
  

 

Abstract—This paper is intended as a follow up to a previous 

study of ours - Financial Time Series Forecasting - A Machine 

Learning Approach. The aforementioned study evaluates 

traditional machine learning techniques for the task of financial 

time series forecasting. In this paper, we attempt to make use of 

the same base dataset, with the difference of making use of a 

novel branch of machine learning techniques known as Deep 

Learning. These techniques have been introduced with the 

objective of moving Machine Learning closer to one of its 

original goals: Artificial Intelligence. These deep architectures 

are known to excel in tasks such as image and text recognition, 

but have not been exploited as much in the field of finance. In 

particular, for this study we will be making use of Convolutional 

Neural Networks (CNNs) to forecast the next period price 

direction with respect to the current price. We achieve an 

accuracy of 65% when forecasting the next month price 

direction and 60% for the next week price direction forecast. 

Whilst these results are anything but random, we are not able to 

match or surpass results obtained by industry leading 

techniques such as Logistic Regression and Support Vector 

Machines.  

 
Index Terms—Data science, deep learning, fintech, machine 

learning, stock market. 

 

I. INTRODUCTION 

The Stock Market is known for its volatile and unstable 

nature. A particular stock could be thriving on one day and 

struggling on another. Big money is made from selling stocks 

when they are at their highest and buying when they are at 

their lowest. The logical question would be: “What Causes 

Stock Prices To Change?”. At the most fundamental level, the 

answer to this would be the demand and supply for a certain 

stock affects the stock price. In reality, there are many 

theories as to why stock prices change, but there is no single 

theory that explains all, simply because not all stocks are 

identical, and one theory that may apply for today, may not 

necessarily apply for tomorrow.  

Since the introduction of ANNs, other techniques such as 

Support Vector Machines have been given more importance 

importance and have achieved similar and better results in a 

shorter timeframe. However, Deep learning has been getting a 

considerable amount of attention in recent years. Namely 

Google, Microsoft and Facebook are investing heavily in this 

area, through a number of open source projects. Modelling 

complex problems using ANNs necessitates the use of many 

layers due to the nature of the problem at hand. The 
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introduction of deep learning techniques facilitates training of 

these deep networks through a number of approaches. There 

exist a number of deep architectures such as Deep Belief 

Networks, Recurrent Neural Networks and Convolutional 

Neural networks amongst others. For the purpose of this study, 

we will be exploiting CNNs for classifying the next period 

price direction.  

 

II. LITERATURE REVIEW 

In the field of deep learning, CNNs are inspired by the 

visual cortex and are one of the most important deep learning 

models. Since CNNs are based on the architecture of the 

visual cortex, they are highly effective in tasks such speech 

and Image classification [1]. Yan LeCunn is said to be one of 

the fathers of deep learning, mostly due to his work with a 

pioneering 7-Level CNN known as LeNet-5 in the year 1998 

[2]. His work was applied by various banks in order to 

recognise hand written digits on cheques. In a CNN, neurons 

are arranged in such a way to have overlapping regions [3] 

which allow for a local relationship between their 

adjacent/neighbour nodes. The network consists of a 

convolutional, pooling, ReLU, fully connected and loss layers 

(See Fig. 1). Since the training of CNNs is computationally 

expensive, a number of researchers have exploited the use of 

GPU technology for parallel computation.  

Moving over to the FinTech industry, [4] uses CNNs to 

make predictions for stock price changes based on the image 

of the time series plot. The author also attempts to colour code 

the time series, however the results of this approach were not 

positive. On the other hand, [5] use CNNs in a bank 

telemarketing case study, whereby the aim is to predict 

whether a customer will take up a particular marketing 

campaign based on a number of numeric and nominal features 

per customer. The results for this study yield an impressive 

76.70% accuracy, which yields the highest accuracy amongst 

7 classifiers. In order to incorporate external features in the 

forecasting model, [6] use a deep convolutional neural 

network to model short and long term influences of events of 

stock price movements. Results from this study show that 

CNNs can capture longer-term influence of news events than 

standard feed-forward networks.  

Many researchers have taken an SVM approach to 

Financial time series forecasting. Whilst still using the CNN 

layered architecture, [7] demonstrates the benefit of replacing 

the softmax activation function with a linear support vector 

machine. The learning minimizes a margin-based loss instead 

of the cross-entropy loss. The author manages to achieve 

small but consistent improvements in typical deep learning 

problems such as MNIST and CIFAR-10.  
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Fig. 1. System setup for bank telemarketing marketing study [5]. 

 

III. METHODOLOGY 

A. Feature Extraction 

As in any machine learning problem, once basic knowledge 

in the subject area is acquired, the next step is identifying the 

features to be used for our predictive model. At first glance, 

one may note that the price of a stock is affected by a number 

of phenomena. This section delves into the various data 

sources used for experimentation, including information 

relating to the stock itself along with other external data.  

1) Historic prices & technical indicators 

Historic stock prices are a good place to start, given that the 

data is publicly available through a number of sources. One of 

the most widely used mediums is yahoo finance, which 

provides unlimited historic daily prices in csv format on 

demand. A python API known as yahoo-finance is used to 

retrieve these historic prices from 2003 till 2016, which are 

then stored in our relational database for future use. These 

historic prices are then used to formulate what are known as 

technical indicators. These indicators consist of various 

financial equations using historic prices which are used to 

paint a clearer picture as to the condition of the company for 

that point in time. Investopedia describe these indicators as 

any class of metrics whose value is derived from generic price 

activity. Technical indicators evaluate price levels, direction 

and momentum amongst others. Rather than developing 

custom functions for each indicator, a library called TA-Lib 

was identified. This library openly provides 200 technical 

indicators, and is designed in the form of an open source API. 

Given that python is the language of choice for 

experimentation, a Python wrapper for this API is used. The 

technical indicators used in our approach include a 

combination of momentum, volume, volatility and cycle 

based indicators. As their name suggests, each class of 

indicator focuses on a different aspect of market activity.  

2) Currency exchanges 

When investors purchase foreign equity, they are actually 

placing a bet on two elements: one on the stock itself and the 

other on the currency the stock trades in [8]. In order to 

evaluate this hypothesis, we collect a number of the most 

popular exchange rates to incorporate within our predictive 

model. Currencies were collected from yahoo finance and 

Quandl data repository, and these include: EUR/USD, 

GBP/USD and BITCOIN/USD. As one may note, USD was 

taken as the benchmark since it is one of the most prominent 

currencies in the global stock exchange.  

3) World indices 

Investopedia describes an index as a measure of change in a 

securities market [9]. Indices consist of a hypothetical 

portfolio containing a group of securities that generally 

represent the performance of the overall market. Typical 

examples of such indices include the Standard & Poor’s 500 

(S&P500), Dow Jones Industrial Average (DJIA) and the 

Nasdaq Composite Index (NASDAQ-100).  

4) Commodities 

A number of popular commodities were selected as 

features for our experiments. Prices for Gold and Oil 

commodities are retrieved from the Quandl data repository, 

store them in our relational database and incorporate them 

into our dataset as time series data.  

B. Feature Selection 

Now that various data sources and features have been 

identified, the next step is to integrate them with our dataset 

and evaluate which are most important for the problem at 

hand. In total, we have over 70 features comprising of 

technical indicators (Overlap, Volume, Momentum, 

Volatility and cycle), currency exchanges, commodity prices 

and world in- dices. Rather than passing all features to our 

predictive model we use feature selection techniques in order 

to statistically identify the most relevant features for the data 

at hand.  

C. Dataset Balancing, Training, and Test Split 

We will be utilising data from 2003 till 2013 (11 years) as 

our training set and 2014 till 2016 (3 years) as our test set. 

This ensures a substantial amount of data for training, 

whereby 11 years of stock movements should cover a wide 

range of long and short term trends. The remaining three years 

will be used for testing, this approach will ensure that we are 

forecasting and calculating our evaluation metrics on unseen, 

out-of-sample data.  

D. Forecasting Model 

After having tested a number of state of the art machine 

learning algorithms in our previous paper, a deep learning 

approach will be taken to solve the problem of financial time 

series forecasting. Various techniques will be tested out, 

involving different combinations of the features mentioned in 

Section III.A. We will be making use of a convolutional 

neural network as our deep learning classifier. Given the state 

of the art results being achieved through these techniques we 

expect to achieve similar or better results than those obtained 

using traditional machine learning methods.  

Our CNN model is designed and developed using the 

TensorFlow. This open source library facilitates the training 

of deep neural network infrastructures such as CNNs. This 

CNN framework provided by TensorFlow is is primarily 

based on softmax regression. Softmax is also known as 

multinomial logistic regression. In standard logistic 

regression, classification is made using 1 or 0. On the other 

hand, the softmax function outputs probabilities of the 

example belonging to each class.  

By means of this network, we aim to achieve similar, if not 
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better results than those achieved by algorithms such as 

Random forest and Support vector machines. We firstly 

discuss the various transformations done to the data for it to 

be in a format accepted by the network, we highlight the main 

elements of the network setup and lastly we explore the 

various permutations and forms the network can take, in order 

to fine tune and increase accuracy  

1) Data preparation for CNN 

Firstly, the base dataset that we make use of here, is 

identical to that was utilised for previous classification 

experiments, however with some minor transformations. 

Given that CNNs are designed primarily for images, we 

transform our dataset into a square-like shape of 8x8, 

representing in 64 features. With regards to our output, 

TensorFlow works comfortably using one-hot vectors. This 

representation involves having an multi dimensional array 

consisting of 1s or 0s, the index on which the 1 is found 

represents a particular outcome. The below example 

illustrates how our output is formulated:  

 Price Movement Direction ’Up’: [1,0]  

 Price Movement Direction ’Down’: [0,1]  

2) Weights initialisation 

Weights were initialised to a small positive value since we 

are using the ReLU (rectified linear unit) function as 

initialising this to 0, may result in so called ’dead neurons’.  

3) First convolutional layer 

We will be computing 32 features for each 2×2 patch with 

a stride of 1 so that we output a total of 8×8×32 features. In 

order to ensure that we do not drop out any features during 

convolution, we apply ’SAME’ padding. A bias variable has 

also been included for each output channel. To simplify the 

information from the convolutional layer, we then apply max 

pooling to the first convolution, reducing the shape down to 4

×4×32.  

4) Second convolutional layer 

The second convolutional layer will work in a similar 

manner to the first, however this time, rather than having 1 in- 

put, this layer will now have 32 inputs in order to cater for the 

output of the first layer. From these inputs we apply 

convolution and compute 64 features for each 2×2 patch. 

Padding is applied for this layer too, so as to not drop any 

features. The shape after applying the convolution is now 

have 4×4×64 features. We then apply max pooling, and 

reduce it down to 2×2×64.  

5) Fully Connected Layer 

Now that, through the two convolutional and pooling layers, 

the image size has been reduced to 2×2, we add a fully 

connected layer to our network. This layer connects every 

single neuron from the max-pooled layer to every one of the 

possible output neurons (the ranking threshold, One-hot 

vector bits). Fig. 2 illustrates the network we have just 

described in graphical format.  

6) Training 

Our training data is that of approximately 80,000 per 

industry for the daily dataset, due to the size of the data, 

training will be done in batches of 50. The number of steps 

required for training is calculated by dividing the length of the 

dataset by the batch size (in our case, 50). During the training 

process, the program will display the training ac- curacy and 

loss on the training data with every batch. This will serve us as 

an indicator, as to whether the networks accuracy is 

increasing/decreasing with the number of training examples 

fed into it.  

7) Calculating accuracy 

Once the model is finished training on the examples, the 

accuracy on the test data is computed by checking if the 

argmax of the predictions and the testing rankings are equal. 

Argmax is a function provided by the TensorFlow library, 

which returns the index of the highest entry in a tensor. In our 

case it is designed to return the index of the one-hot vector 

(where the ’1’ lies in the array). If the argmax for both the 

predictions and correct outputs equal, the ’equal’ function 

will return a ’1’, meaning the model correctly predicted the 

ranking threshold for the image. This will result in an array of 

1s and 0s as booleans, each value in the array represents a test 

example, indicating whether the prediction is correct (’1’ if 

value is correct) or not (’0’ if value is not correct). From this 

array, we can then retrieve the accuracy by calculating the 

mean. (If the array is [0, 0, 1, 0], the resulting accuracy is 

0.25).  

8) Fine tuning the network 

Once the base network described above is functioning, and 

we hope to achieve results which are better than random 

chance, the next step is to fine tune and optimise the model in 

order to better the accuracy and efficiency. A number of 

approaches are taken in order to accomplish such a task. 

These include:  

 Adjusting the depth of the network 

 Adjusting the Learning rate 

 Adjusting the size of the local receptive area 

 Adjusting the number of features for each convolution  

 

 
Fig. 1. Structure of Approach taken for CNN. 
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IV. RESULTS AND EVALUATION 

As described in the methodology, for our CNN 

implementation, we utilise the same features as before but 

structure them in such a way to form an 8x8 matrix to be fed 

into the network. After running a number of tests using the 

network setup described, it was noted that accuracy fluctuates 

from 54% to 64% for the monthly dataset. Training and test 

sets remained identical throughout these tests, after 

investigation it was noted that these fluctuations originate 

from the random initialisation of the weights for each 

convolutional layer. Due to this, we will be performing 10 

runs for any alterations made to the network structure, and we 

will take an average accuracy over these 10 runs for 

comparison. In order to optimise the network, we alter the 

network parameters by means of adding or removing layers, 

adjusting the receptive fields for our convolutions, modifying 

the number of features that are extracted from each 

convolution and by adjusting the learning rate. We start by 

utilising the CNN approach for the monthly dataset, this was 

chosen given that it is the most ’predictable’ classifier with a 

substantial number of examples. We are aware that the 

architecture of CNNs and any deep learning algorithm thrives 

when utilised on a substantially sized dataset.  

A. Monthly Dataset 

We start out by testing the Monthly Tech Dataset, with the 

model as described in the methodology, whereby we achieve 

an overall accuracy of 56%. This result does not match or 

surpass the 69% obtained by the MLP classifier. We assume 

that this discrepancy is originating from the more complex 

architecture of the CNN. In order to attempt to improve on the 

56% accuracy obtained by the original CNN model, we 

conduct a number of tests, each time altering the various 

parameters and settings of the CNN.  

We attempt to reduce the complexity of the CNN by 

reducing the number of layers from two to a single 

convolutional layer, through which we see accuracy increase 

substantially to 62%. This increase in accuracy due to a 

decrease in complexity substantiates our initial theory 

whereby we assume that the Multi Layer Perceptron achieves 

better results through its simpler structure. The second 

element tweaked was that of the learning rate, whereby the 

initial model had a learning rate of 0.001. We attempt to 

higher and lower the learning rate to 0.1 and 0.001, achieving 

61% and 53% respectively, both settings not achieving better 

results than the initial 0.001 learning rate parameter. The 

adjusting of the learning rate has been a subject to many 

different opinions, some argue that a higher learning rate may 

“jump over” the global minimum, whilst others argue that 

lower learning rates may “get stuck” at local minima, failing 

to reach the overall, global minimum. Through 

experimentation and a series of trial and error, we deem 0.001 

to be the optimal learning rate for this particular task. 

We move on to modify the number of features that are 

extracted from each 2×2 patch. These features are a result of 

filters in the form of mathematical calculations designed to 

extract non-linearities from the data. The optimal setup 

depends on the problem at hand, however we opt to start with 

the features for each patch as indicated on the TensorFlow 

website and alter accordingly. Given that the initial model was 

set with 32 features for each patch, we start by doubling the 

features to 64, where we see an improvement of 1%. Given 

this result we continue to double the features until the 

accuracy saturates at 65% for 256 features for each 2×2 patch. 

By means of this test we achieve an overall increase of 4% 

accuracy by increasing the number of features through a series 

of computations, indicating that CNNs thrive with datasets 

containing a substantial number of features (such as an image). 

Furthermore, from an initial 2×2 receptive field setup, we 

attempt to use a 4×4 patch setup, this however does not 

improve on the accuracy obtained earlier, as it drops down by 

1%. 

B. Weekly Dataset 

We now move on to evaluate the CNN classifier for the 

weekly dataset. This dataset was chosen given that it is the 

second most predictable set with a considerable amount of 

records. Quarterly and Yearly sets have a small number of 

examples when compared.  

The Weekly dataset is evaluated with the model as de- 

scribed in the methodology, whereby we achieve an overall 

accuracy of 55%. This result does not match or surpass the 

67% obtained by the Logistic Regression classifier. In order 

to attempt to improve on the 55% accuracy we attempt a 

number of tests, each time altering the various parameters and 

settings of the CNN.  

We attempt to reduce the complexity of the CNN by re- 

moving the second convolutional layer, through which we see 

accuracy increase substantially to 59%. The second element 

tweaked was that of the learning rate, the initial model had a 

learning rate of 0.001. We attempt to higher and lower to 

learning rate to 0.1 and 0.001, achieving 55% and 54% 

respectively, both settings not achieving better results than the 

initial 0.001 learning rate parameter.  

We move on to modify the number of features that are 

extracted from each 2×2 patch. The initial model was set with 

32 features for each patch, we start by doubling the features to 

64, where we see an improvement of 1% accuracy. Given this 

result we continue to double the features until the accuracy 

saturates at 60% for 256 features for each 2×2 patch. From a 2

×2 receptive field setup, we evaluate a 4×4 patch setup, this 

however foes not improve on the accuracy obtained earlier, as 

it drops down by 2%.  

 
TABLE I: OPTIMAL CNN SETUP 

Element Value 

Number of Layers 1 

Learning Rate 0.001 

Dimensions of Receptive Fields 2x2 

Feature for each Convolution 256 

 

As one can note, the general flow of the alterations for the 

weekly dataset are in line with those of the Monthly dataset, 

whereby the changes alterations that had a positive effect in 

the monthly dataset, also had a positive effect on the weekly 

dataset. Our evaluation for the weekly dataset is in line with 

what was discussed for the monthly dataset, whereby we 

presume that our problem favours a less complex model with 

a large number of features. Having said this, for both 

periodicities we were not able to match or surpass the 69% 
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and 67% for the monthly and weekly datasets respectively, 

hence further research is recommended. We tabulate the 

optimal CNN parameter configuration which applies for both 

periodicities in Table I.  

 

V. CONCLUSIONS 

Many deem stock market fluctuations to be random. How- 

ever, although the stock market is volatile and subject to a vast 

number of elements, through our experimentation and 

evaluation we have shown that fluctuations are far from ran- 

dom. With the use of a convolutional neural network, we 

achieve an accuracy of 65% when forecasting the next month 

price direction and 60% for the next week price direction 

forecast. Although other techniques such as Logistic 

Regression and Support Vector Machines achieve slightly 

better results in our previous paper, we have shown that deep 

networks can be configured for the task of financial time 

series forecasting. Due to the complexity of these deep net- 

works, and sensitivity towards the various parameters, it is 

possible that by means of further feature engineering and 

further configuration of network setup, CNNs may 

outperform the aforementioned state of the art classifiers as 

was proven in other tasks such as speech and image 

recognition.  
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