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Abstract—Accurate diagnosis of Alzheimer’s disease (AD) 

plays an important role for patients care particularly in the 

early phase of the disease. Although numerous studies have 

used machine learning techniques for the computer aided 

diagnosis (CAD) of AD, an obstacle in the diagnostic efficiency 

was shown in the former methods, due to deficiency of effective 

strategies for characterizing neuroimaging biomarkers and 

limitation in choosing the learning models. In this study, we 

propose a deep learning model, which consists of sparse 

autoencoders, scale conjugate gradient (SCG), stacked 

autoencoder and a softmax output layer, to subdue the 

bottleneck and support the analysis of AD and healthy controls. 

Compared to the former workflows, out technique requires less 

labeled training examples and minimal prior knowledge. The 

proposed methods provides a significant improvement in 

classification output when compared to other studies, resulted 

in high and reproducible accuracy rates of 91.6% with a 

sensitivity of 98.09% and a specificity of 84.09%.  

 
Index Terms—Alzheimer’s disease, sparse autoencoder, 

scale conjugate gradient, softmax layer. 

 

I. INTRODUCTION 

Alzheimer‟s disease is a most familiar dementia type 

which mostly occurs in the elderly people. The AD is 

impaired cognitive functions and with memory loss. The 

subject of AD is seen to be increasing rapidly all over the 

world in every year time. At present, the cause of AD not 

well understood. However, the disorder is related to plague 

and tangles inside the brain.   

Scholars have proposed different approaches based on 

computer vision and machine learning to support the 

diagnosis of AD by Magnetic resonance imaging (MRI). 

They presented the performance of their methods in their 

own experiments on AD/NC classification. The limitations 

of the former works are that they only took simple low-level 

features for e.g. cortical thickness and/or gray matter tissue 

volumes. In this work, we consider the whole MRI scans 

which holds hidden or latent high level information that can 

be beneficial to build a new robust model for the diagnosis 

AD/NC.  

We assume that the prior workflows can be optimized by 

designing a new framework to efficiently represent the 

different stage of AD using different biomarkers. The 

conventional methods with shallow structures often results 

in feature repetition [1]. Hence, the deep data representation 
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based learning is found to be much more effective than 

shallow architectures with regard to computational elements 

and parameters necessary for representing the new functions. 

Deep learning architectures draw out high-level features 

gradually via various layers of feature representation [2]. 

The high-level features are likely to be much more separable 

in classification issue because of the sequential 

transformations of feature space.            

Some previous studies reported that multilayered learning 

structure was efficient in capturing shape dissimilarity of the 

brain area that corresponds with demographic and disease 

knowledge. Suk et al. [3] came up with the idea of stacked 

autoencoder (SAEs) for training every image modality; later, 

the trained high-level features were additionally passed to 

the multi-kernel support vector machine (MKSVM). 

Nevertheless, SVM alone could not also classify patients 

with a high performance when the training data is large. 

In this paper, we utilized a new framework for early 

diagnosis of AD based on deep learning approaches, 

consisting of stacked sparse autoencoders and a softmax 

output layer. In addition, our technique is semi supervised 

that can be lengthened to use unlabeled training model, 

which are accessible and economical to obtain. 

 

II. METHODOLOGY 

A. Autoencoder 

An autoencoder is a symmetrical neural network which 

can grasp the features in an unsupervised way by 

minimizing reconstruction errors [4]. The training process in 

an autoencoder is based on the optimization of a cost 

function. The cost function computes the error between the 

input x and its rebuilding at the output x̂ . An autoencoder 

constitutes of an encoder followed by decoder. The encoder 

and decoder can possess multiple layers; nevertheless for 

simplicity we consider that all of them have only one layer.  
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Fig. 1. Structure of an Autoencoder. 
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Autoencoder is demonstrated in Fig. 1. If the input data 

to an autoencoder is a vector 
Dxx R , then the encoder 

projects the vector x  to other vector 
(1)D

z R  as follows: 

(1) (1) (1) (1)
( b ),xz h W                         (1)  

where, the superscript (1) signifies the first layer.  
(1) (1)(1)

:
D D

h R R  is a transfer function for the encoder, 

(1)(1) D DxW R


  is weight matrix, and 
(1)(1) D

b R  is a bias 

vector. Later, the decoder projects the encoded 

representation z  away into an estimate of the initial input 

vector, x , as follows: 

(2) (2) (2)
ˆ ( ),x h w x b                            (2) 

where, the superscript (2) describes the second layer. 
(2)

:
D Dx xh R R  is the transfer function for the decoder, 

(1)(1) D Dxw R


  is a weight matrix, and (2) Dxb R  is a bias 

vector. 

B. Sparse Autoencoders 

Promoting sparsity of an autoencoder is feasible by 

incorporating a regularizer to the cost function. This 

regularizer is a function of the average output activation 

value of a neuron. The average output activation measure of 

a neuron i is described as: 

1 1(1) (1)T (1)ˆ ( ) ( ),
1 1

n n
z x h w x bj i j iii n nj j

    
 

        (3) 

where n is the total number of training examples. x
j

 is 

the jth training example, 
(1)T

w
i

 is the ith row of the 

weight matrix 
(1)

w , and 
(1)

b
i

is the ith  entry of the bias 

vector, 
(1)

b
i

. A neuron is evaluated as „firing', if the output 

activation value is high. A low output activation value 

indicates that the neuron in the hidden layer fires in reaction 

to a tiny number of the training examples. Accumulating a 

term to the cost function that forces the values of ˆ
i

  to be 

low, boosts the autoencoder to study a representation, where 

every neuron in the hidden layer fires to a tiny number of 

training examples. That is, every neuron is trained by 

responding to few features that is only available in a small 

subset of the training examples. 

C. Sparsity Regularization 

Sparsity regularizer tries to accomplish a constraint on the 

sparsity of the output from the hidden layer. One such 

sparsity regularization term can be the Kullback-Leibler 

divergence. 

(1) (1)
1

ˆ( ) log( ) (1 ) log( )
sparsity ˆ1ˆ1 1

D D
KL i

iii i


   




     

 

   (4) 

We can define the desired value of the average activation 

value utilizing the Sparsity Proportion name-value pair 

argument while training an autoencoder.  

D. L2 Regularization 

When training a sparse autoencoder, it is possible to build 

the sparsity regularizer small by magnifying the values of 

the weights 
(l)

w  and reducing the values of 
(1)

z . 

Accumulating a regularization term on the weights to the 

cost function prevents it from occurring. This term is called 

the 
2

L  regularization term and is defined by: 

2
1 (l)

( ) ,
weights 2

L n k
wji

l j i
                              (5) 

where L is the number of hidden layers, n is the number of 

observations (examples), and k is the number of variables in 

the training data. 

E. Cost Function 

The cost function for training a sparse autoencoder is an 

adjusted mean squared error function defined as follows: 

2

weights sparsity,

1 1

1
ˆ( )

N k

kn kn

n k

E x x
N

 
 

        (6) 

Here, λ is the coefficient for the L2 regularization term 

and β is the coefficient for the sparsity regularization term. 

We can designate the values of λ and β by utilizing the L2 

Weight Regularization and Sparsity Regularization name-

value pair arguments, respectively, while training an 

autoencoder.  
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Fig. 2. Block diagram of the proposed system. 
 

F. Softmax Layer 

For the classification of AD, a softmax output layer is 

summed on the tip of the trained autoencoder stack 

including only former hidden layers [5], [6]. The Softmax 

layer utilizes a different activation function that might have 

nonlinearity, dissimilar from the one used in previous layers. 

The Softmax activation function is given by  

1

1

l l lw h bi iel
hi l l lw h bi iej

 


 



                             (7) 

Here, 
l

wi  is the i-th row of 
l

w  and 
l

b
i

 is the i-th bias 

term of final layer. We can employ 
l

h
i

 as an estimator of 

( / )P Y i x  . Moreover, Y is the concerned label of input 

data vector X. In our study, we have two output neurons at 

the Softmax layer can be explained as the probabilities of 

identifying the subjects with NC or AD. Alike to the 

operation of training the Deep Belief Net (DBN) [7], 

furthermore, all the parameters can be fine-tuned in the 

network with regard to the complete classification loss by 

unfolding every autoencoders and employing the back 
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propagation algorithm on the whole network [5], [8].  

 

III. EXPERIMENTAL RESULT AND DISCUSSION 

We implemented the deep learning framework described 

in this paper using Matlab 2015b environment on Intel(R) 

core (TM) i5-7500 CPU, 3.30 GHz processing speed, and 16 

GB RAM, Microsoft windows 7. Readers can repeat our 

results on any machine where MATLAB is a platform. The 

block diagram of the proposed system is shown in Fig. 2.  

A. Database 

In our study we have downloaded the structural MRI data 

from open Access Series of Imaging Studies (OASIS) 

database. The OASIS is an attempt at making MRI data set 

of the brain freely available to the scientific community. 

OASIS covers two types of data: cross-sectional MRI data 

and longitudinal MRI data. We used cross sectional MR 

image in our study because the main purpose of our study is 

developing an automated tool to detect AD, which is not 

related to longitudinal data in which AD subjects were 

gathered together over long duration. In our study, we 

recruited 51 AD subjects (35with CDR=0.5 and 16with 

CDR=1) out of 100 having dementia and 44 normal subjects 

out of 98 normal subjects. Only right-handed subjects are 

included constituting of both men and women. The database 

contains various details of the patient such as age, gender, 

education, socio-economic status, CDR, and MMSE. The 

statistical data used in our learning are demonstrated in 

Table I.  

TABLE I: STATISTICAL DATA OF THE SUBJECT USED IN OUR LEARNING  

Factors Normal Very Mild & Mild AD 

No. of Patients 44 51 

Age 84.40 (76-96) 82.11 (76-96) 

Education 3.34 (1-5) 3.13 (1-5) 

Socioeconomic status 2.31 (1-5) 2.82 (1-5) 

CDR (0.5/1) 0 35/16 

MMSE 28.72 (25-30) 24.82 (18-30) 

B. Image Preprocessing 

The images are imported from the backup folder and 

subjects are extracted using ONIS software. We have 

selected 32 center slices from each subject containing most 

predictive information about the brain tissues. The same 

method is used to all the subjects (95 including both AD and 

NC). All of these obtained images are in PNG format and 

the dimension of the each slice is 176 256 . The image is 

enlarged to 256 256  before further processing.  

C. Training Autoencoder and Final Softmax Layer 

At first we train a sparse autoencoder on the training data 

without using labels. Neural networks have weights 

randomly initialized before training. Therefore, the results 

from the training are different each time. To avoid this 

behavior, explicitly we set the random generator seed. We 

set the size of the hidden layer for the autoencoder. For the 

autoencoder that we are going to train, it is a good idea to 

make this smaller than the input size. The type of 

autoencoder that we are going train is a sparse autoencoder. 

This autoencoder uses regularizers to learn a sparse 

representation in the first layer. We can control the influence 

of these regularizers by setting various parameters: L2 

Weight Regularization controls the impact of an L2 

regularizer for the weights of the network (and not the 

biases). This should typically be quite small. Sparsity 

proportion is a parameter of the sparsity regularizer. It 

controls the sparsity of the output from the hidden layer. A 

low value for sparsity proportion usually leads to each 

neuron in the hidden layer specializing by only giving a high 

output for a small number of training examples. For 

example, if Sparsity Proportion is set to 0.1, this is 

equivalent to saying that each neuron in the hidden layer 

should have an average output of 0.1 over the training 

examples. This value must be between 0 and 1. The ideal 

value varies depending on the nature of the problem.  

Now, the autoencoder is trained specifying the values for 

the regularizers which are mentioned above. After training 

the first autoencoder the second autoencoder is trained in a 

similar manner. The principal difference is that we utilized 

features that were produced from the first autoencoder as the 

training data in the second autoencoder. Also, the size of the 

hidden representation is decreased, so that the encoder in the 

second autoencoder learns a tinier representation of the 

input data.  

We then train a softmax layer to categorize the obtained 

feature vectors. Unlike the autoencoders, training of the 

softmax layer is done in a supervised fashion utilizing the 

labels for the training data.  

D. Forming a Stacked Neural Network  

We have trained three independent components of a deep 

neural network in seclusion. At this stage, it might be 

beneficial to view the three neural networks that have been 

trained by us. These are autoenc1, autoenc2, and softnet. As 

described, the encoders from the autoencoders have been 

utilized for feature extraction. The encoders can be stacked 

from the autoencoders jointly with the softmax layer to 

design a deep network. The network is created by the 

encoders from the autoencoders and the softmax layer. Let‟s 

consider that the number of units in the input layer is equal 

to the dimension of the input feature vector. But the number 

of hidden units in the upper layers can be decided according 

to the description of the input, i.e., even extensive than the 

input dimension. The full deep network is formed, and we 

can estimate the outcome on the test set. To utilize images 

with the stacked network, we have to reshape the test images 

into a matrix. We can do this by stacking the columns of an 

image to form a vector, and then forming a matrix form 

these vectors. We can visibly see the outcome with a 

confusion matrix. The overall accuracy is seen in the bottom 

right-handed square of the matrix. 

E. Fine Tuning the Deep Neural Network  

The results for the deep neural network can be upgraded 

by performing backpropagation on the entire multilayer 

network. This method is often mentioned to as fine tuning. 

We fine tune the network by retraining it on the training data 

in a supervised approach. Before carrying out this, we have 

to reshape the training images into a matrix, as was 

accomplished for the test images. 
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F. Evaluation  

The AD brains are considered as positive, while NC 

brains are regarded as negative. Ultimately, the network is 

trained and we obtain the output in terms of the confusion 

matrix. Now, we calculate the True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). 

The AD brains are supposed to true and normal ones to false, 

following common convention. The formula for accuracy, 

sensitivity and specificity are given below. 

Accuracy
TP TN

TP TN FP FN




  
 

 

(8) 

Sensitivity
TP

TP FN



 

 

(9) 

Specificity
TN

TN FP



 

 

(10) 

 

G. Comparison to State-of-the-Art Approaches 

To further demonstrate the usefulness of our proposed 

method we compared it with to 7 state-of the-art approaches 

in Table II, which utilized dissimilar statistical settings, 

making comparison complex. The result in Table II shows 

that “US+SVD-PCA+SVM-DT [9]” achieved a 

classification accuracy of 90.00%, a sensitivity of 94.00%, 

and a specificity of 71%, “BRC+IG+SVM [10]” achieved 

an accuracy of 90.00%, a sensitivity of 96.88%, and a 

specificity of 77.78%. We can observe that their specificities 

are less when compared with other methods. Therefore, both 

of these methods are not considered. Likewise, 

“BRC+IG+VFI [15]” achieved an accuracy of 78%, 

sensitivity of 65.63% and specificity of 100%. Despite of 

high specificity, the accuracy and sensitivity obtained with 

this proposed method is low. Therefore, this method is also 

not considered under the review. “Curvelet+ PCA+KNN 

[11]” achieved classification accuracy of 89.47%, a 

sensitivity of 94.12%, and a specificity of 84.09%. Debesh 

Jha [11] achieved promising result with 4-level curvelet 

features, PCA and KNN.  The proposed method obtained 

good results.  

Other three state-of-the-art algorithm considered in our 

study outlines for both mean and standard deviation values. 

They also achieved convincing results. VBM + RF [12] 

achieved an accuracy of 89.0 ± 0.7%, a sensitivity of 87.9 ± 

1.2%, and a specificity of 90.0± 1.1. The convincing result 

is achieved because of the voxel based morphometry (VBM). 

Actually, VBM has been frequently utilized to study the 

changes in the brain. Maguire (2000) signified that taxi 

driver will have larger back part of posterior hippocampus 

usually. Good (2001) figured that global gray matter 

decreased linearly with aging, but the global white matter 

remains identical. However, it needs an accurate spatial 

normalization; or the classification result may minimize 

notably. DF + PCA + SVM [13] acquired an accuracy of 

88.27 ± 1.89%, a sensitivity of 84.93 ± 1.21%, and a 

specificity of 89.21 ± 1.63%. This technique is based on a 

new approach called displacement field (DF). This review 

estimates and measures the displace field of different slices 

between AD subjects and NC subjects. Similarly, 

“EB+WTT+SVM+RBF [14]” achieved an accuracy of 

86.71± 1.93%, a sensitivity of 85.71 ± 1.91%, a specificity 

of 86.99 ± 2.30%.  

Finally, our proposed method achieves an accuracy of 

91.6%, a specificity of 98.09%, and a specificity of 84.09%. 

Considering classification accuracy, our approach 

outperforms 7 state-of-the-arts. We achieved outstanding 

sensitivity which if far better than the existing methods. We 

also achieved a promising specificity which is comparable 

to other state-of-the-art algorithms. Hence, our results are 

either outperforms or are comparable to the existing 

methods. Fig. 3 shows performance comparison of 

algorithms comparison.  

TABLE II: ALGORITHM PERFORMANCE COMPARISON FOR MRI BRIAN 

IMAGES 

Algorithm 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Proposed method 91.6 98.09 84.09 

US + SVD-PCA + 
SVM-DT [9] 

90 94 71 

BRC + IG + SVM 

[10] 
90.00 96.88 77.78 

CURVELET+ 

PCA+ KNN [11] 
89.47 94.12 84.09 

VBM + RF [12] 89.0 ± 0.7 87.9 ± 1.2 90.0 ± 1.1 

DF + PCA + 
SVM[13] 

88.27 ± 1.89 84.93 ± 1.21 89.21 ± 1.63 

EB + WTT + SVM 

+ RBF [14] 
86.71±1.93 85.71±1.91 

86.99±2.3

0 

BRC + IG + VFI 

[15] 
78 65.63 100 

 

 
Fig. 3.  Performance comparison of the proposed system. 

 

IV. CONCLUSION 

We proposed a new method for diagnosis of AD based on 

deep learning algorithms. This framework can distinguish 

AD with minimal clinical prior knowledge required. The 

proposed technique also performs dimensionality reduction 

and data fusion at the same moment. A performance gain is 

achieved with the binary classification. We have also 

showed that multi-layered parametric learning model can be 

applied on biomedical datasets with smaller size to extract 

high-level biomarkers. Based on MR data our method 

outperformed 7-state-of-the-art and SVM based framework. 

Therefore, we argue, that the proposed technique can be 

powerful method for computer-aided examination in other 

biomedical fields as well. 

ACKNOWLEDGMENT 

This research was supported by the Brain Research 

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

16



Program through the National Research Foundation of 

Korea funded by the Ministry of Science, ICT & Future 

Planning (NRF-2014M3C7A1046050). The corresponding 

author is Goo-Rak Kwon (grkwon@chosun.ac.kr). 

REFERENCE 

[1] S. Liu, S. Liu, W. Cai, H. Che, S. Pujol, R. Kikinis, D. Feng, and M. J. 
Fulham, “Multimodal neuroimaging feature learning for multiclass 

diagnosis of Alzheimer‟s disease,” IEEE Trans. on Biomed. Engin., 

vol. 62,  pp. 1132-1140,   Apr. 2015. 
[2] Y. Bengioet, A. Courville, and P. Vincent, “Representation learning: 

A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 35, pp. 1798–1828, Aug. 2013. 
[3] H.-L. Suk, S. W. Lee, and D. Shen “Latent feature representation with 

stacked auto-encoderfor AD/MCI diagnosis,” Brain Struct. Funct., pp. 

841-859, 2015. 
[4] H. C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach, 

“Stacked autoencoders for unsupervised feature learning and multiple 

organ detection in a pilot study using 4d patient data,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 35, pp. 1930–1943, Aug. 2013. 

[5] Y. Bengio, "Learning deep architectures for AI," Foundations and 

Trends® in Mach. Learn., vol. 2, pp. 1-127, Nov. 2009. 
[6] J. S. Bridle, “Probabilistic interpretation of feedforward classification 

network outputs, with relationships to statistical pattern recognition,” 

Neurocomputing, pp. 227-236, 1990. 
[7] Y.-L. Boureau and Y. L. Cun, "Sparse feature learning for deep belief 

networks," Adv. in Neural Infor. Proces. Syst., pp. 1185-1192, 2007. 

[8] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality 
of data with neural networks," Science, vol. 313, pp. 504-507, 2006. 

[9] Y. Zhang, S. Wang, and Z. Dong “Classification of Alzheimer disease 

based on structural magnetic resonance imaging by kernel support 
vector machine decision tree” Prog. Electromagn. Res., vol. 144, pp. 

171–184, 2014. 

[10] C. Plant, S. J. Teipel, A. Oswald, C. Bohm, T. Meindl, J. M. Miranda, 
A. W. Bokde, H. Hampe, and M. Ewers, “Automated detection of 

brain atrophy patterns based on MRI for the prediction of Alzheimer‟s 

disease,” Neu. Image, vol. 50, pp. 162–174, March 2010. 

[11] D. Jha and G. R. Kwon, “Alzheimer Disease detection in MRI using 

curvelet transform with KNN,” The Jour. Korean Inst. Infor. Tech., 
vol. 14, Aug. 2016. 

[12] K. R. Gray, P. Alijabar, R. A. Heckemann, A. Hammers, and D. 

Rueckert, “Random forest-based similarity measures for multi-modal 

classification of Alzheimer‟s disease,” Neu. Ima., vol. 65, pp. 167–

175, Jan. 2013. 

[13] Y. Zhang and S. wang, “Detection of Alzheimer‟s disease by 

displacement field and machine learning,” Peer J., vol. 3, Oct. 2015.   

[14] Y. Zhang, Z. Dong, P. Phillips, S. Wang, J. Genlin, J. Yang, and T.-F. 

Yuan, “Detection of subjects and brain regions related to Alzheimer‟s 
disease using 3D MRI scans based on eigenbrain and machine 

learning,” Front. Comput. Neurosci., vol. 9, p. 66, Jun. 2015. 

[15] C. Plant, S. J. Teipel, A. Oswald, C. Bohm, T. Meindl, J. M. Miranda, 
A. W. Bokde, H. Hampe, and M. Ewers, “Automated detection of 

brain atrophy patterns based on MRI for the prediction of Alzheimer‟s 

disease,” Neu. Image, vol. 50, pp. 162–174, Mar. 2010. 
 

 

Debesh Jha received his B.E in 2013 at Khwopa 
Engineering College, Purbanchal University, Nepal 

and is currently pursuing his M.S. in the Department 

of Information and Communication Engineering, 
Chosun University, Korea. Besides, he works as a 

research assistant at Chosun University. His research 

interest include big data analysis, bio-medical image 

processing, machine learning, pattern recognition, 

computer vision, and artificial neural network. 

 
 

Goo-Rak Kwon received the Ph.D. degree at the 
Department of Mechatronic Engineering of 

KoreaUniversity in 2007 and the M.S. degree in the 

Schoolof Electrical and Computer Engineering at the 
Sung Kyun Kwan University in 1999. He has also 

served as the chief executive officer and director of 

Dalitech Co. Ltd. From May 2004 to Feb. 2007. He 
joined the Department of Electronic Engineering at Korea University 

where he was a Postdoc supporting the BK21 Information Technique 

Business from Mar. 2007 to Feb. 2008. At present, he is working an 
associate professor at Chosun University. He has contributed 80 articles to 

journals and conference proceedings. He also holds 20 patents on security 

of multimedia contents for digital rights management. He was a member in 
the IEEE, IEICE, and IS&T in the international institute. In the domestic 

institute, he had a member of signal processing society in the IEEK, 

KMMS, KIPS, and KICS. His interest research fields are A/V signal 
processing, video communication, and applications. 

 

 
 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

17




