

CNN framework provided by TensorFlow is is primarily

based on softmax regression. Softmax is also known as

multinomial logistic regression. In standard logistic

regression, classification is made using 1 or 0. On the other

hand, the softmax function outputs probabilities of the

example belonging to each class.

By means of this network, we aim to achieve similar, if not

International Journal of Machine Learning and Computing, Vol. 7, No. 5, October 2017

119

better results than those achieved by algorithms such as

Random forest and Support vector machines. We firstly

discuss the various transformations done to the data for it to

be in a format accepted by the network, we highlight the main

elements of the network setup and lastly we explore the

various permutations and forms the network can take, in order

to fine tune and increase accuracy

1) Data preparation for CNN

Firstly, the base dataset that we make use of here, is

identical to that was utilised for previous classification

experiments, however with some minor transformations.

Given that CNNs are designed primarily for images, we

transform our dataset into a square-like shape of 8x8,

representing in 64 features. With regards to our output,

TensorFlow works comfortably using one-hot vectors. This

representation involves having an multi dimensional array

consisting of 1s or 0s, the index on which the 1 is found

represents a particular outcome. The below example

illustrates how our output is formulated:

 Price Movement Direction ’Up’: [1,0]

 Price Movement Direction ’Down’: [0,1]

2) Weights initialisation

Weights were initialised to a small positive value since we

are using the ReLU (rectified linear unit) function as

initialising this to 0, may result in so called ’dead neurons’.

3) First convolutional layer

We will be computing 32 features for each 2×2 patch with

a stride of 1 so that we output a total of 8×8×32 features. In

order to ensure that we do not drop out any features during

convolution, we apply ’SAME’ padding. A bias variable has

also been included for each output channel. To simplify the

information from the convolutional layer, we then apply max

pooling to the first convolution, reducing the shape down to 4

×4×32.

4) Second convolutional layer

The second convolutional layer will work in a similar

manner to the first, however this time, rather than having 1 in-

put, this layer will now have 32 inputs in order to cater for the

output of the first layer. From these inputs we apply

convolution and compute 64 features for each 2×2 patch.

Padding is applied for this layer too, so as to not drop any

features. The shape after applying the convolution is now

have 4×4×64 features. We then apply max pooling, and

reduce it down to 2×2×64.

5) Fully Connected Layer

Now that, through the two convolutional and pooling layers,

the image size has been reduced to 2×2, we add a fully

connected layer to our network. This layer connects every

single neuron from the max-pooled layer to every one of the

possible output neurons (the ranking threshold, One-hot

vector bits). Fig. 2 illustrates the network we have just

described in graphical format.

6) Training

Our training data is that of approximately 80,000 per

industry for the daily dataset, due to the size of the data,

training will be done in batches of 50. The number of steps

required for training is calculated by dividing the length of the

dataset by the batch size (in our case, 50). During the training

process, the program will display the training ac- curacy and

loss on the training data with every batch. This will serve us as

an indicator, as to whether the networks accuracy is

increasing/decreasing with the number of training examples

fed into it.

7) Calculating accuracy

Once the model is finished training on the examples, the

accuracy on the test data is computed by checking if the

argmax of the predictions and the testing rankings are equal.

Argmax is a function provided by the TensorFlow library,

which returns the index of the highest entry in a tensor. In our

case it is designed to return the index of the one-hot vector

(where the ’1’ lies in the array). If the argmax for both the

predictions and correct outputs equal, the ’equal’ function

will return a ’1’, meaning the model correctly predicted the

ranking threshold for the image. This will result in an array of

1s and 0s as booleans, each value in the array represents a test

example, indicating whether the prediction is correct (’1’ if

value is correct) or not (’0’ if value is not correct). From this

array, we can then retrieve the accuracy by calculating the

mean. (If the array is [0, 0, 1, 0], the resulting accuracy is

0.25).

8) Fine tuning the network

Once the base network described above is functioning, and

we hope to achieve results which are better than random

chance, the next step is to fine tune and optimise the model in

order to better the accuracy and efficiency. A number of

approaches are taken in order to accomplish such a task.

These include:

 Adjusting the depth of the network

 Adjusting the Learning rate

 Adjusting the size of the local receptive area

 Adjusting the number of features for each convolution

Fig. 1. Structure of Approach taken for CNN.

International Journal of Machine Learning and Computing, Vol. 7, No. 5, October 2017

120

IV. RESULTS AND EVALUATION

As described in the methodology, for our CNN

implementation, we utilise the same features as before but

structure them in such a way to form an 8x8 matrix to be fed

into the network. After running a number of tests using the

network setup described, it was noted that accuracy fluctuates

from 54% to 64% for the monthly dataset. Training and test

sets remained identical throughout these tests, after

investigation it was noted that these fluctuations originate

from the random initialisation of the weights for each

convolutional layer. Due to this, we will be performing 10

runs for any alterations made to the network structure, and we

will take an average accuracy over these 10 runs for

comparison. In order to optimise the network, we alter the

network parameters by means of adding or removing layers,

adjusting the receptive fields for our convolutions, modifying

the number of features that are extracted from each

convolution and by adjusting the learning rate. We start by

utilising the CNN approach for the monthly dataset, this was

chosen given that it is the most ’predictable’ classifier with a

substantial number of examples. We are aware that the

architecture of CNNs and any deep learning algorithm thrives

when utilised on a substantially sized dataset.

A. Monthly Dataset

We start out by testing the Monthly Tech Dataset, with the

model as described in the methodology, whereby we achieve

an overall accuracy of 56%. This result does not match or

surpass the 69% obtained by the MLP classifier. We assume

that this discrepancy is originating from the more complex

architecture of the CNN. In order to attempt to improve on the

56% accuracy obtained by the original CNN model, we

conduct a number of tests, each time altering the various

parameters and settings of the CNN.

We attempt to reduce the complexity of the CNN by

reducing the number of layers from two to a single

convolutional layer, through which we see accuracy increase

substantially to 62%. This increase in accuracy due to a

decrease in complexity substantiates our initial theory

whereby we assume that the Multi Layer Perceptron achieves

better results through its simpler structure. The second

element tweaked was that of the learning rate, whereby the

initial model had a learning rate of 0.001. We attempt to

higher and lower the learning rate to 0.1 and 0.001, achieving

61% and 53% respectively, both settings not achieving better

results than the initial 0.001 learning rate parameter. The

adjusting of the learning rate has been a subject to many

different opinions, some argue that a higher learning rate may

“jump over” the global minimum, whilst others argue that

lower learning rates may “get stuck” at local minima, failing

to reach the overall, global minimum. Through

experimentation and a series of trial and error, we deem 0.001

to be the optimal learning rate for this particular task.

We move on to modify the number of features that are

extracted from each 2×2 patch. These features are a result of

filters in the form of mathematical calculations designed to

extract non-linearities from the data. The optimal setup

depends on the problem at hand, however we opt to start with

the features for each patch as indicated on the TensorFlow

website and alter accordingly. Given that the initial model was

set with 32 features for each patch, we start by doubling the

features to 64, where we see an improvement of 1%. Given

this result we continue to double the features until the

accuracy saturates at 65% for 256 features for each 2×2 patch.

By means of this test we achieve an overall increase of 4%

accuracy by increasing the number of features through a series

of computations, indicating that CNNs thrive with datasets

containing a substantial number of features (such as an image).

Furthermore, from an initial 2×2 receptive field setup, we

attempt to use a 4×4 patch setup, this however does not

improve on the accuracy obtained earlier, as it drops down by

1%.

B. Weekly Dataset

We now move on to evaluate the CNN classifier for the

weekly dataset. This dataset was chosen given that it is the

second most predictable set with a considerable amount of

records. Quarterly and Yearly sets have a small number of

examples when compared.

The Weekly dataset is evaluated with the model as de-

scribed in the methodology, whereby we achieve an overall

accuracy of 55%. This result does not match or surpass the

67% obtained by the Logistic Regression classifier. In order

to attempt to improve on the 55% accuracy we attempt a

number of tests, each time altering the various parameters and

settings of the CNN.

We attempt to reduce the complexity of the CNN by re-

moving the second convolutional layer, through which we see

accuracy increase substantially to 59%. The second element

tweaked was that of the learning rate, the initial model had a

learning rate of 0.001. We attempt to higher and lower to

learning rate to 0.1 and 0.001, achieving 55% and 54%

respectively, both settings not achieving better results than the

initial 0.001 learning rate parameter.

We move on to modify the number of features that are

extracted from each 2×2 patch. The initial model was set with

32 features for each patch, we start by doubling the features to

64, where we see an improvement of 1% accuracy. Given this

result we continue to double the features until the accuracy

saturates at 60% for 256 features for each 2×2 patch. From a 2

×2 receptive field setup, we evaluate a 4×4 patch setup, this

however foes not improve on the accuracy obtained earlier, as

it drops down by 2%.

TABLE I: OPTIMAL CNN SETUP

Element Value

Number of Layers 1

Learning Rate 0.001

Dimensions of Receptive Fields 2x2

Feature for each Convolution 256

As one can note, the general flow of the alterations for the

weekly dataset are in line with those of the Monthly dataset,

whereby the changes alterations that had a positive effect in

the monthly dataset, also had a positive effect on the weekly

dataset. Our evaluation for the weekly dataset is in line with

what was discussed for the monthly dataset, whereby we

presume that our problem favours a less complex model with

a large number of features. Having said this, for both

periodicities we were not able to match or surpass the 69%

International Journal of Machine Learning and Computing, Vol. 7, No. 5, October 2017

121

and 67% for the monthly and weekly datasets respectively,

hence further research is recommended. We tabulate the

optimal CNN parameter configuration which applies for both

periodicities in Table I.

V. CONCLUSIONS

Many deem stock market fluctuations to be random. How-

ever, although the stock market is volatile and subject to a vast

number of elements, through our experimentation and

evaluation we have shown that fluctuations are far from ran-

dom. With the use of a convolutional neural network, we

achieve an accuracy of 65% when forecasting the next month

price direction and 60% for the next week price direction

forecast. Although other techniques such as Logistic

Regression and Support Vector Machines achieve slightly

better results in our previous paper, we have shown that deep

networks can be configured for the task of financial time

series forecasting. Due to the complexity of these deep net-

works, and sensitivity towards the various parameters, it is

possible that by means of further feature engineering and

further configuration of network setup, CNNs may

outperform the aforementioned state of the art classifiers as

was proven in other tasks such as speech and image

recognition.

REFERENCES

[1] Google Brain Team. (February 2017). Deep MNIST for experts.

[Online]. Available:

https://www.tensorflow.org/versions/r0.9/tutorials/mnist/pros/index.h

tm

[2] Y. LeCun et al., “Gradient-based learning applied to document

recognition,” IEEE, 1998.  

[3] Y. LeCun, “Convolutional neural networks (LeNet), deep learning 0.1

documentation,” University of Montreal, 2013.  

[4] A. Siripurapu, Convolutional Networks for Stock Trading, Stanford

University Department of Computer Science, 2014

[5] K. H. Kim, et al., “Predicting the success of bank telemarketing using

deep convolutional neural network,” in Proc. 7th International

Conference of Soft Computing and Pattern Recognition (SoCPaR),

Fukuoka, 2015.

[6] X. Ding, et al., “Deep learning for event-driven stock prediction,” in

Proc. the Twenty-Fourth International Joint Conference on Artificial

Intelligence, 2015.

[7] Y. Tang, Deep Learning Using Linear Support Vector Machines,

Department of Computer Science, University of Toronto, Toronto,

Ontario, Canada, 2013.

[8] B. Glassman. (February 2017). Currency’s impact on your portfolio:

Five things you need to know now. [Online].  Available:

https://www.forbes.com/sites/advisor/2012/10/03/currencys-impact-o

n-your-portfolio-five-things-you-need-to-know-now/#71d3bdec5dcb

[9] Investopedia. (January 2017). Index. [Online]. Available:

http://www.investopedia.com/terms/i/index.asp

Alexiei Dingli is the head of the Department of

Artificial Intelligence within the Faculty of ICT at the

University of Malta. He is also one of the founder

members of the ACM student chapter in Malta, and a

founder member of the Web Science Research, a

founder member of the International Game Developers

Association (IGDA) Malta and of the Gaming group at

the same University. He pursued his PhD on the

Semantic Web at the University of Sheffield in the UK

under the supervision of Professor Yorick Wilks.

Karl Sant Fournier is a bachelor’s degree graduate in

business and computing and is a currently a part time

student reading for a masters degree with the

Department of Artificial Intelligence. He works full

time as a business intelligence developer at a local

Bank. Given his knowledge of the financial industry

he is focusing his thesis on financial time series

forecasting, using artificial intelligence techniques.

International Journal of Machine Learning and Computing, Vol. 7, No. 5, October 2017

122

