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Abstract—Gait generation is very important as it directly 

effects on the quality of locomotion of biped robots. In point of 

mathematical view, a gait generation problem is considered as 

an optimization problem with constraints, it is readily engaged 

itself to Evolutionary Computation methods and solutions. This 

paper proposes a novel approach for gait pattern generation of 

the biped robot. This is to aim to enable the robot to walk more 

naturally and more stably in locomotion on flat ground. In this 

study, the approximated optimization method based on 

Artificial Neural Networks (ANNs) and Improved 

Self-Adaptive Differential Evolution Algorithm (ISADE) for a 

gait generation problem is mentioned. To evaluate the 

achievement of the proposed method, the robot was simulated 

by multi-body dynamic simulation software, Adams (MSC 

software, USA). Besides, the walking behavior of the robot is 

also considered in comparison with that of the human. The 

result shows that the new approach is an effective method for a 

gait generation of the biped robot. 

 
Index Terms—ANNs, biped robot, ISADE, gait generation.  

 

I. INTRODUCTION 

Human has a complicated physical structure and 

implements difficult movements. During the past several 

decades, many researchers in the world have concentrated on 

the field of the biped robot inspired by humans [1]-[5]. The 

first aim of researches carried out in this field attempts to 

solve the following problem: How can the robot walk 

naturally and stably. This goal is motivated by several 

applications of the biped robot development such assistance, 

entertainment and medical issues. Hence, they have to move 

in a domestic environment and should have the same ability 

as humans to carry out stable walking. 

To reach this target, several works were done for the 

generation of the walk of biped robot using the reinforcement 

learning [6], [7]. Furthermore, a big majority of the walk 

pattern researches was done based on the zero moment point 

(ZMP) criterion. Likewise, Kondo et al. [8] described an 

algorithm for emulations of disabled person’s gait based on 

the ZMP criterion. Also, a constrained analytical trajectory 

filter [9] was a part of an analytical motion filter using the 

zero moment point as the stability criteria.  

Some works of the walking gaits were based on 
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developing the passive dynamics walking and using other 

methods such as central pattern generator (CPG) [10]. Also, 

Narukawa et al. [11] focused on the use of passive dynamics 

to achieve efficiently walking with simple mechanisms by 

using a numerical approach. 

On the other hand, several researchers consider gait 

generation as a multiconstrained, multiobjective optimization 

problem. Gait generation, which combines to control the 

robot’s gait. For instance, human motion captured data has 

been collected to drive a humanoid robot [12]. However, a 

number of papers indicate that biological locomotion data 

can not be used directly for a biped robot caused by kinematic 

and dynamic discrepancies between humans and the biped 

robot. This indicates the need for kinematic adjustments in 

calculating joint angle trajectory [12]. 

The second strategy considers the gait generation problem 

of the biped robot as an optimization problem with 

constraints. The optimal gait cycle is generated by 

minimizing some performance indexes, for instance, the 

velocity of motion [13], [14], stability criteria, energy 

consumption [15], [16], and so on. The gait generation 

problem of the biped robot often has several objectives and 

some of the objectives may be inconsistent to each other (for 

example speed and stability). Hence, it can be said that the 

gait generation problem is a multi-constrained and 

multi-objective optimization problem [17]. These two gait 

generation strategies may reach the same goal by different 

methods since both of them actually solve the gait synthesis 

problem as a multi-constrained multi-objective optimization 

problem. This paper addresses to a novel approach for gait 

generation based on combining two above-mentioned 

strategies. It is called approximated optimization method 

using ANNs and ISADE [18]. From human motion captured 

data, gait functions are interpolated. After that, the 

optimization problem is formulated to optimize the 

coefficients of gait function. ANNs is applied to approximate 

objective function and constraint functions. In this paper, 

ISADE  once again performs an outstanding approach to 

multi-constraints, multi-peak problems. It was capable of 

attaining robustness, high quality, low calculation 

outstanding efficient performance on various problems in 

comparison to standard Differential Evolution (DE) 

algorithm. In addition, in this study, a new foot structure with 

toes is also proposed for the biped robot. The rest of this 

paper is organized into  five sections. Section II describes the 

mechanical structure of the biped robot. The optimization 

procedure is in Section III. Section IV describes the 

methodology. Section V shows the results of the experiment 

confirmed by Adams. Finally, Section VI includes some 
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conclusions. 

 

II. EXPERIMENTAL ROBOT MODEL 

A. Overview of Structural Design 

In this study, the proposed model is built based on the 

KHR-3HV robot of Kondo Kagaku Company [19] which is 

the third generation of a humanoid robot developed by this 

company. The KHR-3HV robot has the weight of 1.5kg, the 

height of 401.05mm and up to 22 Degree of Freedom (DOF) 

with 17 actual servos and 5 dummy servos. However, in this 

work, robot legs are concentrated. Thus, upper body joints 

are fixed and lower body have 10 controlled joints for the legs 

as shown in Fig. 1. 

 

 

Fig. 1. Real robot and simulation model. 

 

B. Foot Mechanism 

During a stance phase of the human walk, support area 

continuously varies on the sole of the foot as described in Fig. 

2. At the end of toe-off, there is a phase switch from stance to 

swing. Toes have an important role in this process, it makes 

the phase switch smoother and more stable due to a decrease 

of the effect of ground reaction force varied unexpectedly. 

By this idea, a new foot structure with toes is proposed to 

enhance the walking behavior of the biped robot as depicted 

in Fig. 3.  

 

 

Fig. 2. Sequence of foot support areas 

During stance phase [20]. 

 
Fig. 3. Foot structure with toes. 

 

Fig. 3 shows the proposed foot basic dimensions. In [21], 

Chockalingam et al. have proved that average ratio between 

the foot length and heel varies from 1.196 to 1.426. Thus, the 

length of heel and foot are designed of 95mm and 123mm. 

The ankle joint position is determined based on the real robot. 

As proven in [22], the biped robot whose big toe ratio per 

foot width equals 0.28, has the longest walking distance when 

big toe length is fixed and this ratio is similar to the ratio of 

the human foot. Therefore, the width of big toe and foot are 

designed of 22mm and 78mm. Since KHR-3HV is a small 

biped robot, energy saver is noticeable. In toe mechanism, 

considering a reduction in energy consumption, the passive 

joint using torsion spring was selected as a toe joint. Spring 

stiffness coefficients are respectively set of 0.52 N.mm/deg, 

0.26 N.mm/deg to big toe joint and lesser toe joints. 

Coefficients of static and kinetic friction are 0.5, 0.417 for 

heel and ground, 0.17, 0.155 for toe and ground, respectively. 

 

III. OPTIMIZATION PROCEDURE 

A. Definition of Joint Angle 

The joint angles are defined as described in Fig. 4. The 

range of angle is determined based on human motion data as 

in Table I. 

 

 
Fig. 4. Robot linkage model. 

 
TABLE I: THE RANGE OF JOINT ANGLE 

Angle View plane Leg Joint Value 

φ1 Frontal Both Hip and ankle -15o to 15o 

φ2 Sagittal Right Hip -50o to 50o 

φ3 Sagittal Right Knee 0o to 60o 

φ4 Sagittal Right Ankle -50o to 50o 

φ5 Sagittal Left Hip -50o to 50o 

φ6 Sagittal Left Knee 0o to 60o 

φ7 Sagittal Left Ankle -50o to 50o 

φ8r Sagittal Right Proximal phalanx 0o to 30o 

φ9r Sagittal Right Distal phalanx 0o to 30o 

φ8l Sagittal Left Proximal phalanx 0o to 30o 

φ9l Sagittal Left Distal phalanx 0o to 30o 

 

B. Gait function 

Basing on the human walking pattern as depicted in [23], 

suppose that the robot control data was generated by the gait 

function as trigonometric function shown in Equation 1. 

      φi (t) = ai + bi.cos(ωt) + ci.sin(ωt) + bi.cos(ωt)    (1) 

where φi is the angle of i joint, a, b, c, d are coefficients, t is 

time, and ω is angular velocity. By changing a, b, c, d 

coefficients, the gait function will be created to allocate to 

each joint of the robot. 

In this study, the biped robot is considered the locomotion 

on flat ground with the total time of 4.8 seconds. The robot is 

simulated in 3 cycles which spend on 3.6 seconds, 1.2 left 

seconds is used for checking robot stability. One cycle is set 

up to 1.2 seconds. As a result, the angular velocity is 

calculated by Equation 2. In the simulation, one step takes 
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0.02 second, the total number of step is 240. In the second 

cycle, the biped robot performs its motion the most natural, 

hence this cycle will be selected to show the waveform of gait 

function. 

                      ω = 
2.𝛱

1.2
 = 5.236 (rad/s)                             (2) 

Gait functions are assigned to all joints as Equation 3-9.   

       φ1 = 
0, 𝑡 = 0 𝑜𝑟 𝑡 ≥ 3.6

±1.5, 𝑡 = 0.3 𝑎𝑛𝑑 𝑡 = 3.3
𝜑1 𝑡 , 0.3 < 𝑡 < 3.3

   (3) 

       φ2 = 
0, 𝑡 ≤ 0.3 𝑜𝑟 𝑡 ≥ 3.6

𝜑2 𝑡 + 0.6 , 0.3 < 𝑡 < 3.3
15, 𝑡 = 3.3

   (4) 

       φ3 = 
0, 𝑡 ≤ 0.3 𝑜𝑟 𝑡 ≥ 3.6

𝜑3 𝑡 + 0.6 , 0.3 < 𝑡 < 3.3
30, 𝑡 = 3.3

   (5) 

       φ4 = 
0, 𝑡 ≤ 0.3 𝑜𝑟 𝑡 ≥ 3.6

𝜑4 𝑡 + 0.6 , 0.3 < 𝑡 < 3.3
15, 𝑡 = 3.3

                 (6) 

       φ5 = 
0, 𝑡 = 0 𝑜𝑟 𝑡 ≥ 3.3

15, 𝑡 = 0.3
𝜑2 𝑡 , 0.3 < 𝑡 < 3.3

                          (7) 

       φ6 = 
0, 𝑡 = 0 𝑜𝑟 𝑡 ≥ 3.3

30, 𝑡 = 0.3
𝜑3 𝑡 , 0.3 < 𝑡 < 3.3

                          (8) 

       φ7 = 
0, 𝑡 = 0 𝑜𝑟 𝑡 ≥ 3.3

15, 𝑡 = 0.3
𝜑4 𝑡 , 0.3 < 𝑡 < 3.3

                         (9) 

In toe mechanism, due to considering a reduction in the 

energy consumption of the robot, the passive joint is selected 

as toe joint. Consequently, φ8r, φ8l, φ9r, and φ9l have values in 

the range from 0
o
 to 30

o
. Their values depend on the robot 

geometric posture as well as impact force when the robot 

walks.  

C. Problem Formulation 

The concept of the optimization process is shown as in Fig. 

5. Zf and Xf denote the distance from the initial position to 

final position along z-axis and x-axis in the robot locomotion, 

respectively. Rf is the angle of rotation. 

 

 
Fig. 5. Overview of optimization. 

 

Definition of optimal design is described as Equation 

10-17. 

Design variables (DVs): 

                          x = [ai, bi, ci, di], i = 1÷4                         (10) 

Constraint functions: 

                          g1 (x)  = 20 - |Xf| ≥ 0  (11) 

                          g2 (x)  = 5 - |Rf| ≥ 0  (12) 

                          g3 (x)  = 243.53 - Yf ≤ 0  (13) 

                          h (x)  = N - 240 = 0  (14) 

where Yf is distance from Centre of Mass (CoM) to ground. N 

is a total simulation step. 

Objective function: 

                         f (x)  = - Zf  →  min                             (15) 

Penalty function: 

               P(x)  = 𝑚𝑎𝑥⁡(𝑔𝑖(𝑥)3
𝑖=1 , 0) + h (x)              (16) 

Modified objective function: 

                       F(x)   = - Zf  + γ.P →  min                       (17) 

where ai, bi, ci, di (i = 1, 2, 3, 4) are the coefficients of gait 

function. There are four constraint functions. In Equation 

11-12, Xf distance and Rf angle are constrained under ±20mm 

and ±5
o
 to ensure that the biped robot can walk straight. In 

Equation 13, Yf must be more than 243.53mm to ensure the 

robot not to slip and fall down at the final framework. In 

Equation 14, N is equal to 240 to check the success of the 

simulation. In Equation 17, γ is a penalty coefficient set to 

1000. Equation 11-14 will be also checked again when the 

simulation finishes. 

 

IV. METHODOLOGY APPROACH 

A. Neural Network Overview 

Neural network (NN) is a mathematical model that aims to 

represent certain characteristics of brain functions. This study 

was based on models of the living brain. Models of the brain 

are becoming increasingly significant due to advances in 

neuroscience, especially the distinction between biology and 

neuroscience (also known as ANNs). NNs were first modeled 

by McCulloch and Pitts in 1943. The learning method was 

proposed by Hebb in 1949, which forms the basis of the 

current network learning method. The perception neural 

network was proposed in 1958. 

The neural network can be divided into three major 

learning paradigms such as supervised learning, 

unsupervised learning, and reinforcement learning. If 

supervised learning is that you are provided a mapping 

implied by the data, unsupervised learning is used for data 

clustering. As a result of any reduced dimension, for linearly 

inseparable problems and the amount of multi-dimensional 

data such as images and statistics, a good solution is 

relatively obtained with a small amount of calculation. From 

this fact, including data mining and pattern recognition, have 

been applied in various fields. 

Back-propagation is a method used by the three-layer 

structure found in most NNs. Fig. 6 shows the output of each 

neuron outj, a sum of weights netj, the output unit connection 

weights from the hidden units wjk and the connection weights 

to the hidden units from the input layer unit wji. The 
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back-propagation error activation function (a sigmoid 

function) described in Equation 20 is often used. To 

determine whether the signal of output layer is much closer to 

the teacher signal, the error back-propagation method defines 

the squared error E, which can be expressed using Equation 

21. Thus, if E approaches 0, the signal of the output layer 

approaches the teacher signal. Therefore, the purpose of the 

back-propagation method is to determine the weight of wji, 

wjk. 
 

 

 

 

 

 

 

 

 

 

 
Fig. 6. ANN architecture. 

                                netj  =  𝑤𝑗𝑖 .𝐿𝑛
𝑖=0 𝑜𝑢𝑡𝑖                          (18) 

                                 𝑤𝑗 𝑛 𝑖𝑛   = ynm/y(n-1)m                              (19) 

                          f (netj) = 1/(1 + 𝑒𝑥𝑝−𝑛𝑒𝑡 𝑗 )                      (20) 

               E = 
1

2
.  (𝑦𝑝𝑖 − 𝑜𝑢𝑡𝑖)

2𝐿𝑛
𝑖  ; (1 ≤ p ≤ P)             (21) 

B. Improved Self-Adaptive Differential Evolution  

Differential evolution (DE) is an optimization technique 

originally proposed by Storn and Price [24]. It is categorized 

into evolution algorithm group, which is characterized by 

operators of mutation and crossover. In DE, two important 

coefficients, which play key roles to decide the correction 

and speed of convergence, are scaling factor F and crossover 

rate Cr. Another important parameter in DE, population size 

NP remains a user-assigned value to cope with problem 

complexity. ISADE not only adaptively changes those three 

coefficients but also integrate different mutation schemes to 

take advantages of them. 

1) Adaptive learning strategies selection 

In [18], Tam Bui et al. randomly chose three mutation 

schemes, which are DE/best/1/bin, DE/best/2/bin, and 

DE/rand best/1/bin. Among DE’s schemes, DE/best/1/bin 

and DE/best/2/bin are known for good convergence property 

and DE/rand best/1/bin is known for good diversity. The 

probability of applying those strategies are equally assigned 

at with values p1 = p2 = p3 = 1/3. Equation 8 shows the 

formula of chosen schemes.  

           DE/best/1: 𝑉𝑖 ,𝑗
𝐺  = 𝑋𝑏𝑒𝑠𝑡 ,𝑗

𝐺  + F.( 𝑋𝑟1,𝑗
𝐺  - 𝑋𝑟2,𝑗

𝐺 )   (22a) 

DE/best/2: 𝑉𝑖,𝑗
𝐺  = 𝑋𝑏𝑒𝑠𝑡 ,𝑗

𝐺  + F.( 𝑋𝑟1,𝑗
𝐺  - 𝑋𝑟2,𝑗

𝐺 ) +  

F.( 𝑋𝑟3,𝑗
𝐺  - 𝑋𝑟4,𝑗

𝐺 )              (22b) 

DE/best/2: 𝑉𝑖,𝑗
𝐺  = 𝑋𝑏𝑒𝑠𝑡 ,𝑗

𝐺  + F.( 𝑋𝑏𝑒𝑠𝑡 ,𝑗
𝐺  - 𝑋𝑟2,𝑗

𝐺 ) +  

F.( 𝑋𝑟3,𝑗
𝐺  - 𝑋𝑟4,𝑗

𝐺 )               (22c) 

In APGA/VNC approach proposed by S. Tooyama and H. 

Hasegawa [25] scaling factor changes according to iteration 

as sigmoid function as in Equation 23. 

                           Fi  = 
1

1 + exp ⁡(𝛼
𝑖−

𝑁𝑃
2

𝑁𝑃
)

                 (23) 

ISADE give addition scaling 𝐹𝑖
𝑚𝑒𝑎𝑛  as in Equation 24. 

              𝐹𝑖
𝑚𝑒𝑎𝑛  =Fmin + (Fmax – Fmin) (

𝑖𝑚𝑎𝑥 −𝑖

𝑖𝑚𝑎𝑥
)𝑛𝑖𝑡𝑒𝑟          (24) 

where 

                 niter =nmin + (nmax – nmin) 
𝑖

𝑖𝑚𝑎𝑥
             (25) 

Fi in Equation 23 is modified as in Equation 26 

                                 Fi = 
𝐹𝑖  + 𝐹𝑖

𝑚𝑒𝑎𝑛

2
                   (26) 

Now scaling factor is set to be high in the first iteration and 

after certain generations, it becomes smaller for proper 

exploitation.  

2) Crossover control parameter 

ISADE algorithm is able to detect whether high values of 

Cr are useful and if a rotationally invariant crossover is 

required. A minimum base for Cr around its median value is 

incorporated to avoid stagnation around a single value. The 

control parameter Cr is assigned as Equation 27. 

                    𝐶𝑟
𝑖+1= 

𝑟𝑎𝑛𝑑2       𝑖𝑓   𝑟𝑎𝑛𝑑1 <  𝜏

𝐶𝑟
𝑖       𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

              (27) 

where rand1 and rand2 are random values ∈ [0,1], τ presents 

probability to adjust Cr. Cr is adjusted as in Equation 28. 

    𝐶𝑟
𝑖+1= 

𝐶𝑟𝑚𝑖𝑛
     𝑖𝑓   𝐶𝑟𝑚𝑖𝑛

≤ 𝐶𝑟
𝑖+1  ≤    𝐶𝑟𝑚𝑒𝑑𝑖𝑢𝑚

 𝐶𝑟𝑚𝑎𝑥
      𝑖𝑓   𝐶𝑟𝑚𝑒𝑑𝑖𝑢𝑚

≤ 𝐶𝑟
𝑖+1  ≤    𝐶𝑟𝑚𝑎𝑥

 
     (28) 

where 𝐶𝑟𝑚𝑖𝑛
, 𝐶𝑟𝑚𝑒𝑑𝑖𝑢𝑚

,  𝐶𝑟𝑚𝑎𝑥
 denote low value, median 

value and high value of crossover parameter respectively. As 

in [18], we take τ = 0.1, 𝐶𝑟𝑚𝑖𝑛
= 0.05, 𝐶𝑟𝑚𝑒𝑑𝑖𝑢𝑚

= 0.5, 

𝐶𝑟𝑚𝑎𝑥
=0.95. 

All above ideas and theories are implemented as in 

flowchart in Fig. 7. 

C. Optimization Solution  

The optimization process is implemented as the following 

steps: 

Step 1. Setting up ranges for variables and design of 

experiment based on random samples. 

Step 2. To collect and filter sample data by simple 

analysis. 

Step 3. Building the architecture of ANN for 

approximating an objective function and constraint 

functions. 

Step 4. The objective function approximated by ANN is 

optimized by using ISADE. 

Step 5. Design variables from step 4 are used to check 

constraint functions again through the simulation. 

Step 6.  The convergence is checked. If this is achieved, 

the optimal process will be terminated. Oppositely, 

the repetition will begin from step 4. 
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Fig. 7. Procedure of ISADE [18]. 

 

V. EXPERIMENT AND RESULT 

A. Data Fitting 

To determine the weights of wji. wjk, the total number of 

sample for training ANN is 200. This number of the 

experiment is decided based on the response surface model 

3
rd

 order as described in Equation 29. Some more 

experiments are implemented to enhance the accuracy of the 

approximated model.  

      Ns = 
(𝑁 + 1)(𝑁+2)

2
 + N                            (29) 

where N is the number of design variables, N=16. The 

approximation is shown as in Fig. 8. The accuracy of the 

method is evaluated by R-squared analysis which is more 

than 0.95 (95%). This value performs the success of the 

approximation model. 

 

 
Fig. 8. Experimental and predicted values of ANN model. 

 

B. Simulation Result 

In the optimization process using ISADE algorithm, we set 

the number of iteration to 1000 or the fitness function value 

does not increase in 50 consecutive iterations. The results are 

described as in Table II and Fig. 9. F8 performs the best result 

with Xf, Zf, Rf of 0.044mm, 177.96mm and 1.2
o
, respectively.  

In [26], Michael S Orendurff et al. have examined the 

differences in limb kinematics and kinetics, which occur 

while walking straight ahead and around 1m radius circular 

path at constant speed. When walking straight ahead, the 

CoM oscillates between foot contacts in a sinusoidal pattern 

as depicted in Fig. 10. In comparison with the human, the 

robot’s CoM shown in Fig. 11 also has a sinusoidal wave and 

the foot trajectories have a curve tread like a human foot 

trajectory. The difference mainly appears due to physical 

structure dissimilarity. 

TABLE II: SIMULATION RESULT 

No Xf(mm) Zf(mm) Rf(degree) N 

F1 0.725 154.56 3.837 240 

F2 2.962 160.22 -0.431 240 

F3 0.837 161.78 -2.291 240 

F4 19.690 165.50 4.419 240 

F5 -6.273 165.74 -4.201 240 

F6 5.380 166.34 1.139 240 

F7 -4.770 168.30 0.796 240 

F8 0.044 177.96 1.203 240 

 

 
Fig. 9. Optimization process convergence. 

 

 
Fig. 10. Human’s CoM trajectory during straight ahead walking [26]. 

 

 
Fig. 11. CoM and ankle position trajectory in locomotion on flat ground. 

 

A consideration of the gait similarity between the robot 
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and the human in locomotion on flat ground is depicted as in 

Fig. 12. The robot gait at time 1.2s likes an “Initial contact 

period” of the human gait, at time 1.5s likes “Midstance 

period”, at time 1.8s likes “Terminal stance period”, at time 

2.1s likes “Initial swing period” where it can be observed the 

bending of toes and at time 2.4s likes “Terminal swing 

period”. The differences of posture are expected to occur as a 

consequence of the physical structure dissimilarity with the 

human’s structure. The waveform of gait function allocated 

to all joints of the robot is shown in Fig. 13. As can be seen, 

the waveforms of hip and knee joint gait function are similar 

to that of human beings. 

 

 
Fig. 12. Gait comparison of the biped robot with the human. 

 

 
Fig. 13. Waveform of the gait function. 

 

VI. CONCLUSION 

A gait pattern generation is a very challenging task in the 

biped robot area. Recently, the approach of using 

evolutionary algorithms (EAs), especially new methods, 

proved their potential of tackling gait generation problem 

based on their effectiveness on searching for optimal result.  
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In this paper, to generate walking gait of a small biped 

robot, a novel gait pattern generation method is proposed 

called the approximated optimization method based on 

ISADE and ANN. Through the dynamic simulation of the 

robot locomotion by Adam software, the result showed that 

the novel approach has high performance for a gait pattern 

generation problem. ANN one again performs the excellent 

predictive capabilities for the non-linear problem. With 

ISADE algorithm as a searching tool, it is not necessary to 

have good initials to avoid local minima and converge to 

near-global minimal solutions. ISADE using self-adaptive 

coefficients shows its effective for a multiconstrained 

problem with fast convergence and accuracy. Besides, the 

proposed approach reduced the complexity of gait pattern 

generation problem in comparison to the conventional 

methods mentioned in previous works. Finally, this study 

plans to do improvement with an objective function such as 

energy cost. 
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