
 

 

Abstract—Adequately learning from datasets that are highly 

imbalance has become one of the most challenging tasks in 

Data Mining and Machine Learning disciplines. Most datasets 

from high risk application areas are often adversely affected 

by the class imbalance problem due to the limited occurrence 

of positive examples. This paper presents a new undersampling 

technique, called Cluster Undersampling Technique (CUST) 

that has the capability of further improving the performance 

of classification algorithms when learning from imbalance 

datasets. The performance of CUST is evaluated by using it to 

undersample 16 real world class imbalance datasets prior to 

building classification models using C4.5 decision tree and 

OneR algorithms. The performance of the models are 

compared to the performance of random undersampling and 

oversampling, synthetic minority oversampling, one-sided 

selection, and cluster-based undersampling. The experimental 

results using area under receiver-operating characteristic 

curve and geometric mean showed that CUST resulted in 

higher performance and is statistically better compared to 

well-known techniques. 

 

Index Terms—Class imbalance, classification, clustering, 

oversampling, undersampling.  

 

I. INTRODUCTION 

Classification is a well-studied technique in the machine 

learning and data mining communities [1]-[3]. 

Classification involves learning from existing data with 

known classes to predict or classify incoming instances or 

instances with unknown classes as belonging to a particular 

class or sub-concept. Classification has been widely used in 

real world applications due to its predictive or forecasting 

nature. For instance, a medical prediction model or system 

can be built using medical datasets that are based on the 

symptoms of patients who suffered from a particular 

ailment and used to predict if a new patient arriving at the 

hospital is suffering from that ailment or not, given the 

symptoms exhibited by the new patient.  

Classification is data dependent and therefore, the nature 

or quality of the training data plays a key role on the 

prediction accuracy of classification models. That is, the 

performance of classification models are often influenced 

negatively by several data quality issues when present in the 

training data in substantial amounts of which noisy 
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instances [4], [5], outliers [6], and class imbalance [7]-[9] 

are examples.  

Noise and outliers in most cases are erroneously created.  

Class imbalance on the other hand is a major data intrinsic 

problem that plaques so many high risk application domains 

including software defect prediction or quality estimation 

[10]-[12], medical datasets [13], fraud detection [14], 

intrusion detection [15], and risk management [16]. 

Class imbalance unlike noise and outliers is not a 

problem that arises potentially from mechanical errors or 

deficiencies in the data generation processes but occurs due 

to the nature of most application domains and therefore 

cannot be avoided. For example, standard software under 

development is generally expected to have minimal faults or 

defects. For instance, data generated from this software 

during testing based on its modules will likely yield results 

from the modules with defects labelled as positive instances 

and those without defects as negative instances. Based on 

this, it is fairly obvious that, the positive instances would 

constitute a smaller percentage of the data generated as 

compared to the negative instances. In some cases the 

difference between the number of positive and negative 

instances could be very high such that the positive instances 

constitute less than 1% of the dataset [11]. This 

phenomenon referred to as class imbalance or unbalanced 

datasets is reported to undermine the learning ability of 

most classification algorithms and as a result they tend to 

predict that new datasets have only the negative class 

instances and thereby incorrectly classifying the positive 

class instances, which are of interest [9]. Class imbalance is 

however, predominant in high risk application domains as 

mentioned above, and in these areas wrongly classifying a 

positive instance comes with a higher cost as compared to a 

negative instance [17]. 

As a result of the above stated challenges, researchers 

have explored the use of several class imbalance learning 

techniques with the goal of improving the performance of 

classification models when learning from imbalance 

datasets. Common among these is the data level or data 

sampling approach. Data sampling involves either 

increasing the size of the minority class instances, 

oversampling, or reducing the size of the majority class 

instances, undersampling. Some undersampling techniques 

contrary to the process adapted by the random 

undersampling technique targets the removal of potential 

problematic majority class instances such as 

inconsistent/noisy and redundant instances as in One-Sided 

Selection (OSS) [18] and majority class instances in overlap 

regions as in Cluster-Based Undersampling technique (CBU) 

[19], with the main goal of keeping only relevant majority 

instances for training.  
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However, to the best of our knowledge at the time of this 

research, none of the existing undersampling techniques 

explicitly targets the removal of outliers as part of the 

sampling process. It is demonstrated by Acuña and 

Rodríguez [6] that the presence of outliers in training data 

increases misclassification error rates of classifiers. In this 

work a new undersampling technique called Cluster 

Undersampling Technique (CUST) is presented. CUST 

targets the removal of repeated and noisy instances as well 

as outliers or instances that behave like outliers from the 

majority class as a form of undersampling. This technique 

has been demonstrated to improve the performance of 

commonly used classification algorithms such as the C.5 

decision tree and OneR. It is better than most well-known 

sampling techniques using imbalance datasets from the 

NASA MDP repository [20] and UCI repository [21]. 

The remaining part of the paper is organised as follows, 

Section II covers a review of related work, Section III 

details the proposed undersampling technique, the 

experimental setup is outlined in Section IV, Section V 

provides the experimental results and discussions, and 

conclusion and relevant recommendations are presented in 

Section VI.     

 

II. RELATED WORK 

Due to the challenges of adequately learning from 

imbalance datasets and the critical nature of areas where it 

is prevalent, several imbalance learning approaches have 

been proposed in literature and targeted at improving the 

correct classification of minority class instances while 

minimising false alarm rates. These approaches according to 

[22] can be grouped into; data sampling, kernel-based 

learning, cost-sensitive learning, active learning, and one-

class learning. A comprehensive review of these techniques 

is presented in [23] 

Among these imbalance learning approaches, the data 

sampling approach is one of the most preferred approach 

because instead of tuning parameters of classification 

algorithms to maximise the detection of minority class 

instances, the training data is rather manipulated. This 

serves as leverage to researchers who do not have the 

technical expertise to tune the classification algorithms in 

the learning process. Data sampling techniques are 

categorised primarily into oversampling and undersampling 

techniques. Oversampling increases the number of minority 

instances in the training data either randomly or 

synthetically, whiles undersampling discards some majority 

instances from the training dataset with the core aim of 

minimising the difference in numbers between the majority 

and minority instances. 

Random Sampling Techniques: The simplest and most 

common among the sampling techniques are random 

oversampling (ROS) and random undersampling (RUS). 

ROS randomly replicates the minority class instances 

thereby increasing the minority class population in the 

training data; RUS on the other hand randomly discards 

some majority class instances hence, reducing the size of 

the majority class in the training data [22].  RUS and ROS 

have their respective pros and cons. Though these methods 

are the easiest to use and much faster than other techniques, 

a major problem associated with RUS is the loss of 

information that occurs due to the random removal of 

instances from the training data and this problem aggravates 

when the training datasets are small, this however is not a 

problem with oversampling, but rather, the increase in size 

of the resulting training dataset after oversampling can lead 

to longer training time and also, the fact that instances are 

randomly replicated, which adds no new information may 

result to overfitting [11].  

Synthetic Minority oversampling Technique (SMOTE) 

[17] oversamples a dataset by creating synthetic minority 

instances and not by duplicating already existing minority 

class instances as done in random oversampling. SMOTE 

was introduced to minimise the problems associated with 

random oversampling. It finds the 𝑘 nearest neighbours of 

each instance in the minority class and then generates 

synthetic instances in the direction of some or all of the 

nearest neighbours of an instance depending on the 

percentage of oversampling required. In the original work 

[17], 𝑘 = 5  was used. To create a synthetic instance, the 

difference between the feature vector of the minority 

instance under consideration and its nearest neighbour is 

calculated and multiplied by a random number between 0 

and 1. The product is then added to the feature vector of the 

minority instance under consideration to form the new 

instance. Though SMOTE has been used extensively in 

various fields of application with good results, its mode of 

creating the synthetic instances is sometimes problematic 

particularly in very skewed dataset as it blindly generalizes 

the regions of the minority class without regard to the 

majority class instances, this depending on the sparseness of 

the minority instances in the dataset may led to an increase 

in class overlapping [24]. 

The Cluster-Based Undersampling (CBU) technique 

proposed by Das et al. [19] is aimed at solving the class 

imbalance problem by discarding majority instances in 

overlap regions of the training data. This is achieved by 

clustering the training dataset into some k clusters and 

discarding all majority class instances from clusters which 

satisfy 0 < 𝑟 < 1 and  𝑟 ≥  τ.  
where  

,    0
| |

ic
r i k

C
                            (1) 

𝑐𝑖  is the number of minority instances in cluster 𝑖 , |𝐶| is 

the total number of instances in cluster  𝑖 , and τ is an 

empirically determined value. They argued that doing this 

will minimise the class overlap problem whilst reducing the 

number of majority class instances, hence minimising the 

imbalance in classes. CBU, though is strategically designed 

to minimise the class overlapping problem as oppose to 

SMOTE, also has a limitation when sampling from much 

skewed datasets as it fails to adequately reduce the number 

of majority class instances. For example, the PC2 dataset 

considered in this study have approximately 14 minority 

and 1412 majority instances in the training set after 

stratification. Clustering this data may result in a lot of 

clusters having only majority instances, this implies that the 

majority instances in these clusters would be retained as per 

the rational of the technique and the few clusters that 

contain minority instances would be discarded depending 
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on the τ value considered. In this case only a small 

percentage of the majority class instances would be 

discarded. 

Sampling techniques such as RUS do not take other data 

quality issues such as the presence of inconsistent/noisy 

instances, redundant instances, and outliers, which have the 

potential of affecting the accurate estimation of the 

generalisation of classification models, into consideration 

when sampling. These problems are inherent in most real 

world datasets as they may be created erroneously or arise 

due to the nature of the application domain [5], [6]. It may 

be argued that these problematic instances can easily be 

removed during data cleansing processes, but depending on 

the nature of the data at hand, blindly removing instances 

from the dataset may further worsen the class imbalance 

problem since the minority class instances may also be 

affected. OSS undersampling technique as proposed by 

Kubat and Matwin [18], targets the removal of some of 

these problematic (noisy/borderline and redundant) 

instances from the majority class as a form of 

undersampling. This, they suggest would reduce the number 

of majority class instances and thereby minimize the 

difference in class distribution. OSS undersamples a dataset 

𝑆 by first moving all minority instances and one randomly 

selected majority instances into a dataset  𝐶 . 𝐶  is used to 

train a 1-NN rule, which is used to classify the instances in 

𝑆 and all misclassified instances are moved from 𝑆 to 𝐶. 𝐶 

is now consistent with 𝑆 but smaller in size. All majority 

class instances in 𝐶  that participate in Tomek links are 

further removed, this process removes noisy and borderline 

instances. The remaining instances in 𝐶 are then considered 

as the final training set. OSS just like the other 

undersampling techniques however, does not explicitly 

avoid the inclusion of outliers in the final training set. Also, 

the performance of OSS in most empirical studies, 

particularly in software defect prediction using the NASA 

MDP datasets where the presence of noise and repeated 

instances is evident, is not encouraging as it has been 

consistently outperformed by other techniques such as RUS 

and SMOTE [4], [25], and [26].  

 

III. THE PROPOSED TECHNIQUE 

Cluster Undersampling Technique (CUST) seeks to 

improve the performance of classification algorithms when 

learning from imbalance datasets by undersampling the 

majority class instances in the training set taking into 

account the presence of inconsistent instances, repeated 

instances, and outliers in the majority class. The hypothesis 

therefore is that, eliminating inconsistent, repeated instances 

and outliers in the course of undersampling will yield a 

subsample of the majority class instances that is void of 

problematic instances that have the potential of negatively 

affecting a classifier’s performance. 

The CUST undersampling process is in two stages, the 

first stage is the removal of inconsistent instances from the 

majority class, and the second is the stage where outliers 

and repeated instances are removed along with other 

instances. 

The first part of the process uses a technique derived 

from Tomek links [27] used in OSS to remove noise and 

borderline instances. Tomek links are based on the 

closeness of two instances belonging to different classes. 

Given two instances 𝐼𝑗 and 𝐼𝑘 belonging to different classes, 

and the distance between them 𝑑𝑖𝑠𝑡(𝐼𝑗 , 𝐼𝑘),  if there is no 

other instances 𝐼𝑙  such that 𝑑𝑖𝑠𝑡(𝐼𝑗 , 𝐼𝑙) < 𝑑𝑖𝑠𝑡(𝐼𝑗 , 𝐼𝑘)  then 

the pair (𝐼𝑗 , 𝐼𝑘) is called a Tomek link. If two instances form 

a Tomek link, one of them is either noisy or both are on or 

near the class boundary. 

This implies that for the instances to form a Tomek link, 

𝑑𝑖𝑠𝑡(𝐼𝑗 , 𝐼𝑘) must not necessarily be equal to zero, however, 

the criterion used in the proposed technique, contrary to that 

used in OSS, only allows a majority class instance to be 

discarded if and only if 𝑑𝑖𝑠𝑡(𝐼𝑗 , 𝐼𝑘) = 0.  That is, the 

instances must have exactly the same attributes but different 

class labels. Thus, only inconsistent or noisy majority class 

instances are removed. The minority instances are not 

discarded because doing so will further worsen the class 

imbalance problem.  

The call of the function that performs the removal of 

inconsistent instances is optional, in that, if the 

experimenter is certain that the dataset under consideration 

do not contain inconsistent instances the option can be set to 

false and the process begins from the second stage, this is to 

avoid unnecessary wastage of computational resources and 

time. 

After the removal of inconsistent instances from the 

majority class or the call of the function being set to false, 

the second phase of undersampling process starts with the 

remaining data passed through from the first stage. The 

second phase is based on the idea of using clustering to 

identify outliers in datasets [6], [28], and [29]. The main 

assumption of this technique is that, clustering the majority 

class instances in the training set into 𝑘 clusters, instances 

that portray similar characteristics would fall naturally into 

the same clusters with the outliers either forming smaller 

clusters or single instance clusters away from the main 

clusters.  

Clustering of instances is done using the simple k-means 

clustering algorithm. The default number of clusters in 

CUST is set to five (5) but the experimenter has the option 

to change it to any value, 𝑘, that is desired. The number of 

instances to sample from each cluster is determined using (2) 

below: 
 

 ;1 ,?  0      i iMI
Maj r MC i k MA

MA

              (2) 

 

where 𝑀𝑎𝑗𝑖  is the number of instances to sample from 

cluster 𝑖 calculated to the nearest whole number, 𝑀𝐼 is the 

total number of minority class instances in the training 

set,  𝑀𝐴 is the total number of majority class instance after 

inconsistent instances are removed in the first stage, 𝑀𝐶𝑖 is 

the number of instances in cluster 𝑖, and 𝑟 is a parameter 

that specifies the ratio of majority to minority instances in 

the final training set. If 𝑟 = 0.75  the sampled majority 

instances would be ≈ 25% less than the minority instances, 

if 𝑟 = 1, the ratio is ≈ 1: 1 meaning they are approximately 

equal in number, and if 𝑟 = 2, the ratio would be ≈ 2: 1, 

meaning the majority instances sampled are twice as much 

as the minority instances. The default value of 𝑟 is set to 1 

in the algorithm but, since the best ratio of 
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majority/minority instances that yields best classifier 

performance is not always 1:1 [11], the    experimenter has 

the option to vary the value of 𝑟 until the performance of the 

classifier is maximized. The optimum value of 𝑟 depends on 

the number of clusters, dataset, and classification algorithm 

at hand. Equation (2) by its nature discriminates against 

undersampling from clusters that have smaller number of 

instances, thereby limiting the number of outliers, which 

potentially resides in these smaller clusters from been 

included in the sampled data. 

After determining the number of instances to sample 

from a cluster using (2), the instances in the cluster are 

randomized using a random seed that is provided by the 

experimenter and the instance that comes first is selected. 

All duplicates of this instance in the cluster are discarded 

and the remaining instances randomized. The instance that 

comes first is selected again and all its duplicates discarded. 

This process is repeated until the required number of 

instances to be sampled from the cluster is realized or there 

are no instances left in the cluster. Discarding all the 

occurrence of an instance in a cluster after it has been 

selected is aimed at avoiding duplicates of the instance from 

been selected, thereby eliminating the occurrence of 

repeated majority class instances in the final training set. 

This process is carried out in all the clusters and the selected 

instances put together to form the set of majority class 

instances in the final training set. The process used to 

sample instances from each cluster is much like that of 

random undersampling but it performs an additional task of 

discarding all duplicates of an instance after it has been 

selected. The algorithm of CUST is shown in Table I below.  

 
TABLE I: ALGORITHM OF CUST 

1. Using Tomek links remove all inconsistent majority class 

instances if any from the training set. 

2. Cluster the remaining majority class instances into 𝑘  clusters 
using k-means clustering algorithm. 

3. Determine the number of instances to sample from each cluster 
using equation 2 above. 

4. For each cluster 𝑖 in 𝑘, if 𝑀𝑎𝑗𝑖 ≥ 1, randomise the instances and 

select the first instance. Discard all duplicates of the selected 
instance from the cluster. 

5. Repeat step four (4) for all clusters until the number of instances 

required from each cluster is realized or there are no instances left 

in the cluster. 

6. Add all the instances selected from the clusters to the minority 

class instances to form the new training set. 

 

1. Separate the training data into minority and majority 

groups; 

      Min containing minority instances, and 

      Maj containing majority instances 

 let MI=number of instances in Min, and 

      MA= number of instances in Maj 

  

2. removeInconsistent (True/false)   (* function to remove 

inconsistent instances* ) 

 If removeInconsistent=True  

      for i←1 to MI 

      for j←1 to MA 

             if EuclideanDistance(〖Min〗_i,〖Maj〗
_j )==0 then remove 〖Maj〗_j from Maj 

             endif 

      endfor 

      endfor 

             Maj=remaining Maj; MA=number of 

instances in Maj 

 endif  

 return (*end of removeInconsistent*) 

 

3. Cluster Majority instances in Maj into k clusters 

using k-means algorithm 

4 for i←1 to k       (* extract data in cluster i *) 

        〖MC〗^i=number of instances in cluster i 

        Compute: 〖Maj〗^i=r×MI/MA×〖MC〗^i 

to the nearest whole number (*number of instances to 

sample   from cluster i*) 

        While 〖Maj〗^i>0 

  If 〖MC〗^i=0 

   Break 

  endif   

             rand: randomize instances in cluster i 

             push 〖Instance〗_1 (* Add first instance 

to sampled data*) 

   for j←1 to 〖MC〗^i-1   (*Remove all 

repetition of selected instance from                   cluster*) 

                  if EuclideanDistance(〖 Instance〗 _1,

〖Instance〗_(j+1) )==0 

                remove 〖Instance〗_(j+1) from cluster 

       endif 

  endfor 

  〖 MC 〗 ^i=number of instances 

remaining in cluster i  

  〖Maj〗^i-- 

          endwhile 

 endfor 

 return(*end of doCluster*) 

 End of algorithm 

 
TABLE II: SUMMARY OF DATASETS 

Dataset 
Num. 
of 

Attrib. 

Num. of 

instances 

Pos. instances Neg. instances 

Num. % Num. % 

CM1 38 344 42 12.21 302 87.79 

KC1 22 2096 325  15.51 1771  84.49 

KC3 40 200 36 18.00 164 82.00 

MC1 39 9277 68 0.73 9209 99.27 

MC2 40 127 44 34.65 83 65.35 

MW1 38 264 27 10.23 237 89.77 

PC1 38 759 61 8.04 698 91.96 

PC2 37 1585 16 1.01 1569 98.99 

PC3 38 1125 140 12.44 985 87.56 

PC4 38 1399 178 12.72 1221 87.28 

Abalone9v18 9 731 42 5.75 689 94.25 

Abalone19 9                 4177 32 0.76 4145 99.24 

Ecoli4 8 336 20 5.95 316 94.05 

Glass2 10 214 17 7.94 197 92.06 

Yeast2v8 9 264 20 7.58 244 92.42 

unbalanced 33 856 12 1.40 844 98.60 

 

IV. EXPERIMENTAL SETUP 

A. Datasets 

The sixteen imbalance datasets used in this research are 

sourced from two publicly available data repositories; ten 

(10) software defect datasets from National Aeronautics and 

Space Administration (NASA) Metric Data Program (MDP) 

[20], and five (5) other datasets from University of 

California, Irvine repository [21]. The last dataset is from 

WEKA sample datasets that is distributed with it [30]. 
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Fig. 1. Framework of experimental process. 
 

The above framework was followed in the 

implementation of the CUST algorithm for class imbalance 

learning. Several datasets suited for the class imbalance 

learning were utilized for the experimental setup.   

The NASA datasets were obtained from various software 

projects carried out at NASA through their Metric Data 

Program (MDP). This research adapts the cleansed version 

of the datasets labelled D’ by Shepperd et al. [31] in order 

to allow easy verification of the results and reproducibility 

of the experiments since the original version of the datasets 

contain some problems such as implausible and missing 

values.  

The datasets sourced from the UCI repository were 

originally multiple class datasets but are modified into 

binary class problems for the purpose of imbalance learning. 

The class combinations used in this study are used by other 

researchers for various research works involving imbalance 

learning [32], [33]. Table II shows a summary of the 

datasets indicating the number and percent of majority and 

minority class instances. 

B. Sampling Techniques 

Besides the proposed undersampling technique five (5) 

other data sampling techniques are considered in this study. 

These techniques are used as the basis to assess the 

efficiency of the proposed technique. They include, CBU, 

RUS, ROS, SMOTE and OSS. For the purpose of this study 

CBU, RUS, ROS, and OSS are implemented within the 

framework of the WEKA machine learning tool using 

NetBeans java IDE. Also, the java archive (jar) file of 

SMOTE created by Chawla et al. [17] and made available 

online for academic use is used.  

Since the right proportion of majority instances to 

undersample or the proportion of minority class instance to 

oversample is not known a prior, several sampling 

parameters are used and the best chosen. Six undersampling 

parameters are considered for RUS in this study, 5, 10, 25, 

50, 75, and 90. This implies that, if RUS is done with 

parameter 25, then only 25% of the majority class instances 

are retained for training. For ROS and SMOTE, seven 

parameters are considered, 50, 100, 200, 300, 500, 750, and 

1000. When oversampling is done with a parameter 100, it 

means that the number of minority class instances is 

increased by 100%. These parameters were used by some 

previous studies including [11], [25].  

In addition, five (𝑘 = 5) nearest neighbours is considered 

for SMOTE. Twelve clustering parameters 𝑘 =
(5, 10, 15, 30, 50, 55, 70, 75, 100, 110, 120, 𝑎𝑛𝑑 130) are 

considered for CBU and the proposed technique, CUST. 

The wide range of clustering parameters is considered 

because of the variation in size of the datasets. Also, ten 

different threshold values: 

 𝜏 =
(0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04,0.03, 0.02, 0.01)  are 

used for CBU, these values were used in the original work 

by Das et al. [19] and ten (10) 𝑟 values:  

𝑟 = (1.0, 1.25, 1.50, 1.75, 2.0, 2.5, 3.0, 10.0, 25.0, 50.0)  

are considered for CUST. A sampling parameter for each 

sampling technique that yields the best results per each 

dataset and classification algorithm is considered and the 

performance of the given classification algorithm recorded 

for further analysis.   

C. Classification Algorithms 

C4.5 Decision tree [34] is a tree based learner that 

improves upon the ID3 [35] learner by adding support for 

handling missing values, numeric attributes, and tree 

pruning (a measure adopted to avoid overfitting). It creates 

classification models using a statistical property called 

information gain that measures the effectiveness of an 

attribute to separate the training instances according to their 

target classification. Information gain is based on entropy, a 

measure used in information theory to characterise the 

purity or impurity of an arbitrary collection of examples 

[36]. J48 is the WEKA implementation of the C4.5 

Decision tree. The default values of the J48 learner 

specified in the WEKA machine learning tool are used for 

all experiment namely a confidence factor of 0.25 and a 

minimum of 2 instances per leaf node. 
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OneR (1R) [37] is a rule based learner that ranks all 

attribute with respect to error rates on the training data as 

opposed to the use of entropy based measures in C4.5. It 

creates one rule for each attribute value. A rule states that 

for a given attribute A and value V the majority class is C. 

The rules that have the highest accuracy on the training data 

are applied to a hypothesis and those with accuracy below 

just choosing the majority class instances are pruned from 

the hypothesis. The final rules are then sorted in order of 

accuracy in the training data. It treats all attributes with 

numeric values as continuous and employs a rather 

straightforward method to divide the range of values into 

several disjoint intervals. It also treats missing values as 

legitimate values. The default values (bucket size of 6 

instances per rule) of the OneR learner specified in the 

Weka tool are used for all experiments.  

D. Performance Metrics 

The determination of how well a classifier will 

generalises when deployed in real-world setting is often 

done using a testing dataset that is independent of the 

training data. The performance of the classifier based on 

this testing data serves as an approximation of its general 

performance.  For a binary classification problem, there is 

always one of four possible outcomes each instance 

predicted in a classification experiment will belong [38]: 

True Positives (TP), positive examples that are correctly 

predicted; True Negatives (TN), negative examples that are 

correctly predicted; False Positives (FP), negative examples 

that are incorrectly predicted as positive examples; and 

False Negatives (FN), positive examples that are incorrectly 

predicted as negative examples. 

These measures are often used to form a confusion 

metrics that describes the basic class specific predictions of 

the classifier [39]. Using this confusion metrics almost all 

existing classification performance metrics can be derived. 

Accuracy and error-rates are the commonly used 

performance metrics in machine learning, but it is 

demonstrated in prior studies [11], [38] that these measures 

are not suitable when learning from class imbalance datasets 

and are therefore ideal for datasets with even class 

distribution. Area Under receiver-operating characteristic 

Curve (AUC) and Geometric Mean (G-Mean) are the main 

performance metrics used in this research. 

AUC provides a single measure from a Receiver-

Operating Characteristic (ROC) curve. The AUC measure is 

independent of a selected decision threshold and thus gives 

a classifier’s performance without considering prior 

probabilities or misclassification cost. These attributes of 

AUC makes it a good metric for classifier performance 

under unbalanced datasets [40]. The AUC has a value 

between 0 and 1, with 0 indicating the worst performance 

and 1 the highest performance of a classifier and is given as: 

1

2

TPR FPR
AUC

 
                            (3) 

where TPR is True Positive Rate and FPR is False Positive 

Rate. 

Kubat and Matwin [18] also suggested the G-Mean as a 

good metric for classification problems involving class 

imbalance. The G-Mean like the AUC provides a single 

numeric measure of a classifier’s performance using its TPR 

and True Negative Rate (TNR). It gives a value between 0 

and 1, with 0 indicating worse performance and 1 highest 

performance. It is calculated as: 
 

  G Mean TPR TNR                             (4) 
 

E. Experimental Method 

Besides sampling the training data prior to training the 

classification models, models are also trained without 

sampling the training data and this is referred to as NONE.  

The models are built and evaluated using the stratified 

tenfold cross validation process. That is, each dataset is 

divided into ten equal folds. For each of the ten experiments, 

nine of the folds are used as training set and one fold is kept 

as the test set. Each fold is used once as a test set in the 

cross validation process. In each case the sampling 

techniques are not applied to the test set (i.e., the test set is 

not modified in anyway).  

The tenfold cross validation process is also repeated ten 

times and at each run the dataset is randomized. This 

repetition eliminates any biasing that might be introduced 

by the sampling or the stratification process. The average 

performance of the 1010 cross validation process (100 

experiments) is calculated and considered the performance 

of the respective classification model given a sampling 

technique and dataset. 
 

V. RESULTS AND DISCUSSION 

This section presents the results of the experiments 

carried out. The performance based on AUC and G-Mean 

values are presented, and that of other performance metrics 

intermittently referenced are detailed in [41]. First the 

performance of the classification models when CUST is 

used to undersample the training data is compared to the 

performance of the models when the training data is not 

sampled prior to training labelled as NONE. Secondly, the 

performance the models when CUST is used to 

undersample the training data is compared to the 

performance of the models when the other five sampling 

techniques are used. The last section presents an ANOVA 

analysis of the results to establish if there is significant 

difference in the performance of the classification models 

when the various sampling techniques are used.  
 

 
Fig. 2. Plot of CUST vs other Techniques for C4.5, AUC. 

 

Fig. 2 and 3 illustrates the performance of the C4.5 

classification models in terms of AUC and G-Mean metrics, 

respectively, across the sixteen datasets given the various 

sampling techniques. Figs. 4 and 5 also illustrate the AUC 

and G-Mean values, respectively of the OneR classification 
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models, given the various sampling techniques and sixteen 

datasets.  
 

 
Fig. 3. Plot of CUST vs other techniques for C4.5, G-Mean. 

 

Considering the AUC and G-Mean metric values from 

Fig. 2 and 3 respectively, for CUST and NONE,  it is 

evident that CUST significantly improved the classification 

performance of the C4.5 decision tree across all the sixteen 

datasets and the improvement is however, higher in the 

datasets that are most skewed (PC2, MC1, abalone19, and 

unbalanced). The classifier recorded recall values of 0.00 in 

PC2, abalone19, and unbalanced datasets [41], when the 

data is not sampled prior to training. This implies that, the 

classifier failed to correctly classify a single minority class 

instance in these datasets when the training data is not 

sampled. 

The performance of the OneR learner shown in Figs. 4 

and 5 follow similar trends as the C4.5 decision tree. It is 

clear from these figures that CUST improved the 

performance of the learner in all the datasets for both AUC 

and G-Mean metrics with the exception of yeast2v8 dataset 

in which a lower G-Mean value is recorded by the OneR 

classification model when the training data is sampled using 

CUST. That is, the performance of the classification model 

dropped from 0.670 for NONE to 0.655 for CUST 

representation a decline of 2.22% in performance.   

Comparing the performance of CUST to the other 

sampling techniques, from Fig. 2, it is clear that CUST 

outperformed all the other sampling techniques across all 

the datasets, though the difference between CUST and some 

of the other sampling technique(s) for some of the datasets 

is marginal. The performance of the C4.5 algorithm using 

G-Mean measure as illustrated in Fig. 3 indicates that CBU 

and RUS marginally outperformed CUST in only two (2) 

(KC1 and PC3) datasets out of the sixteen datasets 

considered. Also, the performance of the C4.5 algorithm in 

the MC1, PC2, abalone19, and unbalanced datasets, suggest 

that CUST is much robust when handling much skewed 

datasets as compared to the other sampling techniques as 

their performance dropped considerably in these datasets 

using both AUC and G-Mean performance metrics. 

The performance of the OneR learner in terms of AUC 

for the various sampling techniques across the sixteen 

datasets illustrated in Fig. 4, also points out that CUST 

outperformed all the other sampling techniques in all 

datasets with the exception of CBU that performed 

relatively better in glass2, CM1 and KC1 datasets. The 

performance of the OneR learner using G-Mean measure 

shown in Fig. 5 indicates that CUST performed better than 

the other sampling techniques in fourteen out of the sixteen 

datasets. CBU outperformed CUST in the KC1 dataset by a 

difference of 0.024 and OSS outperformed it in the yeast2v8 

dataset. Comparatively, the performance of the learner is 

relatively poor in the abalone19, glass2, unbalanced, MC1 

and PC2 datasets when the other sampling techniques are 

used, particularly ROS, SMOTE, and OSS. Noticeable are 

the results of OSS, ROS, and SMOTE, where they recorded 

approximately 0.00 G-Mean values in these datasets. Also, 

CBU witness its lowest performance in the abalone19 

dataset followed by the MC1 dataset. This to a greater 

extent confirms the accession made above that, CUST is 

more robust in improving the performance of learners when 

learning from much skewed datasets than the other 

sampling techniques. 
 

 
Fig. 4. Plot of CUST vs other techniques for OneR, AUC. 

 

 
Fig. 5. Plot of CUST vs other techniques for OneR, G-Mean. 

 

The statistical significance of the results presented above 

is examined using the ANOVA model specified in [41]. 

ANOVA models of the performances of the C4.5 decision 

tree using AUC and G-Mean measures are shown in row 

two (2) and three (3) respectively of Table III. The models 

of the OneR learner are shown in row four (4) and five (5) 

for AUC and G-Mean measures, respectively.  

The results of the ANOVA models shown in Table III all 

have p-values equal to 0.000 (p=0.000). 
 

TABLE III: ANOVA MODELS OF C4.5 AND ONER ALGORITHMS (AUC 

AND G-MEAN) 

 

This implies that in all four test cases, at 5% confidence 

level (α=0.05) the choice of a sampling technique has 

significant impact on the performance (AUC and G-Mean 

measures) of the C4.5 decision tree and OneR classification 

algorithms. This means that the performance of at least one 

of the sampling techniques is significantly different from 

Experiment          DF         SS              MS                F Value       P 

C4.5 AUC            6        0.315612    0.052602018     6.97        0.00 

C4.5 G-Mean       6        1.884934    0.31415577       7.83        0.00 

OneR AUC          6        0.408899    0.068149977     8.19        0.00 

OneR G-Mean     6        2.664982    0.444163737     10.22      0.00 
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the rest in each of the test cases. Since the ANOVA models 

suggests that there is significant difference in the 

performance of the sampling techniques, the Tukey’s 

Honestly Significance Difference (HSD) test specified in 

[41] is used to carry out a post-hoc pairwise comparison to 

determine which of the technique(s) resulted in significantly 

different performance.  

The HSD test results of the C4.5 decision tree learner 

using AUC and G-Mean are shown in Table IV (a) and (b) 

respectively, and the results of the OneR learner shown in 

Table V (a) and (b). The first column in each table contains 

the sampling techniques, the second and third columns 

show the mean performance and rank of the respective 

sampling techniques. In these tables, if two techniques have 

the same letter in an HSD column it implies that their 

performances are not statistically different.  
 

TABLE IV: HSD TEST RESULTS FOR C4.5 

Tech 
AUC 

Mean HSD  

CUST 0.805 A 

CBU 0.714 BA 

SMOTE 0.709 B 

RUS 0.705 B 

ROS 0.660 B 

OSS 0.656 B 

NONE 0.630 B 

 

Tech 
G-Mean 

Mean HSD  

CUST 0.766 A 

RUS 0.600 BA 

CBU 0.593 BA 

SMOTE 0.505 BC 

OSS 0.447 BC 

ROS 0.392 BC 

NONE 0.366 C 

 

TABLE V: HSD TEST RESULTS FOR ONER 

Tech 
AUC 

Mean HSD  

CUST 0.7478 A 

CBU 0.6854 BA 

RUS 0.6683 BAC 

SMOTE 0.6152 BDC 

OSS 0.5968 BDC 

ROS 0.5821 DC 

NONE 0.5673 D 

 

Tech 
G-Mean 

Mean HSD  

CUST 0.724 A 

CBU 0.602 BA 

RUS 0.563 BAC 

SMOTE 0.405 BDC 

ROS 0.357 DC 

OSS 0.351 DC 

NONE 0.259 D 

 

In a summary, CUST statistically outperformed SMOTE, 

ROS, OSS, and NONE in all cases considered. CUST also 

outperformed RUS in the C4.5 classification algorithm 

when AUC measure is used as shown in Table IV (a). It 

performed statistically the same though with higher average 

performances in the remaining three test cases as RUS, 

which is reported in literature [4], [25], to be a very 

competitive sampling technique. RUS, though performed 

statistically the same as CUST, failed in all cases to 

outperform SMOTE, ROS and OSS, which CUST 

statistically outperformed and also, failed to outperform 

NONE as in Table IV (a). CBU, a lesser known 

undersampling technique which has never been studied 

using these datasets particularly the software defect datasets, 

also performed statistically the same as CUST and RUS. 

CBU, failed to outperform SMOTE in all cases, ROS and 

OSS in both cases of the C4.5 decision tree learner. Three 

sampling techniques, SMOTE, ROS, and OSS have in all 

cases performed statistically the same as NONE.  
 

VI. CONCLUSION 

Data classification or class prediction using machine 

learning algorithms is widely studied and the aim is often to 

build prediction models that can identify class of instances 

in arriving data streams as much as possible in order to 

allow optimum allocation of limited resources or to aid 

timely decision making. Class imbalance, which is inherent 

in most real world datasets militate against the classifiers 

ability to adequately learn to correctly identify positive class 

instances since they always constitute the minority in the 

datasets 

Besides the class imbalance problem, there are other 

well-known data quality issues such as inconsistent/noisy 

instances, repeated/redundant instances, and outliers, which 

has the potential of negatively affecting the performance of 

classification algorithms when present in training data in 

substantial quantities. This study therefore designed, 

implemented and examined a Cluster Undersampling 

Technique that solves the class imbalance problem by 

eliminating majority class instances from the training data 

that fall into any of the above categories, thereby producing 

a final training set that is virtually void of irrelevant 

instances. 

The proposed technique was empirically examined using 

two machine learning algorithms; C4.5 decision tree and 

OneR algorithm, ten real-world software defect datasets 

from the NASA MDP and six other datasets from the UCI 

repository. The performance of the classification algorithms 

when CUST is used to sample the training data prior to 

training was compared to the performance without sampling 

the training data. The results using AUC and G-Mean 

performance measures showed that using CUST improved 

the performance of the algorithms in all the datasets 

considered as compared to training the models without 

sampling.  

The performance of CUST was compared to five existing 

sampling techniques which include RUS, CBU, SMOTE, 

OSS, and ROS. The AUC and G-Mean measures showed 

that CUST yielded better results in most of the datasets 

using both C4.5 and OneR learners. RUS and CBU 

produced competitive results particularly in datasets with 

fewer repeated instances and higher percentages of minority 

class instances. A Tukey’s HSD test on the mean 

performance of the classification algorithms at α=0.05 

showed that CUST statistically performed better that 

SMOTE, ROS, OSS and NONE. RUS and CBU yielded 

competitive results though they did not perform statistically 

different from SMOTE, ROS and OSS in most cases.  

The performance of the proposed technique across the 

various datasets suggests that it increased the performance 

of the learners much better in datasets with lesser 
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percentages of minority class instances. As this study 

focused much on addressing the class imbalance problem in 

software defect datasets and datasets from other few areas, 

assessing the applicability and efficiency of CUST in other 

application areas where the class imbalance problem is 

equally predominant such as fraud detection, intrusion 

detection, and cancer detection is highly recommended. 

It is however, worth noting that CUST like CBU 

becomes computational expensive when used on very large 

datasets with a larger number of clusters. This is as a result 

of the use of k-means algorithm whose computation 

complexity depends on the value of k, number of instances, 

the dimension of the dataset and the number of iterations 

performed during clustering. Considering the computational 

complexity of CUST, it is of interest to research into how 

the time requirements of CUST can be minimized. 
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