
 

 

 

Abstract—Genetic algorithms (GA) are stimulated by 

population genetics and evolution at the population level where 

crossover and mutation comes from random variables. The 

problems of slow and premature convergence to suboptimal 

solution remain an existing struggle that GA is facing. Due to 

lower diversity in a population, it becomes challenging to 

locally exploit the solutions. In order to resolve these issues, the 

focus is now on reaching equilibrium between the explorative 

and exploitative features of GA. Therefore, the search process 

can be prompted to produce suitable GA solutions. This paper 

begins with an introduction, Section 2 describes the GA 

exploration and exploitation strategies to locate the optimum 

solutions. Section 3 and 4 present the lists of some prevalent 

mutation and crossover operators. This paper concludes that 

the key issue in developing a GA is to deliver a balance 

between explorative and exploitative features that complies 

with the combination of operators in order to produce 

exceptional performance as a GA as a whole. 

 

Index Terms—Crossover operator, mutation operator, 

exploitation, exploration. 

 

I. INTRODUCTION 

The main search operator in Genetic algorithms (GA) is 

the crossover operator which equally as significant as 

mutation, selection and coding in GA. The crossover 

operator functions primarily in the survey of information 

that is accessible through the search space, which 

inadvertently improves the behavior of the GA. On another 

note, mutation is a secondary operator. It functions to alter 

the genes of the offspring. A mutator will diversify the 

existing population and this inadvertently allows GAs to 

exploit promising areas of the search space thus avoiding 

local solutions [1]. Some of the mutation operators are 

designed to explicitly overcome certain types of issues over 

others [2]. The performance among all the comparative of 

GA operators are easily validated and compared through 

unbiased test problems from the literature, which are diverse 

in properties in terms of complexity and modality. This 

study substantially contributes in reviewing some prevalent 

mutation and crossover operators. The operators maintain a 

good balance between explorative and exploitative 

strategies while manufacturing the optimum GA solutions. 

II. ACHIEVING EXPLORATION AND EXPLOITATION IN 

GENETIC ALGORITHM 

A crossover or mutation can function as an exploration or 

exploitation operator [3], [4]. Although optimization 

algorithms with higher degree of exploitation may have 
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higher convergence speed, the challenge lies in locating the 

optimal solution and chances are it may not get past a local 

optimum. On the other hand, algorithms that favor 

exploration over exploitation might consume more time in 

locating the global optimum, that is, coincidentally, due to 

its less sophisticated candidate solutions. A comprehensive 

survey in exploration and exploitation in evolutionary 

algorithms is reported [5]. 

Ref. [6], [7] reported that real parameter crossover 

operators is equipped with self-adaptive features which 

enable them to produce different degrees of exploration or 

exploitation by looking at how they deal with the current 

diversity of the population. The exploration process is 

commenced by generating additional diversity starting from 

the current one. This means finding new points in the search 

space, which has not been investigated before. Another 

alternative is for the crossover to start the exploitation 

process by using the earlier generated diversity for creating 

better elements; which improves and combines the traits of 

the currently known solution(s). Elsayed et al [8] has 

proposed a new GA which consists of three-parent 

crossover that produces three new offspring. One of these 

offspring is used for exploration process while the other two 

offspring are to promote exploitation. Intensifications and 

diversifications are synonymous to exploitation and 

exploration, which have been introduced in Glover’s Tabu 

search [9]. 

To add to that, Herrera et al [10] also shed some light on 

the basic understanding of the availability of a crossover 

adapting to different degrees of exploration and exploitation. 

To illustrate this concept, let’s consider two genes, ca, cb∈ [x, 

y] to be combined with αi = min {ca, cb} and βi = max {ca, 

cb}. The action interval [x, y] of these genes is further 

divided into three intervals: [x, αi], [αi, βi] and [βi, y] in order 

to classify the exploration and exploitation zones. 

 

Relaxed Exploitation 

 

Exploration 

 
 Exploitation  Exploration 

     

 

Fig. 1. Action interval for two genes (Ca and Cb) [10]. 

 

As shown in Fig. 1, the interval with both genes being the 

extremes is declared as an exploitation zone because when a 

crossover produces any genes, zi in this interval, it fulfills 

the properties of max {|zi - αi|, | zi - βi|} ≤ | αi - βi |}. On the 

other hand, the two intervals that remain on both sides are 

exploration zones, because the said property is not fulfilled. 
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The zone with extremes αi' and βi' is declared as relaxed 

exploitation zone. This region [αi', βi'] has the properties of 

αi' ≤ αi and βi' ≥ βi. Therefore, based on the genes generated 

on these intervals, any crossover operators for RCGAs can 

determine their exploration and exploitation degrees. 
 

III. MUTATION OPERATORS 

Studies have been carried out on the varieties of mutation 

techniques to improve the GAs performance over the years 

[11]. The purpose of mutation operation is to change the 

genes of the offspring and to increase the diversity of the 

population. This process enables GAs to jump out of local 

or suboptimal solutions to avoid premature convergence. 

The following paragraph presents some prevalent mutation 

operators [12]: 

Mirror mutation and binary bit-flipping mutation [13], 

[14] are alike in that the mirror mutator replaces a gene 

with its mirror value at the middle point of the boundary 

interval for the gene, whereas in bit-string representation 

GA, bit-flip mutation remains unchanged. Order based GAs 

and grouping GAs are instances of GA minus the bit-flip 

mutation. Random (uniform) mutation [15] is a common 

mutation operator based on Gaussian distribution whereby 

the user specifies a range of uniform random value to 

replace the value of the chosen gene.  

Mutation based on directed variation techniques [16] 

make use of the feedback information from the current 

population to make changes to certain individuals. The 

direction of mutation based on co-evolutionary technique 

[17] is determined by a solution vector. 

Directed mutation [18] is based on gradient or 

extrapolation. The directed mutation deterministically finds 

a new point in the population using the information applied 

in the previous generations. Directed mutation based on 

momentum [19] is a standard Gaussian mutation, which is 

used to speed up the gradient descent training of neural 

networks. The existing momentum functions as a mutator 

for each component of an individual. 

Covariance matrix adaptation evolution strategy (CMA-

ES) [20] was recommended by experts as an outstanding 

parametric optimization algorithm. Muhlenbein’s mutation 

(MM) [21] generates offspring with alleles and logarithmic 

mutation (LM) [22] alters a randomly chosen allele. 

The wavelet theorem gave rise to wavelet mutation [23]. 

This mutator performed the best among other RCGAs when 

applied to the economic load dispatch and tuning an 

associative-memory neural network. Edge mutation and 

tension vector mutation [24] are based on the breadth-first 

(BF) force-based and tension vector methods respectively.  

Power mutation (PM) [25] and polynomial mutation 

(PLM) [26] are based on power distribution and polynomial 

distribution respectively. The strength of PM is regulated by 

its index, whereby small (large) index value produces small 

(large) diversity. Makinen, Periaux and Toivanen mutation 

(MPTM) [27] has been proved to solve constrained and 

multidisciplinary shape optimization problems. PM 

performs better than MPTM and Non-Uniform Mutation 

(NUM) when all three mutators were combined with 

Laplace Crossover (LX). Of all of them, PLM is one of the 

most widely used operator as it has been applied in single 

and multi-objective optimization problems [28], [29]. 

The breeder GA mutation (BGA) [30] produces solutions 

on equal sides of a chromosome. The perturbation created in 

a chromosome is within a 10% range of what is permissible 

for a particular gene. The design concepts of discrete and 

continuous modal mutations [31] are similar to that of the 

BGA. 

Non-uniform mutation (NUM) [32] possesses a fine-

tuning capability whereby its action depends on the number 

of the population in order to reach equilibrium between 

exploration and exploitation. The search was performed 

uniformly at the beginning and very locally towards the end 

of the search. Such an approach is categorized as uni-

process driven. Multi-non-uniform mutation (MNUM) [33] 

escalates the genetic diversity of a candidate individual. The 

MNUM can perform a uniform search with local fine-tuning 

thus increasing the exploitative capability. Principal 

component analysis mutation (PCA) [34] on the other hand, 

is applied on the IIR Filter design problem. It produces 

higher level of diversity in the population as compared to 

uniform and non-uniform mutation. 

Adaptive mutation [35] operator uses the simulation of 

gradient or counter-gradient direction in its searching 

strategies. It relies on the frequency of the best 

chromosomes’s genes and it possesses an adaptive feature. 

On the contrary, adaptive directed mutation (ADM) [36] 

incorporates the strategies of local directional search and the 

adaptive random search to avoid the concentration of each 

chromosome caused by a crossover operator. This strategy 

can also prevent an unsystematic search of the system due to 

random mutation. 

Covariance matrix adaptation evolution strategy (CMA-

ES) [37] was recommended by experts as an outstanding 

parametric optimization algorithm. Muhlenbein’s mutation 

(MM) [38] generates offspring with alleles and logarithmic 

mutation (LM) [39] alters a randomly chosen allele. 

 

IV. CROSSOVER OPERATORS 

Two main approaches of crossover development are 

parent centric and mean centric operators. The parent 

centric approach generates offspring near each of the 

parents whereas mean centric generates offspring solutions 

near the centroid of the parents, which is in the vicinity of 

mean of the participating parents. Some well-known 

crossover operators are reflected in the following paragraph 

[12]. The discussions start with the classical examples. 

Single point crossover, [40] detects one crossover point at 

random before splitting parents at this crossover point 

thereby producing offspring by exchanging tails. The 

common crossover probability is within the range of 0.2 - 

1.0. n-point crossover [41] is a generalization of the single 

point crossover. The n crossover points are randomly 

identified, after which they split along those points and 

convene, and subsequently alternating between parents. 

Uniform crossover assigns 'heads' to one parent, 'tails' to 

the other. A coin is flipped for each gene of the first child 

and an inverse copy of the gene is created for the second 

child. Inheritance does not rely on position. 

In an experiment conducted by Lobo [42], it was reported 

that Ps has an impact on the exploration process. In this case, 
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the Ps is proportional to the search space. Contrary to that, 

uniform crossover outperforms two-point crossover even 

with a smaller selection of population in a particular 

problem. 

Discrete crossover [30] is analogous to the classical one-

point and uniform crossover. Uniform crossover is the 

enhancement of UNDX [43]. Single point, n-point and 

uniform crossover operators have been employed in binary 

and real-coded GAs. 

Arithmetical crossover [44] involves arithmetic 

procedures aimed at generating new offspring, which are 

sandwiched between the parents. A whole arithmetic 

crossover has been applied in an adaptive pair bond GA [45]. 

On the other hand, Flat crossover (BLX-0.0) [46] utilizes 

uniform distribution to randomly produce offspring between 

the genes of the parents. 

The above mentioned operators were among the few 

initial attempts which implemented in an exploitative search. 

They generate offspring only in the region bounded by the 

parents thus causing premature convergence. However, this 

problem was overcomed by the other crossover operators 

whereby the offspring is produced in the exploration region 

near the parents, and not only within the region bounded by 

them. 

Simulated binary crossover (SBX) [47] is devised to 

simulate the effect of one-point crossover on a string of 

binary alphabets in a continuous domain. The Taguchi 

method is incorporated to improve the robustness and 

degree of exploitation of the algorithm. A SBX based 

multilevel thresholding real coded genetic algorithm has 

been applied to segment the medical brain images into 

normal and abnormal tissues. 

Wright's heuristic crossover [48] employs the fitness 

function value of the parent solutions to produce a child 

solution from a pair of parents with a bias towards the better 

one. Unimodal normal distribution crossover (UNDX) [43], 

Parent centric crossover (PCX) [49] and UNDX-m [50] are 

crossover operators with several parents. 

UNDX generates offspring using a normal distribution 

defined by three parents. Two or more offspring solutions 

are created around the center of the mass. Both of the 

operators are effectively used with an elite-preserving, 

steady-state, scalable, and computationally fast evolutionary 

model such as the G3 model. Additionally, UNDX-m is a 

multi-parental extension of the UNDX and it possesses a 

better search ability of the UNDX. It properly preserves the 

statistics of mean vector and the covariance matrix of the 

population. 

Dynamic fuzzy connective based crossover [51] strife to 

strike a balance between exploration and exploitation during 

the evolution process. Heuristic fuzzy connective based 

crossover works on retaining the diversity and speeds up the 

convergence by exploring the region near to the superlative 

parents. 

Being a multi-parent crossover operator, the simplex 

crossover (SPX) [52] generates offspring vector values by 

uniformly sampling values from simplex formed by k (2 ≤ k 

≤ number of parameters + 1) parent vectors. 

In a linear crossover, two parents generate three offspring. 

Through an offspring selection mechanism, it will determine 

the two most promising offspring among the three to 

substitute their parents in the population. 

Average bound crossover [23] consists of both average 

and bound crossovers. In average bound crossover, a pair of 

parents produces four offspring solutions from which two of 

the best offspring are selected to substitute the parents. 

Hybrid crossover [53] use various types of crossovers, a 

number of offspring solutions from the same set of parents 

are formed. 

It is claimed that representation of individuals strongly 

influences the explorative and exploitative strengths of GA. 

However, Geometrical crossover [54] does not rely on 

representation and it is defined based on the distance of the 

solution space. 

Examples of parent- centric approaches include blend 

crossover, fuzzy min-max, fuzzy recombination, SBX etc. On 

the other hand, examples of mean-centric approaches are 

SPX, UNDX and so on. 

 

V. SUMMARY 

The key to a successful implementation of GAs primarily 

depends on the efficient crossover and mutation search 

operators to guide the system toward global optima i.e. 

locating the global minimum or maximum of the objective 

functions to these problems. A balance between the two 

explorative and exploitative features of GA, which are 

characterized by the two operators, is imperative in order to 

speed up the search process to produce quality GA solutions. 
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