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Abstract—The need to analyze high-dimensional data in 

various areas, such as image processing, human gene regulation 

and smart grids, raises the importance of dimensionality 

reduction. While classical linear dimensionality reduction 

methods are easily implementable and efficiently computable, 

they fail to discover the true structure of high-dimensional data 

lying on a non-linear subspace. To overcome this issue, many 

non-linear dimensionality reduction approaches, such as Locally 

Linear Embedding, Isometric Embedding and Semidefinite 

Embedding, have been proposed. Though these approaches can 

learn the global structure of non-linear manifolds, they are 

computationally expensive, potentially limiting their use in 

large-scale applications involve very high-dimensional data. An 

innovative method framework that combines random 

projections and non-linear dimensionality reduction methods is 

proposed in this paper to increase computational speed and 

reduce memory usage, while preserving the non-linear data 

geometry. Illustrations with various combinations of random 

projections and non-linear dimensionality reduction methods 

tested on a hand-written digits dataset are also given in this 

paper to demonstrate that this method framework is both 

computationally efficient and globally optimal. 

 
Index Terms—Random projections, nonlinear dimensionality 

reduction, manifold learning, high dimensional data.  

 

I. INTRODUCTION 

The rapid increase in the size of data generated by 

acquisition systems poses a significant challenge to analyze 

and process data with high efficiency. This is particularly 

evident in cases of image [1], smart grids [2], biological data 

[3] and education statistics [4], where high-dimensional 

representations are inevitable. However, in most cases, these 

high-dimensional representations are correlated in a certain 

fashion, and contain too much redundant information. In 

order to overcome this defect and enhance efficiency, using a 

small number of dimensions to effectively model the high 

dimensional data with minimal information loss has drawn 

more and more attention. 

The goal of dimensionality reduction is to find a 

k  dimensional representation of a n  dimensional 

vector x , with k n . Assuming real-valued quantities, this 

process can be mathematically formalized as finding a 
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mapping ∅ such that ∅: n k . A straightforward 

approach to finding this mapping is to compute w ∈  n k
 

such that ˆ k x w x . This is the general linear 

dimensionality reduction framework. Of the various methods 

proposed to compute this mapping matrix w , principal 

components analysis (PCA) [5] and linear discriminant 

analysis (LDA) [6] are the most popular. Other techniques 

include factor analysis [7], independent component analysis 

[8] and projection pursuit [9].  

Linear dimensionality reduction techniques work well if 

the data is confined to an underlying low-dimensional 

subspace. However, if data are actually sampled from an 

underlying non-linear manifold, these techniques cannot be 

applied in principle. To overcome this issue, several 

non-linear dimensionality reduction techniques have been 

proposed, of which we briefly review the most popular ones. 

Locally Linear Embedding (LLE) [10] is based on the 

intuition that non-linear data can be modelled locally linearly, 

i.e., it exploits local neighborhood information to discover the 

underlying global structure of the data. IsoMAP [11] exploits 

the intuition that Euclidean distance may not be an 

appropriate distance metric to quantify the similarity between 

data points that lie on a manifold, preserving the ``true'' 

structure and the global properties of the data through 

geodesic distances in a neighborhood graph. Semidefinite 

embedding (SDE) [12] enforces constraints on the distances 

between points and angles between edges in a neighborhood 

graph, ensuring that neighbors of points are preserved in the 

embedding. 

The non-linear dimensionality reduction techniques 

discussed in the previous paragraph have demonstrated 

impressive results in recovering complex non-linear 

manifolds. However, these methods are extremely 

computationally expensive, potentially limiting their use in 

large-scale applications involving very high-dimensional data. 

Methods such as LLE and Isomap rely on computing nearest 

neighbors for each data point, which can be prohibitively 

compute-intensive for high-dimensional data. SDE involves 

solving an optimization problem that belongs to a class of 

problems called semidefinite programming, which simply 

does not scale to large datasets. Therefore, we see that there is 

an immediate requirement to come up with faster non-linear 

dimensionality reduction techniques.  

Random projections (RP) belong to a class of linear 

dimensionality reduction techniques that employ randomized 

constructions for the mapping matrix .w Their applicability to 

diverse application areas is in part due to their ability to 

preserve all pairwise distances between the data points with 

high probability in the low-dimensional space [13]. An 
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immediate idea would be to combine RP with non-linear 

dimensionality reduction techniques to reduce the 

computational resources required. The general framework we 

will work in is the following: given the data matrix m nX  

of m  points in an n  dimensional space, we will first 

perform linear dimensionality reduction as ˆ  X X
m k

R , 

where  n k
R  can be any randomized construction, such as 

the random Gaussian matrix or the random Sign matrix. We 

will then apply the usual non-linear dimensionality techniques 

on the matrix ˆ .X  The advantage now is that we will be 

working in the k  dimensional space. With k n  typically, 

this amounts to a significant reduction in computational 

complexity. 

 

II. RELATED WORK 

The use of random projections to perform non-linear 

dimensionality reduction has been explored in prior work. 

Baraniuk and Wakin [14] provided provable guarantees that a 

small number of random projections can preserve all pairwise 

distances between points sampled from an underlying 

non-linear manifold. Hegde et .al  [15] extended this result 

to estimate the structure of the manifold. They also proposed 

an algorithm to estimate the required dimension .k  Freund 

et .al [16] proposed a new data structure, which they called 

the RP tree to learn non-linear manifold structure. While this 

method also does not directly combine random projections 

and non-linear dimensionality reduction, an interesting aspect 

of RP trees is that instead of considering all data points and 

their neighbors to form a connected graph, as done in Isomap, 

here a top-down approach is employed. That is, it starts with 

the entire dataset and partitions it into smaller regions in a 

hierarchical fashion. Data points in these smaller regions are 

now approximated using affine subspaces, thereby avoiding 

the large computation time associated with nearest neighbor 

search.  

The work reported in Chui and Wang [17] is perhaps the 

closest to what we wish to do with random projections and 

non-linear dimensionality reduction. They proposed 

combining random projections and anisotropic 

tranformations with Isomap to reduce the associated 

computational complexity. Raducanu and Dornaika [18] 

proposed a supervised version of the Laplacian Eigenmaps 

(LE) [19]. While not being the main focus of their paper, they 

performed random projections prior to learning the 

underlying structure of the manifold to reduce the 

computational complexity of their overall system. Similarly, 

Talwalkar et .al [20] also used random projections to 

compute approximate nearest neighbors prior to constructing 

the neighborhood graph. Again, the main focus of their work 

was on developing approximate spectral decomposition 

methods that speed up manifold learning using Isomap and 

Laplacian Eigenmaps. An interesting aspect of this work was 

that empirical results were demonstrated on datasets 

consisting of millions of face images, providing a very good 

testbed to study the limitations of the existing approaches. 

Sun et .al [21] also used random projections to reduce 

feature space dimensionality as part of a fast nearest neighbor 

search technique to speed up the local tangent space 

alignment (LTSA) [22] technique for non-linear 

dimensionality reduction. 

Finally, we note that while there has been some work in 

combining random projections with existing non-linear 

dimensionality methods, as discussed above, most of this 

work is ad-hoc in the sense that there are no provable 

theoretical results that explain why using random projections 

prior to performing non-linear dimensionality reduction gives 

similar or better results than performing dimensionality 

reduction in the original feature space directly. 

 

III. METHOD FRAMEWORK 

A. Random Projections 

A general framework of performing dimensionality 

reduction is the following: given the data matrix m nX  of 

m  points in an n  dimensional space, we can first use a 

matrix  n k
R  to reduce the dimensionality of the rows of 

X as follows: 

 

ˆ  X X
m k

R                              (1) 

 

The idea behind random projections arises from the 

Johnson-Lindenstrauses lemma [23]: if data in a vector space 

are projected onto a randomly chosen high-dimensional 

subspace, then the pairwise distances between the original 

data are approximately preserved. Such an R  matrix can be 

constructed by setting its entries to be independent Gaussian 

random variables. We also note that the computation of 

X R , in general, takes (mnk)  time, which could be very 

large in high dimensional data settings. And if the data matrix 

R  is sparse with r  nonzero entries per column, the 

complexity is of order (rmk) . So it is of particular interest 

to improve the running time by carefully constructing the 

matrix  n k
R .  

An even simpler construction of R  can be achieved by 

setting i jR to 1/ k   with probability 1/ 2  or to 1/ k with 

probability 1/ 2  for all i and j . This is called a random sign 

matrix. Dimitris Achlioptas further proposed a sparse version 

of the random sign matrix. The entries of R  are set to: 

 

1 ,w.p. 1 / 6
3

0 ,w.p. 2 / 3

1 ,w.p. 1/ 6

ijR
k




  


                              (2) 

 

It can be seen that R  has about 2 / 3  of its entries equal to 

zero, making the computation of the product X R  faster and 

easier.  

B. Non-linear Dimensionality Reduction 

Non-linear dimensionality reduction methods are 

developed in order to find an embedding of the data in a 

k  dimensional space with k n  to capture the intrinsic 
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structure of the original dataset in a very non-linear situation, 

where linear dimensionality reduction methods fail to produce 

accurate results.  

1) Locally Linear Embedding: 

LLE introduces the idea of using linear regression to 

reconstruct a point from its neighbors. For each point i 1, 2, 

3,…, m , let i  denote the set of neighbors of this point. The 

simplest formulation of LLE, which is to find the K  nearest 

neighbors of the i th  point as measured by Euclidean 

distance, is described as follows: 

 

1 2

2

* *
, ,

2

min
i i iK

i

i ij j
w w w

j

X w X


              (3) 

 

The above optimization problem is solved for all points 

i 1, 2, 3,…, m , which means we need to minimize the 

following objective: 

 
2

* *

1
2i

m

i ij j

i j

X w X
 

                             (4) 

 

over all possible choices for  i jw . And 1
i

i jj
w


  

should be satisfied. To find a global embedding of all m  

points in a lower-dimensional space, k dimensional vectors 

 k
iy  for i 1, 2, 3,…, m , are chosen to minimize the 

following embedding cost function: 

 
2

1
2i

m

ij

i j

y w j
 

                (5) 

 

over all possible choices for vectors  k
iy  for all i 1, 2, 

3,…, m . Extra constraints as follows are necessary to make 

the Equation (5) well-posed and can be minimized efficiently: 

 

1

m

i

i

y


 0                               (6) 

 

1

m
T

i i k

i

y y m


 I                           (7) 

 

where kI  is the k k  identity matrix.  Solving the above 

optimization problem turns out to be an SVD computation.  

2) IsoMAP: 

Given a set of points in a high dimensional space, 

Euclidean distances between different points are easy to 

compute but might fail to capture the intrinsic geometric 

structure of non-linear manifolds. IsoMAP can be used to 

avoid this problem by constructing a neighborhood graph. 

This can be achieved by either connecting points to their 

K nearest neighbors, or connecting points that are smaller 

than a threshold value  , where the distance between points 

is the Euclidean distance. Then the point-to-point distance can 

be calculated as the length of the shortest path between points 

in the neighborhood graph. Thus an m m  matrix, the 

( , )i j -th entry of which is the length of the shortest path 

between points i  and j  in the neighborhood graph, can be 

formed. At last, the SVD is applied on this matrix to 

determine the top k  left singular vectors as the 

low-dimensional projection of the m points in a k   

dimensional space. 

3) Semidefinite Embedding: 

Let 
k

iy   denote the embedding of original points in the 

k  dimensional space. For all n  dimensional points *iX , 

i 1, 2, 3,…, m , neighborhoods are formed to preserve 

distances and angles within those neighborhoods, the 

constrains of which can be written as follows: 

 
2 2

* *
2 2

i j i jA A y y                           (8) 

 

for all pairs of points that are neighbors of each other or have 

a common neighbor. Another mean-centering constraint to 

eliminate a translational degree of freedom in the embedding 

is as follows: 

 

 

1

0
m

i

i

y


                           (9) 

 

At last, SDE attempts to “unfold” the points iy  as far apart 

from each other as possible, which equals to maximize the 

following function: 

 
2

2
( , )

i j

all pairs i j

y y                        (10) 

 

This is a convex problem and can be solved efficiently. But 

obviously it is more computationally expensive than LLE and 

IsoMAP, which compute SVD in the end.  

C. Dimensionality Reduction Method Framework based 

on Random Projections and Non-linear Dimensionality 

Reduction 

Though random projections are very efficient in terms of 

computational time and implementation, they could not 

preserve as much information as those non-linear 

dimensionality reduction methods if the high-dimensional 

data are sampled from an underlying non-linear manifold. 

Non-linear dimensionality reduction methods, on the other 

hand, are computationally expensive, but can capture the 

intrinsic structure of the original dataset more accurately. 

Therefore, a hybrid dimensionality reduction method 

framework that combines the advantages of the two 

approaches is suitably proposed in this paper. The framework 

works as follows: data are first pre-processed with random 

projections to a lower dimension 1k with 1k n ; then 

non-linear dimensionality reduction methods are further 
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applied on the 1k  dimensional data to reduce its 

dimensionality to 2k  with 2 1k k . This framework 

intuitively will improve accuracy for random projections and 

running time efficiency for non-linear dimensionality 

reduction methods. 

 

IV. EXPERIMENTAL RESULTS 

A. Evaluation Protocol and Datasets 

We empirically evaluate the impact of combining random 

projections with three non-linear dimensionality reduction 

techniques: LLE, Isomap, and Laplacian Eigenmaps [14]. We 

compare the downstream classification accuracy of this 

approach with the baseline approach of performing 

dimensionality reduction in the original n dimensional 

feature space. In all our experiments, we work with 2313 

images selected from handwritten zip-code digit images (300 

pixels/inch in 8-bit gray scale) [24], consisting of the digits 

1 , 6 , and 9.  The “average” one, the “average” six and the 

“average” nine are computed and plotted in Fig. 1. We use the 

k  nearest neighbors classifier to compute the classification 

accuracy, which is averaged over 20 randomly chosen 

training and testing splits. We use the leave one out 

cross-validation mechanism to pick the value for .k  

 

 
Fig. 1. Plots of the “average” one, six and nine. 

 

B. Results 

We begin with results using LLE. Prior to performing LLE, 

we project the original n  dimensional data (in the case of 

the digits data, 256n  ) to a k  dimensional space. We 

perform experiments with values of k ranging from 5 to 100. 

For the random projection matrix, we choose the random 

Gaussian matrix, the random sign matrix, and the sparse 

random sign matrix. In all experiments, LLE is used to reduce 

the input feature space to ˆ 3d   dimensions. We note that 

since the goal here is to obtain an extensive performance 

comparison between applying non-linear dimensionality 

reduction with and without randomly projected features, we 

did not perform any cross-validation to pick the value of  d̂  

and chose it arbitrarily.  The average classification results 

obtained are plotted in Fig. 2. And we note that in this plot, the 

baseline performance, . .,i e for each value of ,k we randomly 

choose 20 different training and testing splits and compute the 

average performance. The goal is to compare the performance 

of randomly projected features with the baseline while using 

the same training and testing splits. We make the following 

observations:  

1) The performance obtained by each of the random 

projection matrices approximately saturates beyond a 

certain projection dimension. This saturation 

performance is close to that of the baseline performance. 

In fact, for some values of k , the performance of 

randomly projected features is slightly better than the 

baseline performance. 

2) There does not seem to be any significant differences in 

the performance of the three random projection matrices. 

 

 
Fig. 2. A plot comparing the baseline classification accuracy with that 

obtained by combining random projections with LLE. 

 

We next perform a running time comparison of performing 

LLE in the original feature space and the randomly projected 

feature space. All running times reported here are computed 

using MATLAB's in-built stopwatch timer on an Intel Xeon 

CPU with 16 GB RAM. A plot of the running time (averaged 

over 20 trials) in each case versus the random projection 

dimension is shown in Fig. 3. Here, we use all the data points 

to perform dimensionality reduction and do not consider any 

training and testing splits since the goal is to study the running 

time behavior of the two different approaches. Clearly, we see 

that the average running time of performing LLE in the 

randomly projected feature space is smaller than that of the 

original feature space. 

 

 
Fig. 3. A plot comparing the baseline running time (in seconds) with that 

obtained by combining random projections with LLE. 

 

Additionally, we notice that the three different random 

projection methods seem to have almost similar average 

running times. These results, combined with the average 

accuracy results discussed above, clearly demonstrate the 

impact of using random projections prior to performing 

non-linear dimensionality reduction. 

We next repeat the same experiments as described above 

with two other non-linear dimensionality reduction 

techniques: Isomap and Laplacian Eigenmaps. The average 

classification performance comparison plot for the two 

techniques are shown in Fig. 4 and Fig. 5. 

The corresponding average running time comparison plots 

are shown in Fig. 6 and Fig. 7. Clearly, we observe a similar 
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performance and running time trend with these two 

techniques as well. 

 

 
Fig. 4. A plot comparing the baseline classification accuracy with that 

obtained by combining random projections with Isomap. 

 

 
Fig. 5. A plot comparing the baseline classification accuracy with that 

obtained by combining random projections with Laplacian Eigenmaps. 

 

 
Fig. 6. A plot comparing the baseline running time (in seconds) with that 

obtained by combining random projections with Isomap. 

 

 
Fig. 7. A plot comparing the baseline running time (in seconds) with that 

obtained by combining random projections with Laplacian Eigenmaps. 

 

V. CONCLUSIONS AND FUTURE WORK 

In this work, we considered the problem of combining 

random projections with non-linear dimensionality reduction 

techniques. Specifically, we randomly projected the input 

features to a lower dimensional space prior to applying 

non-linear dimensionality reduction. We observed 

empirically that the classification performance of the feature 

mapping learnt by applying non-linear dimensionality 

reduction after randomly projecting the input features is very 

close to, and in some cases, better than that learnt without 

performing random projections. Additionally, we also 

observed empirically that performing non-linear 

dimensionality reduction in the randomly projected feature 

space is faster than that in the original feature space. The 

framework proposed in this paper can be widely used in 

speech and image processing, smart grids, human gene 

distribution and so on.  

As noted earlier, while empirical results demonstrate the 

efficacy of the proposed framework combining random 

projections with non-linear dimensionality reduction 

techniques in the manner as done in this work, establishing 

provable results justifying this observation is one line of work 

we wish to explore in the future. 

In addition, we also find out that the efficiency of this 

framework is also closely related with the original structure of 

the high-dimensional dataset. For sparse high-dimensional 

dataset, the sparseness property of the original dataset will 

probably be lost after performing random projections, which 

will result in even lower running time efficiency. That is 

because the sparseness of the original dataset makes it 

possible to use some efficient algorithms in the process of 

non-linear dimensionality reduction, such as the less costly 

SVD algorithm suitable for sparse matrix. On the other hand, 

the loss of the sparse format of the original dataset will 

consume more memories to store the dense matrix and 

perform the decomposition after random projections are 

applied on the original sparse dataset. We will discuss this 

topic in our another paper that to be published in the near 

future. 

REFERENCES 

[1] X. Desquesnes, A. Elmoataz, O. Lézoray, and V. T. Ta, “Efficient 

algorithms for image and high dimensional data processing using 

eikonal equation on graphs,” Advances in Visual Computing, Springer 

Berlin Heidelberg, pp. 647-658, 2010. 

[2] L. Cheng, L. Wang, and F. Gao, “Power system fault classification 

method based on sparse representation and random dimensionality 

reduction projection,” in Proc. IEEE Power & Energy Society General 

Meeting, 2015, pp. 1-5. 

[3] R. Clarke, H. W. Ressom, A. Wang, J. Xuan, M. C. Liu, E. A. Gehan, 

and Y. Wang, “The properties of high-dimensional data spaces: 

implications for exploring gene and protein expression data,” Nature 

Reviews Cancer, vol. 8, no. 1, pp. 37-49, 2008. 

[4] L. Cheng and C. You, “Analysis of rising tuition rates in the United 

States based on clustering analysis and regression models,” in Proc. 

Conference in Computer Science & Information Technology, 2016, pp. 

127-144. 

[5] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” 

Chemometrics and Intelligent Laboratory Systems, vol. 2, no. 1-3, pp. 

37-52, 1987. 

[6] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2012, 

John Wiley & Sons. 

[7] L. L. Thurstone, Multiple Factor Analysis, University of Chicago Press, 

1947. 

[8] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component 

Analysis, 2004, vol. 46, John Wiley & Sons. 

[9] P. J. Huber, “Projection pursuit,” The Annals of Statistics, pp. 435-475, 

1985. 

[10] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by 

locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323-2326, 

2000. 

[11] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric 

framework for nonlinear dimensionality reduction,” Science, vol. 290, 

no. 5500, pp. 2319-2323, 2000. 

[12] K. Q. Weinberger and L. K. Saul, “Unsupervised learning of image 

manifolds by semidefinite programming,” International Journal of 

Computer Vision, vol. 70, no. 1, pp. 77-90, 2006. 

International Journal of Machine Learning and Computing, Vol. 6, No. 4, August 2016

224



  

[13] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards 

removing the curse of dimensionality,” in Proc. 13th Annual ACM 

Symposium on Theory of Computing, 1998, pp. 604-613. 

[14] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality 

reduction,” Neural Computation, vol. 15, no. 6, pp. 1373-1396, 2003. 

[15] C. Hegde, M. Wakin, and R. Baraniuk, “Random projections for 

manifold learning,” Advances in Neural Information Processing 

Systems, pp. 641-648, 2008. 

[16] Y. Freund, S. Dasgupta, M. Kabra, and N. Verma, “Learning the 

structure of manifolds using random projections,” Advances in Neural 

Information Processing Systems, pp. 473-480, 2007. 

[17] R. G. Baraniuk and M. B. Wakin, “Random projections of smooth 

manifolds,” Foundations of Computational Mathematics, vol. 9, no. 1, 

pp. 51-77, 2009. 

[18] B. Raducanu and F. Dornaika, “A supervised non-linear 

dimensionality reduction approach for manifold learning,” Pattern 

Recognition, vol. 45, no. 6, pp. 2432-2444, 2012. 

[19] C. K. Chui and J. Wang, “Randomized anisotropic transform for 

nonlinear,” GEM-International Journal on Geo-, vol. 1, no. 1, pp. 

23-50, 2010. 

[20] A. Talwalkar, S. Kumar, and H. Rowley, “Large-scale manifold 

learning,” IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 1-8, 2008. 

[21] W. Sun,  A. Halevy, J. J. Benedetto, W. Czaja, W. Li, C. Liu, B. Shi, 

and R. Wang, “Nonlinear dimensionality reduction via the ENH-LTSA 

method for hyperspectral image classification,” Selected Topics in 

Applied Earth Observations and Remote Sensing, vol. 7, no. 2, pp. 

375-388, 2014. 

[22] Z. Zhang and H. Zha, “Nonlinear dimension reduction via local 

tangent space alignment,” Intelligent Data Engineering and 

Automated Learning, Springer Berlin Heidelberg, pp. 477-481, 2003. 

[23] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mapping 

into hilbert space,” in Proc. Conference in Modern Analysis and 

Probability, 1984, vol. 26, pp. 189-206. 

[24] J. J. Hull, “A database for handwritten text recognition research,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 16, 

no. 5, pp. 550-554, 1994. 

 

Long Cheng was born in Yuncheng, Shanxi, China, on 

November 29th 1991. He received his Master’s degrees 

in both electrical engineering and applied mathematics 

from Rensselaer Polytechnic Institute, Troy, NY, USA 

in May 2015 and his B.S. in electrical engineering and 

automation from Tianjin University, Tianjin, China in 

July 2013.  

He is currently working as the COO and Research 

Scientist at Kiwii Power Technology Co., Ltd, Troy, NY, USA. Before that, 

he worked as a Data Scientist at Rang Technologies Inc, Piscataway, NJ, 

USA. He also previously interned at IBM Research China. His research 

interests include machine learning, data mining, signal processing and smart 

grids. 

 

 

Chenyu You was born in Wuxi, Jiangsu, China, on 

September 15th 1993. He is currently pursuing his B.S. 

in electrical engineering with a minor in mathematics 

from Rensselaer Polytechnic Institute, Troy, NY, USA. 

His research interests are machine learning, data 

mining, statistical signal processing and mathematical 

modelling. 

 

 

Yani Guan was born in Jiaxing, Zhejiang, China, on 

October 8th 1993. She is pursuing her B.S. in electrical 

engineering with a minor in psychology at Rensselaer 

Polytechnic Institute, Troy, NY, USA. She is currently 

working as the CEO at Kiwii Power Technology Co., 

Ltd. Her research interests are machine learning, neural 

networks and radio frequency. 

International Journal of Machine Learning and Computing, Vol. 6, No. 4, August 2016

225




