

Abstract—Genetic algorithms (GA) are stimulated by

population genetics and evolution at the population level where

crossover and mutation comes from random variables. The

problems of slow and premature convergence to suboptimal

solution remain an existing struggle that GA is facing. Due to

lower diversity in a population, it becomes challenging to

locally exploit the solutions. In order to resolve these issues, the

focus is now on reaching equilibrium between the explorative

and exploitative features of GA. Therefore, the search process

can be prompted to produce suitable GA solutions. This paper

begins with an introduction, Section 2 describes the GA

exploration and exploitation strategies to locate the optimum

solutions. Section 3 and 4 present the lists of some prevalent

mutation and crossover operators. This paper concludes that

the key issue in developing a GA is to deliver a balance

between explorative and exploitative features that complies

with the combination of operators in order to produce

exceptional performance as a GA as a whole.

Index Terms—Crossover operator, mutation operator,

exploitation, exploration.

I. INTRODUCTION

The main search operator in Genetic algorithms (GA) is

the crossover operator which equally as significant as

mutation, selection and coding in GA. The crossover

operator functions primarily in the survey of information

that is accessible through the search space, which

inadvertently improves the behavior of the GA. On another

note, mutation is a secondary operator. It functions to alter

the genes of the offspring. A mutator will diversify the

existing population and this inadvertently allows GAs to

exploit promising areas of the search space thus avoiding

local solutions [1]. Some of the mutation operators are

designed to explicitly overcome certain types of issues over

others [2]. The performance among all the comparative of

GA operators are easily validated and compared through

unbiased test problems from the literature, which are diverse

in properties in terms of complexity and modality. This

study substantially contributes in reviewing some prevalent

mutation and crossover operators. The operators maintain a

good balance between explorative and exploitative

strategies while manufacturing the optimum GA solutions.

II. ACHIEVING EXPLORATION AND EXPLOITATION IN

GENETIC ALGORITHM

A crossover or mutation can function as an exploration or

exploitation operator [3], [4]. Although optimization

algorithms with higher degree of exploitation may have

Manuscript received August 30, 2016; revised December 8, 2016.

Siew Mooi Lim is with University Malaysia of Computer Science and

Engineering, Malaysia (e-mail: limsm66@gmail.com).

higher convergence speed, the challenge lies in locating the

optimal solution and chances are it may not get past a local

optimum. On the other hand, algorithms that favor

exploration over exploitation might consume more time in

locating the global optimum, that is, coincidentally, due to

its less sophisticated candidate solutions. A comprehensive

survey in exploration and exploitation in evolutionary

algorithms is reported [5].

Ref. [6], [7] reported that real parameter crossover

operators is equipped with self-adaptive features which

enable them to produce different degrees of exploration or

exploitation by looking at how they deal with the current

diversity of the population. The exploration process is

commenced by generating additional diversity starting from

the current one. This means finding new points in the search

space, which has not been investigated before. Another

alternative is for the crossover to start the exploitation

process by using the earlier generated diversity for creating

better elements; which improves and combines the traits of

the currently known solution(s). Elsayed et al [8] has

proposed a new GA which consists of three-parent

crossover that produces three new offspring. One of these

offspring is used for exploration process while the other two

offspring are to promote exploitation. Intensifications and

diversifications are synonymous to exploitation and

exploration, which have been introduced in Glover’s Tabu

search [9].

To add to that, Herrera et al [10] also shed some light on

the basic understanding of the availability of a crossover

adapting to different degrees of exploration and exploitation.

To illustrate this concept, let’s consider two genes, ca, cb∈ [x,

y] to be combined with αi = min {ca, cb} and βi = max {ca,

cb}. The action interval [x, y] of these genes is further

divided into three intervals: [x, αi], [αi, βi] and [βi, y] in order

to classify the exploration and exploitation zones.

Relaxed Exploitation

Exploration

 Exploitation Exploration

Fig. 1. Action interval for two genes (Ca and Cb) [10].

As shown in Fig. 1, the interval with both genes being the

extremes is declared as an exploitation zone because when a

crossover produces any genes, zi in this interval, it fulfills

the properties of max {|zi - αi|, | zi - βi|} ≤ | αi - βi |}. On the

other hand, the two intervals that remain on both sides are

exploration zones, because the said property is not fulfilled.

Crossover and Mutation Operators of Genetic Algorithms

Siew Mooi Lim, Abu Bakar Md. Sultan, Md. Nasir Sulaiman, Aida Mustapha, and K. Y. Leong

x αi' α i βi βi' y

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

9doi: 10.18178/ijmlc.2017.7.1.611

The zone with extremes αi' and βi' is declared as relaxed

exploitation zone. This region [αi', βi'] has the properties of

αi' ≤ αi and βi' ≥ βi. Therefore, based on the genes generated

on these intervals, any crossover operators for RCGAs can

determine their exploration and exploitation degrees.

III. MUTATION OPERATORS

Studies have been carried out on the varieties of mutation

techniques to improve the GAs performance over the years

[11]. The purpose of mutation operation is to change the

genes of the offspring and to increase the diversity of the

population. This process enables GAs to jump out of local

or suboptimal solutions to avoid premature convergence.

The following paragraph presents some prevalent mutation

operators [12]:

Mirror mutation and binary bit-flipping mutation [13],

[14] are alike in that the mirror mutator replaces a gene

with its mirror value at the middle point of the boundary

interval for the gene, whereas in bit-string representation

GA, bit-flip mutation remains unchanged. Order based GAs

and grouping GAs are instances of GA minus the bit-flip

mutation. Random (uniform) mutation [15] is a common

mutation operator based on Gaussian distribution whereby

the user specifies a range of uniform random value to

replace the value of the chosen gene.

Mutation based on directed variation techniques [16]

make use of the feedback information from the current

population to make changes to certain individuals. The

direction of mutation based on co-evolutionary technique

[17] is determined by a solution vector.

Directed mutation [18] is based on gradient or

extrapolation. The directed mutation deterministically finds

a new point in the population using the information applied

in the previous generations. Directed mutation based on

momentum [19] is a standard Gaussian mutation, which is

used to speed up the gradient descent training of neural

networks. The existing momentum functions as a mutator

for each component of an individual.

Covariance matrix adaptation evolution strategy (CMA-

ES) [20] was recommended by experts as an outstanding

parametric optimization algorithm. Muhlenbein’s mutation

(MM) [21] generates offspring with alleles and logarithmic

mutation (LM) [22] alters a randomly chosen allele.

The wavelet theorem gave rise to wavelet mutation [23].

This mutator performed the best among other RCGAs when

applied to the economic load dispatch and tuning an

associative-memory neural network. Edge mutation and

tension vector mutation [24] are based on the breadth-first

(BF) force-based and tension vector methods respectively.

Power mutation (PM) [25] and polynomial mutation

(PLM) [26] are based on power distribution and polynomial

distribution respectively. The strength of PM is regulated by

its index, whereby small (large) index value produces small

(large) diversity. Makinen, Periaux and Toivanen mutation

(MPTM) [27] has been proved to solve constrained and

multidisciplinary shape optimization problems. PM

performs better than MPTM and Non-Uniform Mutation

(NUM) when all three mutators were combined with

Laplace Crossover (LX). Of all of them, PLM is one of the

most widely used operator as it has been applied in single

and multi-objective optimization problems [28], [29].

The breeder GA mutation (BGA) [30] produces solutions

on equal sides of a chromosome. The perturbation created in

a chromosome is within a 10% range of what is permissible

for a particular gene. The design concepts of discrete and

continuous modal mutations [31] are similar to that of the

BGA.

Non-uniform mutation (NUM) [32] possesses a fine-

tuning capability whereby its action depends on the number

of the population in order to reach equilibrium between

exploration and exploitation. The search was performed

uniformly at the beginning and very locally towards the end

of the search. Such an approach is categorized as uni-

process driven. Multi-non-uniform mutation (MNUM) [33]

escalates the genetic diversity of a candidate individual. The

MNUM can perform a uniform search with local fine-tuning

thus increasing the exploitative capability. Principal

component analysis mutation (PCA) [34] on the other hand,

is applied on the IIR Filter design problem. It produces

higher level of diversity in the population as compared to

uniform and non-uniform mutation.

Adaptive mutation [35] operator uses the simulation of

gradient or counter-gradient direction in its searching

strategies. It relies on the frequency of the best

chromosomes’s genes and it possesses an adaptive feature.

On the contrary, adaptive directed mutation (ADM) [36]

incorporates the strategies of local directional search and the

adaptive random search to avoid the concentration of each

chromosome caused by a crossover operator. This strategy

can also prevent an unsystematic search of the system due to

random mutation.

Covariance matrix adaptation evolution strategy (CMA-

ES) [37] was recommended by experts as an outstanding

parametric optimization algorithm. Muhlenbein’s mutation

(MM) [38] generates offspring with alleles and logarithmic

mutation (LM) [39] alters a randomly chosen allele.

IV. CROSSOVER OPERATORS

Two main approaches of crossover development are

parent centric and mean centric operators. The parent

centric approach generates offspring near each of the

parents whereas mean centric generates offspring solutions

near the centroid of the parents, which is in the vicinity of

mean of the participating parents. Some well-known

crossover operators are reflected in the following paragraph

[12]. The discussions start with the classical examples.

Single point crossover, [40] detects one crossover point at

random before splitting parents at this crossover point

thereby producing offspring by exchanging tails. The

common crossover probability is within the range of 0.2 -

1.0. n-point crossover [41] is a generalization of the single

point crossover. The n crossover points are randomly

identified, after which they split along those points and

convene, and subsequently alternating between parents.

Uniform crossover assigns 'heads' to one parent, 'tails' to

the other. A coin is flipped for each gene of the first child

and an inverse copy of the gene is created for the second

child. Inheritance does not rely on position.

In an experiment conducted by Lobo [42], it was reported

that Ps has an impact on the exploration process. In this case,

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

10

the Ps is proportional to the search space. Contrary to that,

uniform crossover outperforms two-point crossover even

with a smaller selection of population in a particular

problem.

Discrete crossover [30] is analogous to the classical one-

point and uniform crossover. Uniform crossover is the

enhancement of UNDX [43]. Single point, n-point and

uniform crossover operators have been employed in binary

and real-coded GAs.

Arithmetical crossover [44] involves arithmetic

procedures aimed at generating new offspring, which are

sandwiched between the parents. A whole arithmetic

crossover has been applied in an adaptive pair bond GA [45].

On the other hand, Flat crossover (BLX-0.0) [46] utilizes

uniform distribution to randomly produce offspring between

the genes of the parents.

The above mentioned operators were among the few

initial attempts which implemented in an exploitative search.

They generate offspring only in the region bounded by the

parents thus causing premature convergence. However, this

problem was overcomed by the other crossover operators

whereby the offspring is produced in the exploration region

near the parents, and not only within the region bounded by

them.

Simulated binary crossover (SBX) [47] is devised to

simulate the effect of one-point crossover on a string of

binary alphabets in a continuous domain. The Taguchi

method is incorporated to improve the robustness and

degree of exploitation of the algorithm. A SBX based

multilevel thresholding real coded genetic algorithm has

been applied to segment the medical brain images into

normal and abnormal tissues.

Wright's heuristic crossover [48] employs the fitness

function value of the parent solutions to produce a child

solution from a pair of parents with a bias towards the better

one. Unimodal normal distribution crossover (UNDX) [43],

Parent centric crossover (PCX) [49] and UNDX-m [50] are

crossover operators with several parents.

UNDX generates offspring using a normal distribution

defined by three parents. Two or more offspring solutions

are created around the center of the mass. Both of the

operators are effectively used with an elite-preserving,

steady-state, scalable, and computationally fast evolutionary

model such as the G3 model. Additionally, UNDX-m is a

multi-parental extension of the UNDX and it possesses a

better search ability of the UNDX. It properly preserves the

statistics of mean vector and the covariance matrix of the

population.

Dynamic fuzzy connective based crossover [51] strife to

strike a balance between exploration and exploitation during

the evolution process. Heuristic fuzzy connective based

crossover works on retaining the diversity and speeds up the

convergence by exploring the region near to the superlative

parents.

Being a multi-parent crossover operator, the simplex

crossover (SPX) [52] generates offspring vector values by

uniformly sampling values from simplex formed by k (2 ≤ k

≤ number of parameters + 1) parent vectors.

In a linear crossover, two parents generate three offspring.

Through an offspring selection mechanism, it will determine

the two most promising offspring among the three to

substitute their parents in the population.

Average bound crossover [23] consists of both average

and bound crossovers. In average bound crossover, a pair of

parents produces four offspring solutions from which two of

the best offspring are selected to substitute the parents.

Hybrid crossover [53] use various types of crossovers, a

number of offspring solutions from the same set of parents

are formed.

It is claimed that representation of individuals strongly

influences the explorative and exploitative strengths of GA.

However, Geometrical crossover [54] does not rely on

representation and it is defined based on the distance of the

solution space.

Examples of parent- centric approaches include blend

crossover, fuzzy min-max, fuzzy recombination, SBX etc. On

the other hand, examples of mean-centric approaches are

SPX, UNDX and so on.

V. SUMMARY

The key to a successful implementation of GAs primarily

depends on the efficient crossover and mutation search

operators to guide the system toward global optima i.e.

locating the global minimum or maximum of the objective

functions to these problems. A balance between the two

explorative and exploitative features of GA, which are

characterized by the two operators, is imperative in order to

speed up the search process to produce quality GA solutions.

REFERENCES

[1] I. Korejo, S. Yang, and C. Li, “A directed mutation operator for
real coded genetic algorithms,” Applications of Evolutionary

Computation, Springer, pp. 491-500, 2010.

[2] W. Gong, Z. Cai, and D. Liang, “Adaptive ranking mutation
operator based differential evolution for constrained optimization,”

IEEE Transactions, Cybernetics, vol. 45, no. 4, pp. 716-727, 2015.

[3] N. Fang, J. Zhou, R. Zhang, Y. Liu, and Y. Zhang, “A hybrid of
real coded genetic algorithm and artificial fish swarm algorithm for

short-term optimal hydrothermal scheduling,” International

Journal of Electrical Power and Energy Systems, vol. 62, pp. 617-
629, 2014.

[4] S. Kumar, V. K. Sharma, and R. Kumari, “A novel hybrid

crossover based artificial bee colony algorithm for optimization
problem,” Arxiv Preprint Arxiv, 2014.

[5] M. Črepinšek, S. Liu, and M. Mernik, “Exploration and

exploitation in evolutionary algorithms: A survey,” ACM
Computing Surveys (CSUR), vol. 45, no. 3, pp. 35, 2013.

[6] H. Kita, “A comparison study of self-adaptation in evolution

strategies and real-coded genetic algorithms,” Evolutionary
Computation, vol. 9, no. 2, pp. 223-241, 2001.

[7] H. Beyer and K. Deb, “On self-adaptive features in real-parameter

evolutionary algorithms,” Evolutionary Computation, IEEE
Transactions, vol. 5, no. 3, pp. 250-270, 2001.

[8] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “A new genetic

algorithm for solving optimization problems,” Engineering
Applications of Artificial Intelligence, vol. 27, pp. 57-69, 2014.

[9] F. Glover and M. Laguna, Tabu Search, Springer, 2013.

[10] F. Herrera, M. Lozano, and A. M. Sánchez, “A taxonomy for the

crossover operator for real‐coded genetic algorithms: An
experimental study,” International Journal of Intelligent Systems,

vol. 18, no. 3, pp. 309-338, 2003.

[11] P. Tang and M. Tseng, “Adaptive directed mutation for real-coded
genetic algorithms,” Applied Soft Computing, 2012.

[12] S. M. Lim, “Crossover and mutation operators of real coded genetic

algorithms for global optimization problems,” unpublished Ph.D

thesis, University Putra Malaysia, Malaysia, 2016.

[13] L. Davis, Handbook of Genetic Algorithms Van Nostrand Reinhold

New York, 1991.

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

11

[14] E. Falkenauer and A. Delchambre, “A genetic algorithm for bin

packing and line balancing,” in Proc. IEEE International

Conference on Robotics and Automation, 1992, pp. 1186-1192.

[15] D. E. Goldberg, “Genetic algorithms in search, optimization and

machine learning,” New York: Addison-Wesley, 1989.

[16] Q. Zhou and Y. Li, “Directed variation in evolution strategies,” in
Proc. IEEE Transactions on Evolutionary Computation, 2003, vol.

7, no. 4, pp. 356-366.

[17] A. Berry and P. Vamplew, “Pod can mutate: A simple dynamic
directed mutation approach for genetic algorithms,” 2004.

[18] D. Bhandari, N. R. Pal, and S. K. Pal, “Directed mutation in genetic

algorithms,” Information Sciences, vol. 79, no. 3, pp. 251-270,
1994.

[19] L. Temby, P. Vamplew, and A. Berry, “Accelerating real-valued

genetic algorithms using mutation-with-momentum,” AI 2005:
Advances in artificial intelligence, Springer, pp. 1108-1111, 2005.

[20] N. Hansen and A. Ostermeier, “Completely derandomized self-

adaptation in evolution strategies,” Evolutionary Computation, vol.
9, no. 2, pp. 159-195, 2001.

[21] H. Mühlenbein, M. Schomisch, and J. Born, “The parallel genetic

algorithm as function optimizer,” Parallel Computing, vol. 17, no.

6, pp. 619-632, 1991.

[22] P. Pongcharoen, W. Chainate, and P. Thapatsuwan, “Exploration of

genetic parameters and operators through travelling salesman
problem,” Science Asia, vol. 33, no. 2, pp. 215-222, 2007.

[23] S. Ling and F. F. Leung, “An improved genetic algorithm with

average-bound crossover and wavelet mutation operations,” Soft
Computing, vol. 11, no. 1, pp. 7-31, 2007.

[24] D. Vrajitoru and J. DeBoni, “Hybrid real-coded mutation for

genetic algorithms applied to graph layouts,” in Proc. 2005
Conference on Genetic and Evolutionary Computation, pp. 1563-

1564, 2005.

[25] K. Deep and M. Thakur, “A new mutation operator for real coded
genetic algorithms,” Applied Mathematics and Computation, vol.

193, no. 1, pp. 211-230, 2007b.

[26] K. Deb and M. Goyal, “A combined genetic adaptive search
(GeneAS) for engineering design”, Computer Science and

Informatics, vol. 26, pp. 30-45, 1996.

[27] Toivanen, Raino, J. Périaux, and F. Cloud Cedex,

“Multidisciplinary shape optimization in aerodynamics and

electromagnetics using genetic algorithms,” Int. J. Numer. Meth.
Fluids, vol. 30, pp. 149-159, 1999.

[28] K. Deb and R. B. Agrawal, “Simulated binary crossover for

continuous search space,” 1994,
[29] K. Deb, “Multi-objective optimization using evolutionary

algorithms,” John Wiley & Sons, 2001.

[30] D. Schlierkamp-Voosen, “Predictive models for the breeder genetic
algorithm,” Evolutionary Computation, vol. 1, no. 1, pp. 25-49,

1993.

[31] H. Voigt and T. Anheyer, “Modal mutations in evolutionary
algorithms,” in Proc. IEEE World Congress on Computational

Intelligence, 1994, pp. 88-92.

[32] Z. Xinchao, “Simulated annealing algorithm with adaptive
neighborhood,” Applied Soft Computing, vol. 11, no. 2, pp. 1827-

1836, 2011.

[33] C. R. Houck, J. Joines, and M. G. Kay, “A genetic algorithm for
function optimization: A matlab implementation,” NCSU-IE TR,

vol. 95, no. 9, 1995.

[34] C. Munteanu, and V. Lazarescu, “Improving mutation capabilities
in a real-coded genetic algorithm: Evolutionary image analysis,

signal processing and telecommunications,” Springer, pp. 138-149,

1999.
[35] M. Chen and F. Liao, “Adaptive mutation operators and its

applications,” Journal of Dayeh University, vol. 7, no. 1, pp. 91-

101, 1998.
[36] P. Tang and M. Tseng, “Adaptive directed mutation for real-coded

genetic algorithms,” Applied Soft Computing, vol. 13, no. 1, pp.

600-614, 2013.
[37] N. Hansen and A. Ostermeier, “Completely de-randomized self-

adaptation in evolution strategies,” Evolutionary Computation, vol.

9, no. 2, pp. 159-195, 2001.
[38] H. Mühlenbein, M. Schomisch, and J. Born, “The parallel genetic

algorithm as function optimizer,” Parallel Computing, vol. 17, no.

6, pp. 619-632, 1991.
[39] P. Pongcharoen, W. Chainate, and P. Thapatsuwan, “Exploration of

genetic parameters and operators through travelling salesman

problem,” Science Asia, vol. 33, no. 2, pp. 215-222, 2007.

[40] J. H. Holland, “Adaption in natural and artificial systems,”

University of Michigan press, 1975.

[41] L. J. Eshelman, “Crossover operator biases: Exploiting the

population distribution,” in Proc. the Seventh International

Conference on Genetic Algorithms, pp. 354-361, 1997.

[42] F. G. Lobo and D. E. Goldberg, “The parameter-less genetic
algorithm in practice,” Information Sciences, vol. 167, no. 1, pp.

217-232, 2004.

[43] I. Ono, H. Satoh, and S. Kobayashi, “A real-coded genetic
algorithm for function optimization using the unimodal normal

distribution crossover,” Transactions of the Japanese Society for

Artificial Intelligence, vol. 14, pp. 1146-1155, 1999.
[44] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs, 3rd ed. Springer, 1996.

[45] T. Y. Lim, M. A. Al-Betar, and A. T. Khader, “Adaptive pair bonds
in genetic algorithm: An application to real-parameter optimization,”

Applied Mathematics and Computation, vol. 252, pp. 503-519,

2015.
[46] N. J. Radcliffe, “Equivalence class analysis of genetic algorithms,”

Complex Systems, vol. 5, no. 2, pp. 183-205, 1991.

[47] R. Agrawal and B. Deb, “Simulated binary crossover for

continuous search space,” 1994.

[48] A. H. Wright, “Genetic algorithms for real parameter optimization,”

in Foundations of Genetic Algorithms I, FOGA, G. J. E. Rawlins.
Ed. pp. 205-218, 1990.

[49] K. Deb, A. Anand, and D. A. Joshi, “Computationally efficient

evolutionary algorithm for real-parameter optimization,”
Evolutionary Computation, vol. 10, no. 4, pp. 371-395, 2002.

[50] H. Kita, I. Ono, and S. Kobayashi, “Multi-parental extension of the

unimodal normal distribution crossover for real-coded genetic
algorithms,” Evolutionary Computation, CEC 99, 1999.

[51] F. Herrera and M. Lozano, “Adaptation of genetic algorithm

parameters based on fuzzy logic controllers,” Genetic Algorithms
and Soft Computing, vol. 8, pp.95-125, 1996.

[52] S. Tsutsui, M. Yamamura, and T. Higuchi, “Multi-parent

recombination with simplex crossover in real coded genetic
algorithms,” in Proc. the Genetic and Evolutionary Computation

Conference, vol. 1, pp. 657-664, 1999.

[53] R. Ramli, A. R. Rosshairy, “Average concept of crossover operator

in real coded genetic algorithm,” 2005.

[54] A. Moraglio, Y. Kim, Y. Yoon, and B. Moon, “Geometric
crossovers for multiway graph partitioning,” Evolutionary

Computation, vol. 15, no. 4, pp. 445-474, 2007.

Siew Mooi Lim is an assistant professor in Faculty of Computer Science at

University Malaysia of Computer Science and Engineering. She is also the

coordinator of Postgraduate Studies and Research at the same university.
She completed her Ph.D in intelligent computing at University Putra

Malaysia in 2016. Her research interests include nature-inspired algorithms,

optimization problems, data mining and business intelligence.

Abu Bakar Md. Sultan is a professor and dean in Faculty of Computer

Science and Information Technology at University Putra Malaysia. He
completed his Ph.D in intelligent system at University Putra Malaysia in

2006. His research interests include metaheuristics, evolutionary and

computing.

Md. Nasir Sulaiman is an associate professor in Faculty of Computer

Science and Information Technology at Universiti Putra Malaysia. He
completed his Ph.D in computer science at Loughborough University, U.K.,

in 1994. His research interests include intelligent computing and data

mining.

Aida Mustapha is a senior lecturer in Faculty of Computer Science and

Information Technology at University Tun Hussein Onn Malaysia. She is
also the deputy dean of research and development at the same university.

She completed her Ph.D in computational linguistics at University Putra

Malaysia in 2008. Her research interests include stylometry, soft computing,
and spoken dialogue systems.

K.Y. Leong is a Ph.D candidate. Currently, he is pursuing his Ph.D at
Monash University Malaysia. His research project mainly focuses on

cognitive robotics and assistive technology in mobility for the visually

impaired people.

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

12

