

Abstract—Adequately learning from datasets that are highly

imbalance has become one of the most challenging tasks in

Data Mining and Machine Learning disciplines. Most datasets

from high risk application areas are often adversely affected

by the class imbalance problem due to the limited occurrence

of positive examples. This paper presents a new undersampling

technique, called Cluster Undersampling Technique (CUST)

that has the capability of further improving the performance

of classification algorithms when learning from imbalance

datasets. The performance of CUST is evaluated by using it to

undersample 16 real world class imbalance datasets prior to

building classification models using C4.5 decision tree and

OneR algorithms. The performance of the models are

compared to the performance of random undersampling and

oversampling, synthetic minority oversampling, one-sided

selection, and cluster-based undersampling. The experimental

results using area under receiver-operating characteristic

curve and geometric mean showed that CUST resulted in

higher performance and is statistically better compared to

well-known techniques.

Index Terms—Class imbalance, classification, clustering,

oversampling, undersampling.

I. INTRODUCTION

Classification is a well-studied technique in the machine

learning and data mining communities [1]-[3].

Classification involves learning from existing data with

known classes to predict or classify incoming instances or

instances with unknown classes as belonging to a particular

class or sub-concept. Classification has been widely used in

real world applications due to its predictive or forecasting

nature. For instance, a medical prediction model or system

can be built using medical datasets that are based on the

symptoms of patients who suffered from a particular

ailment and used to predict if a new patient arriving at the

hospital is suffering from that ailment or not, given the

symptoms exhibited by the new patient.

Classification is data dependent and therefore, the nature

or quality of the training data plays a key role on the

prediction accuracy of classification models. That is, the

performance of classification models are often influenced

negatively by several data quality issues when present in the

training data in substantial amounts of which noisy

Manuscript received March 11, 2015; revised May 27, 2016. This work

was supported in part by the Carnegie Corporation of New York through
the University of Ghana, under the UG-Carnegie “Next Generation of

Academics in Africa” Project.

R. A. Sowah is with the Computer Engineering Department, University
of Ghana, Ghana (e-mail: rasowah@ug.edu.gh, bobsowah@gmail.com).

M. A. Agebure is with the Computer Science Department, University

for Development Studies, Ghana (e-mail: magebure@gmail.com).

instances [4], [5], outliers [6], and class imbalance [7]-[9]

are examples.

Noise and outliers in most cases are erroneously created.

Class imbalance on the other hand is a major data intrinsic

problem that plaques so many high risk application domains

including software defect prediction or quality estimation

[10]-[12], medical datasets [13], fraud detection [14],

intrusion detection [15], and risk management [16].

Class imbalance unlike noise and outliers is not a

problem that arises potentially from mechanical errors or

deficiencies in the data generation processes but occurs due

to the nature of most application domains and therefore

cannot be avoided. For example, standard software under

development is generally expected to have minimal faults or

defects. For instance, data generated from this software

during testing based on its modules will likely yield results

from the modules with defects labelled as positive instances

and those without defects as negative instances. Based on

this, it is fairly obvious that, the positive instances would

constitute a smaller percentage of the data generated as

compared to the negative instances. In some cases the

difference between the number of positive and negative

instances could be very high such that the positive instances

constitute less than 1% of the dataset [11]. This

phenomenon referred to as class imbalance or unbalanced

datasets is reported to undermine the learning ability of

most classification algorithms and as a result they tend to

predict that new datasets have only the negative class

instances and thereby incorrectly classifying the positive

class instances, which are of interest [9]. Class imbalance is

however, predominant in high risk application domains as

mentioned above, and in these areas wrongly classifying a

positive instance comes with a higher cost as compared to a

negative instance [17].

As a result of the above stated challenges, researchers

have explored the use of several class imbalance learning

techniques with the goal of improving the performance of

classification models when learning from imbalance

datasets. Common among these is the data level or data

sampling approach. Data sampling involves either

increasing the size of the minority class instances,

oversampling, or reducing the size of the majority class

instances, undersampling. Some undersampling techniques

contrary to the process adapted by the random

undersampling technique targets the removal of potential

problematic majority class instances such as

inconsistent/noisy and redundant instances as in One-Sided

Selection (OSS) [18] and majority class instances in overlap

regions as in Cluster-Based Undersampling technique (CBU)

[19], with the main goal of keeping only relevant majority

instances for training.

New Cluster Undersampling Technique for Class

Imbalance Learning

Robert A. Sowah, Moses A. Agebure, Godfrey A. Mills, Koudjo M. Koumadi, and Seth Y. Fiawoo

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

205doi: 10.18178/ijmlc.2016.6.3.599

However, to the best of our knowledge at the time of this

research, none of the existing undersampling techniques

explicitly targets the removal of outliers as part of the

sampling process. It is demonstrated by Acuña and

Rodríguez [6] that the presence of outliers in training data

increases misclassification error rates of classifiers. In this

work a new undersampling technique called Cluster

Undersampling Technique (CUST) is presented. CUST

targets the removal of repeated and noisy instances as well

as outliers or instances that behave like outliers from the

majority class as a form of undersampling. This technique

has been demonstrated to improve the performance of

commonly used classification algorithms such as the C.5

decision tree and OneR. It is better than most well-known

sampling techniques using imbalance datasets from the

NASA MDP repository [20] and UCI repository [21].

The remaining part of the paper is organised as follows,

Section II covers a review of related work, Section III

details the proposed undersampling technique, the

experimental setup is outlined in Section IV, Section V

provides the experimental results and discussions, and

conclusion and relevant recommendations are presented in

Section VI.

II. RELATED WORK

Due to the challenges of adequately learning from

imbalance datasets and the critical nature of areas where it

is prevalent, several imbalance learning approaches have

been proposed in literature and targeted at improving the

correct classification of minority class instances while

minimising false alarm rates. These approaches according to

[22] can be grouped into; data sampling, kernel-based

learning, cost-sensitive learning, active learning, and one-

class learning. A comprehensive review of these techniques

is presented in [23]

Among these imbalance learning approaches, the data

sampling approach is one of the most preferred approach

because instead of tuning parameters of classification

algorithms to maximise the detection of minority class

instances, the training data is rather manipulated. This

serves as leverage to researchers who do not have the

technical expertise to tune the classification algorithms in

the learning process. Data sampling techniques are

categorised primarily into oversampling and undersampling

techniques. Oversampling increases the number of minority

instances in the training data either randomly or

synthetically, whiles undersampling discards some majority

instances from the training dataset with the core aim of

minimising the difference in numbers between the majority

and minority instances.

Random Sampling Techniques: The simplest and most

common among the sampling techniques are random

oversampling (ROS) and random undersampling (RUS).

ROS randomly replicates the minority class instances

thereby increasing the minority class population in the

training data; RUS on the other hand randomly discards

some majority class instances hence, reducing the size of

the majority class in the training data [22]. RUS and ROS

have their respective pros and cons. Though these methods

are the easiest to use and much faster than other techniques,

a major problem associated with RUS is the loss of

information that occurs due to the random removal of

instances from the training data and this problem aggravates

when the training datasets are small, this however is not a

problem with oversampling, but rather, the increase in size

of the resulting training dataset after oversampling can lead

to longer training time and also, the fact that instances are

randomly replicated, which adds no new information may

result to overfitting [11].

Synthetic Minority oversampling Technique (SMOTE)

[17] oversamples a dataset by creating synthetic minority

instances and not by duplicating already existing minority

class instances as done in random oversampling. SMOTE

was introduced to minimise the problems associated with

random oversampling. It finds the 𝑘 nearest neighbours of

each instance in the minority class and then generates

synthetic instances in the direction of some or all of the

nearest neighbours of an instance depending on the

percentage of oversampling required. In the original work

[17], 𝑘 = 5 was used. To create a synthetic instance, the

difference between the feature vector of the minority

instance under consideration and its nearest neighbour is

calculated and multiplied by a random number between 0

and 1. The product is then added to the feature vector of the

minority instance under consideration to form the new

instance. Though SMOTE has been used extensively in

various fields of application with good results, its mode of

creating the synthetic instances is sometimes problematic

particularly in very skewed dataset as it blindly generalizes

the regions of the minority class without regard to the

majority class instances, this depending on the sparseness of

the minority instances in the dataset may led to an increase

in class overlapping [24].

The Cluster-Based Undersampling (CBU) technique

proposed by Das et al. [19] is aimed at solving the class

imbalance problem by discarding majority instances in

overlap regions of the training data. This is achieved by

clustering the training dataset into some k clusters and

discarding all majority class instances from clusters which

satisfy 0 < 𝑟 < 1 and 𝑟 ≥ τ.
where

, 0
| |

ic
r i k

C
 (1)

𝑐𝑖 is the number of minority instances in cluster 𝑖 , |𝐶| is

the total number of instances in cluster 𝑖 , and τ is an

empirically determined value. They argued that doing this

will minimise the class overlap problem whilst reducing the

number of majority class instances, hence minimising the

imbalance in classes. CBU, though is strategically designed

to minimise the class overlapping problem as oppose to

SMOTE, also has a limitation when sampling from much

skewed datasets as it fails to adequately reduce the number

of majority class instances. For example, the PC2 dataset

considered in this study have approximately 14 minority

and 1412 majority instances in the training set after

stratification. Clustering this data may result in a lot of

clusters having only majority instances, this implies that the

majority instances in these clusters would be retained as per

the rational of the technique and the few clusters that

contain minority instances would be discarded depending

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

206

on the τ value considered. In this case only a small

percentage of the majority class instances would be

discarded.

Sampling techniques such as RUS do not take other data

quality issues such as the presence of inconsistent/noisy

instances, redundant instances, and outliers, which have the

potential of affecting the accurate estimation of the

generalisation of classification models, into consideration

when sampling. These problems are inherent in most real

world datasets as they may be created erroneously or arise

due to the nature of the application domain [5], [6]. It may

be argued that these problematic instances can easily be

removed during data cleansing processes, but depending on

the nature of the data at hand, blindly removing instances

from the dataset may further worsen the class imbalance

problem since the minority class instances may also be

affected. OSS undersampling technique as proposed by

Kubat and Matwin [18], targets the removal of some of

these problematic (noisy/borderline and redundant)

instances from the majority class as a form of

undersampling. This, they suggest would reduce the number

of majority class instances and thereby minimize the

difference in class distribution. OSS undersamples a dataset

𝑆 by first moving all minority instances and one randomly

selected majority instances into a dataset 𝐶 . 𝐶 is used to

train a 1-NN rule, which is used to classify the instances in

𝑆 and all misclassified instances are moved from 𝑆 to 𝐶. 𝐶

is now consistent with 𝑆 but smaller in size. All majority

class instances in 𝐶 that participate in Tomek links are

further removed, this process removes noisy and borderline

instances. The remaining instances in 𝐶 are then considered

as the final training set. OSS just like the other

undersampling techniques however, does not explicitly

avoid the inclusion of outliers in the final training set. Also,

the performance of OSS in most empirical studies,

particularly in software defect prediction using the NASA

MDP datasets where the presence of noise and repeated

instances is evident, is not encouraging as it has been

consistently outperformed by other techniques such as RUS

and SMOTE [4], [25], and [26].

III. THE PROPOSED TECHNIQUE

Cluster Undersampling Technique (CUST) seeks to

improve the performance of classification algorithms when

learning from imbalance datasets by undersampling the

majority class instances in the training set taking into

account the presence of inconsistent instances, repeated

instances, and outliers in the majority class. The hypothesis

therefore is that, eliminating inconsistent, repeated instances

and outliers in the course of undersampling will yield a

subsample of the majority class instances that is void of

problematic instances that have the potential of negatively

affecting a classifier’s performance.

The CUST undersampling process is in two stages, the

first stage is the removal of inconsistent instances from the

majority class, and the second is the stage where outliers

and repeated instances are removed along with other

instances.

The first part of the process uses a technique derived

from Tomek links [27] used in OSS to remove noise and

borderline instances. Tomek links are based on the

closeness of two instances belonging to different classes.

Given two instances 𝐼𝑗 and 𝐼𝑘 belonging to different classes,

and the distance between them 𝑑𝑖𝑠𝑡(𝐼𝑗 , 𝐼𝑘), if there is no

other instances 𝐼𝑙 such that 𝑑𝑖𝑠𝑡(𝐼𝑗 , 𝐼𝑙) < 𝑑𝑖𝑠𝑡(𝐼𝑗 , 𝐼𝑘) then

the pair (𝐼𝑗 , 𝐼𝑘) is called a Tomek link. If two instances form

a Tomek link, one of them is either noisy or both are on or

near the class boundary.

This implies that for the instances to form a Tomek link,

𝑑𝑖𝑠𝑡(𝐼𝑗 , 𝐼𝑘) must not necessarily be equal to zero, however,

the criterion used in the proposed technique, contrary to that

used in OSS, only allows a majority class instance to be

discarded if and only if 𝑑𝑖𝑠𝑡(𝐼𝑗 , 𝐼𝑘) = 0. That is, the

instances must have exactly the same attributes but different

class labels. Thus, only inconsistent or noisy majority class

instances are removed. The minority instances are not

discarded because doing so will further worsen the class

imbalance problem.

The call of the function that performs the removal of

inconsistent instances is optional, in that, if the

experimenter is certain that the dataset under consideration

do not contain inconsistent instances the option can be set to

false and the process begins from the second stage, this is to

avoid unnecessary wastage of computational resources and

time.

After the removal of inconsistent instances from the

majority class or the call of the function being set to false,

the second phase of undersampling process starts with the

remaining data passed through from the first stage. The

second phase is based on the idea of using clustering to

identify outliers in datasets [6], [28], and [29]. The main

assumption of this technique is that, clustering the majority

class instances in the training set into 𝑘 clusters, instances

that portray similar characteristics would fall naturally into

the same clusters with the outliers either forming smaller

clusters or single instance clusters away from the main

clusters.

Clustering of instances is done using the simple k-means

clustering algorithm. The default number of clusters in

CUST is set to five (5) but the experimenter has the option

to change it to any value, 𝑘, that is desired. The number of

instances to sample from each cluster is determined using (2)

below:

 ;1 ,? 0 i iMI
Maj r MC i k MA

MA

 (2)

where 𝑀𝑎𝑗𝑖 is the number of instances to sample from

cluster 𝑖 calculated to the nearest whole number, 𝑀𝐼 is the

total number of minority class instances in the training

set, 𝑀𝐴 is the total number of majority class instance after

inconsistent instances are removed in the first stage, 𝑀𝐶𝑖 is

the number of instances in cluster 𝑖, and 𝑟 is a parameter

that specifies the ratio of majority to minority instances in

the final training set. If 𝑟 = 0.75 the sampled majority

instances would be ≈ 25% less than the minority instances,

if 𝑟 = 1, the ratio is ≈ 1: 1 meaning they are approximately

equal in number, and if 𝑟 = 2, the ratio would be ≈ 2: 1,

meaning the majority instances sampled are twice as much

as the minority instances. The default value of 𝑟 is set to 1

in the algorithm but, since the best ratio of

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

207

majority/minority instances that yields best classifier

performance is not always 1:1 [11], the experimenter has

the option to vary the value of 𝑟 until the performance of the

classifier is maximized. The optimum value of 𝑟 depends on

the number of clusters, dataset, and classification algorithm

at hand. Equation (2) by its nature discriminates against

undersampling from clusters that have smaller number of

instances, thereby limiting the number of outliers, which

potentially resides in these smaller clusters from been

included in the sampled data.

After determining the number of instances to sample

from a cluster using (2), the instances in the cluster are

randomized using a random seed that is provided by the

experimenter and the instance that comes first is selected.

All duplicates of this instance in the cluster are discarded

and the remaining instances randomized. The instance that

comes first is selected again and all its duplicates discarded.

This process is repeated until the required number of

instances to be sampled from the cluster is realized or there

are no instances left in the cluster. Discarding all the

occurrence of an instance in a cluster after it has been

selected is aimed at avoiding duplicates of the instance from

been selected, thereby eliminating the occurrence of

repeated majority class instances in the final training set.

This process is carried out in all the clusters and the selected

instances put together to form the set of majority class

instances in the final training set. The process used to

sample instances from each cluster is much like that of

random undersampling but it performs an additional task of

discarding all duplicates of an instance after it has been

selected. The algorithm of CUST is shown in Table I below.

TABLE I: ALGORITHM OF CUST

1. Using Tomek links remove all inconsistent majority class

instances if any from the training set.

2. Cluster the remaining majority class instances into 𝑘 clusters
using k-means clustering algorithm.

3. Determine the number of instances to sample from each cluster
using equation 2 above.

4. For each cluster 𝑖 in 𝑘, if 𝑀𝑎𝑗𝑖 ≥ 1, randomise the instances and

select the first instance. Discard all duplicates of the selected
instance from the cluster.

5. Repeat step four (4) for all clusters until the number of instances

required from each cluster is realized or there are no instances left

in the cluster.

6. Add all the instances selected from the clusters to the minority

class instances to form the new training set.

1. Separate the training data into minority and majority

groups;

 Min containing minority instances, and

 Maj containing majority instances

 let MI=number of instances in Min, and

 MA= number of instances in Maj

2. removeInconsistent (True/false) (* function to remove

inconsistent instances*)

 If removeInconsistent=True

 for i←1 to MI

 for j←1 to MA

 if EuclideanDistance(〖Min〗_i,〖Maj〗
_j)==0 then remove 〖Maj〗_j from Maj

 endif

 endfor

 endfor

 Maj=remaining Maj; MA=number of

instances in Maj

 endif

 return (*end of removeInconsistent*)

3. Cluster Majority instances in Maj into k clusters

using k-means algorithm

4 for i←1 to k (* extract data in cluster i *)

 〖MC〗^i=number of instances in cluster i

 Compute: 〖Maj〗^i=r×MI/MA×〖MC〗^i

to the nearest whole number (*number of instances to

sample from cluster i*)

 While 〖Maj〗^i>0

 If 〖MC〗^i=0

 Break

 endif

 rand: randomize instances in cluster i

 push 〖Instance〗_1 (* Add first instance

to sampled data*)

 for j←1 to 〖MC〗^i-1 (*Remove all

repetition of selected instance from cluster*)

 if EuclideanDistance(〖 Instance〗 _1,

〖Instance〗_(j+1))==0

 remove 〖Instance〗_(j+1) from cluster

 endif

 endfor

 〖 MC 〗 ^i=number of instances

remaining in cluster i

 〖Maj〗^i--

 endwhile

 endfor

 return(*end of doCluster*)

 End of algorithm

TABLE II: SUMMARY OF DATASETS

Dataset
Num.
of

Attrib.

Num. of

instances

Pos. instances Neg. instances

Num. % Num. %

CM1 38 344 42 12.21 302 87.79

KC1 22 2096 325 15.51 1771 84.49

KC3 40 200 36 18.00 164 82.00

MC1 39 9277 68 0.73 9209 99.27

MC2 40 127 44 34.65 83 65.35

MW1 38 264 27 10.23 237 89.77

PC1 38 759 61 8.04 698 91.96

PC2 37 1585 16 1.01 1569 98.99

PC3 38 1125 140 12.44 985 87.56

PC4 38 1399 178 12.72 1221 87.28

Abalone9v18 9 731 42 5.75 689 94.25

Abalone19 9 4177 32 0.76 4145 99.24

Ecoli4 8 336 20 5.95 316 94.05

Glass2 10 214 17 7.94 197 92.06

Yeast2v8 9 264 20 7.58 244 92.42

unbalanced 33 856 12 1.40 844 98.60

IV. EXPERIMENTAL SETUP

A. Datasets

The sixteen imbalance datasets used in this research are

sourced from two publicly available data repositories; ten

(10) software defect datasets from National Aeronautics and

Space Administration (NASA) Metric Data Program (MDP)

[20], and five (5) other datasets from University of

California, Irvine repository [21]. The last dataset is from

WEKA sample datasets that is distributed with it [30].

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

208

Fig. 1. Framework of experimental process.

The above framework was followed in the

implementation of the CUST algorithm for class imbalance

learning. Several datasets suited for the class imbalance

learning were utilized for the experimental setup.

The NASA datasets were obtained from various software

projects carried out at NASA through their Metric Data

Program (MDP). This research adapts the cleansed version

of the datasets labelled D’ by Shepperd et al. [31] in order

to allow easy verification of the results and reproducibility

of the experiments since the original version of the datasets

contain some problems such as implausible and missing

values.

The datasets sourced from the UCI repository were

originally multiple class datasets but are modified into

binary class problems for the purpose of imbalance learning.

The class combinations used in this study are used by other

researchers for various research works involving imbalance

learning [32], [33]. Table II shows a summary of the

datasets indicating the number and percent of majority and

minority class instances.

B. Sampling Techniques

Besides the proposed undersampling technique five (5)

other data sampling techniques are considered in this study.

These techniques are used as the basis to assess the

efficiency of the proposed technique. They include, CBU,

RUS, ROS, SMOTE and OSS. For the purpose of this study

CBU, RUS, ROS, and OSS are implemented within the

framework of the WEKA machine learning tool using

NetBeans java IDE. Also, the java archive (jar) file of

SMOTE created by Chawla et al. [17] and made available

online for academic use is used.

Since the right proportion of majority instances to

undersample or the proportion of minority class instance to

oversample is not known a prior, several sampling

parameters are used and the best chosen. Six undersampling

parameters are considered for RUS in this study, 5, 10, 25,

50, 75, and 90. This implies that, if RUS is done with

parameter 25, then only 25% of the majority class instances

are retained for training. For ROS and SMOTE, seven

parameters are considered, 50, 100, 200, 300, 500, 750, and

1000. When oversampling is done with a parameter 100, it

means that the number of minority class instances is

increased by 100%. These parameters were used by some

previous studies including [11], [25].

In addition, five (𝑘 = 5) nearest neighbours is considered

for SMOTE. Twelve clustering parameters 𝑘 =
(5, 10, 15, 30, 50, 55, 70, 75, 100, 110, 120, 𝑎𝑛𝑑 130) are

considered for CBU and the proposed technique, CUST.

The wide range of clustering parameters is considered

because of the variation in size of the datasets. Also, ten

different threshold values:

 𝜏 =
(0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04,0.03, 0.02, 0.01) are

used for CBU, these values were used in the original work

by Das et al. [19] and ten (10) 𝑟 values:

𝑟 = (1.0, 1.25, 1.50, 1.75, 2.0, 2.5, 3.0, 10.0, 25.0, 50.0)

are considered for CUST. A sampling parameter for each

sampling technique that yields the best results per each

dataset and classification algorithm is considered and the

performance of the given classification algorithm recorded

for further analysis.

C. Classification Algorithms

C4.5 Decision tree [34] is a tree based learner that

improves upon the ID3 [35] learner by adding support for

handling missing values, numeric attributes, and tree

pruning (a measure adopted to avoid overfitting). It creates

classification models using a statistical property called

information gain that measures the effectiveness of an

attribute to separate the training instances according to their

target classification. Information gain is based on entropy, a

measure used in information theory to characterise the

purity or impurity of an arbitrary collection of examples

[36]. J48 is the WEKA implementation of the C4.5

Decision tree. The default values of the J48 learner

specified in the WEKA machine learning tool are used for

all experiment namely a confidence factor of 0.25 and a

minimum of 2 instances per leaf node.

No

Y

e

N

o

Yes

Dataset

Randomise

data

Stratify Data

 10 folds

i=1, k=10

k-ith fold (9 folds) ith fold (1 fold)

Sample

training

Test

model

Performance

measure (PM)

Training data

run=1

Testing data

New

training

i=i+1

Train model

Is i=k?

Average PMs

Is run=10? run=run+1

Average

PMs/10

Performance

report

Discard seen

Instances

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

209

OneR (1R) [37] is a rule based learner that ranks all

attribute with respect to error rates on the training data as

opposed to the use of entropy based measures in C4.5. It

creates one rule for each attribute value. A rule states that

for a given attribute A and value V the majority class is C.

The rules that have the highest accuracy on the training data

are applied to a hypothesis and those with accuracy below

just choosing the majority class instances are pruned from

the hypothesis. The final rules are then sorted in order of

accuracy in the training data. It treats all attributes with

numeric values as continuous and employs a rather

straightforward method to divide the range of values into

several disjoint intervals. It also treats missing values as

legitimate values. The default values (bucket size of 6

instances per rule) of the OneR learner specified in the

Weka tool are used for all experiments.

D. Performance Metrics

The determination of how well a classifier will

generalises when deployed in real-world setting is often

done using a testing dataset that is independent of the

training data. The performance of the classifier based on

this testing data serves as an approximation of its general

performance. For a binary classification problem, there is

always one of four possible outcomes each instance

predicted in a classification experiment will belong [38]:

True Positives (TP), positive examples that are correctly

predicted; True Negatives (TN), negative examples that are

correctly predicted; False Positives (FP), negative examples

that are incorrectly predicted as positive examples; and

False Negatives (FN), positive examples that are incorrectly

predicted as negative examples.

These measures are often used to form a confusion

metrics that describes the basic class specific predictions of

the classifier [39]. Using this confusion metrics almost all

existing classification performance metrics can be derived.

Accuracy and error-rates are the commonly used

performance metrics in machine learning, but it is

demonstrated in prior studies [11], [38] that these measures

are not suitable when learning from class imbalance datasets

and are therefore ideal for datasets with even class

distribution. Area Under receiver-operating characteristic

Curve (AUC) and Geometric Mean (G-Mean) are the main

performance metrics used in this research.

AUC provides a single measure from a Receiver-

Operating Characteristic (ROC) curve. The AUC measure is

independent of a selected decision threshold and thus gives

a classifier’s performance without considering prior

probabilities or misclassification cost. These attributes of

AUC makes it a good metric for classifier performance

under unbalanced datasets [40]. The AUC has a value

between 0 and 1, with 0 indicating the worst performance

and 1 the highest performance of a classifier and is given as:

1

2

TPR FPR
AUC

 (3)

where TPR is True Positive Rate and FPR is False Positive

Rate.

Kubat and Matwin [18] also suggested the G-Mean as a

good metric for classification problems involving class

imbalance. The G-Mean like the AUC provides a single

numeric measure of a classifier’s performance using its TPR

and True Negative Rate (TNR). It gives a value between 0

and 1, with 0 indicating worse performance and 1 highest

performance. It is calculated as:

 G Mean TPR TNR (4)

E. Experimental Method

Besides sampling the training data prior to training the

classification models, models are also trained without

sampling the training data and this is referred to as NONE.

The models are built and evaluated using the stratified

tenfold cross validation process. That is, each dataset is

divided into ten equal folds. For each of the ten experiments,

nine of the folds are used as training set and one fold is kept

as the test set. Each fold is used once as a test set in the

cross validation process. In each case the sampling

techniques are not applied to the test set (i.e., the test set is

not modified in anyway).

The tenfold cross validation process is also repeated ten

times and at each run the dataset is randomized. This

repetition eliminates any biasing that might be introduced

by the sampling or the stratification process. The average

performance of the 1010 cross validation process (100

experiments) is calculated and considered the performance

of the respective classification model given a sampling

technique and dataset.

V. RESULTS AND DISCUSSION

This section presents the results of the experiments

carried out. The performance based on AUC and G-Mean

values are presented, and that of other performance metrics

intermittently referenced are detailed in [41]. First the

performance of the classification models when CUST is

used to undersample the training data is compared to the

performance of the models when the training data is not

sampled prior to training labelled as NONE. Secondly, the

performance the models when CUST is used to

undersample the training data is compared to the

performance of the models when the other five sampling

techniques are used. The last section presents an ANOVA

analysis of the results to establish if there is significant

difference in the performance of the classification models

when the various sampling techniques are used.

Fig. 2. Plot of CUST vs other Techniques for C4.5, AUC.

Fig. 2 and 3 illustrates the performance of the C4.5

classification models in terms of AUC and G-Mean metrics,

respectively, across the sixteen datasets given the various

sampling techniques. Figs. 4 and 5 also illustrate the AUC

and G-Mean values, respectively of the OneR classification

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

210

models, given the various sampling techniques and sixteen

datasets.

Fig. 3. Plot of CUST vs other techniques for C4.5, G-Mean.

Considering the AUC and G-Mean metric values from

Fig. 2 and 3 respectively, for CUST and NONE, it is

evident that CUST significantly improved the classification

performance of the C4.5 decision tree across all the sixteen

datasets and the improvement is however, higher in the

datasets that are most skewed (PC2, MC1, abalone19, and

unbalanced). The classifier recorded recall values of 0.00 in

PC2, abalone19, and unbalanced datasets [41], when the

data is not sampled prior to training. This implies that, the

classifier failed to correctly classify a single minority class

instance in these datasets when the training data is not

sampled.

The performance of the OneR learner shown in Figs. 4

and 5 follow similar trends as the C4.5 decision tree. It is

clear from these figures that CUST improved the

performance of the learner in all the datasets for both AUC

and G-Mean metrics with the exception of yeast2v8 dataset

in which a lower G-Mean value is recorded by the OneR

classification model when the training data is sampled using

CUST. That is, the performance of the classification model

dropped from 0.670 for NONE to 0.655 for CUST

representation a decline of 2.22% in performance.

Comparing the performance of CUST to the other

sampling techniques, from Fig. 2, it is clear that CUST

outperformed all the other sampling techniques across all

the datasets, though the difference between CUST and some

of the other sampling technique(s) for some of the datasets

is marginal. The performance of the C4.5 algorithm using

G-Mean measure as illustrated in Fig. 3 indicates that CBU

and RUS marginally outperformed CUST in only two (2)

(KC1 and PC3) datasets out of the sixteen datasets

considered. Also, the performance of the C4.5 algorithm in

the MC1, PC2, abalone19, and unbalanced datasets, suggest

that CUST is much robust when handling much skewed

datasets as compared to the other sampling techniques as

their performance dropped considerably in these datasets

using both AUC and G-Mean performance metrics.

The performance of the OneR learner in terms of AUC

for the various sampling techniques across the sixteen

datasets illustrated in Fig. 4, also points out that CUST

outperformed all the other sampling techniques in all

datasets with the exception of CBU that performed

relatively better in glass2, CM1 and KC1 datasets. The

performance of the OneR learner using G-Mean measure

shown in Fig. 5 indicates that CUST performed better than

the other sampling techniques in fourteen out of the sixteen

datasets. CBU outperformed CUST in the KC1 dataset by a

difference of 0.024 and OSS outperformed it in the yeast2v8

dataset. Comparatively, the performance of the learner is

relatively poor in the abalone19, glass2, unbalanced, MC1

and PC2 datasets when the other sampling techniques are

used, particularly ROS, SMOTE, and OSS. Noticeable are

the results of OSS, ROS, and SMOTE, where they recorded

approximately 0.00 G-Mean values in these datasets. Also,

CBU witness its lowest performance in the abalone19

dataset followed by the MC1 dataset. This to a greater

extent confirms the accession made above that, CUST is

more robust in improving the performance of learners when

learning from much skewed datasets than the other

sampling techniques.

Fig. 4. Plot of CUST vs other techniques for OneR, AUC.

Fig. 5. Plot of CUST vs other techniques for OneR, G-Mean.

The statistical significance of the results presented above

is examined using the ANOVA model specified in [41].

ANOVA models of the performances of the C4.5 decision

tree using AUC and G-Mean measures are shown in row

two (2) and three (3) respectively of Table III. The models

of the OneR learner are shown in row four (4) and five (5)

for AUC and G-Mean measures, respectively.

The results of the ANOVA models shown in Table III all

have p-values equal to 0.000 (p=0.000).

TABLE III: ANOVA MODELS OF C4.5 AND ONER ALGORITHMS (AUC

AND G-MEAN)

This implies that in all four test cases, at 5% confidence

level (α=0.05) the choice of a sampling technique has

significant impact on the performance (AUC and G-Mean

measures) of the C4.5 decision tree and OneR classification

algorithms. This means that the performance of at least one

of the sampling techniques is significantly different from

Experiment DF SS MS F Value P

C4.5 AUC 6 0.315612 0.052602018 6.97 0.00

C4.5 G-Mean 6 1.884934 0.31415577 7.83 0.00

OneR AUC 6 0.408899 0.068149977 8.19 0.00

OneR G-Mean 6 2.664982 0.444163737 10.22 0.00

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

211

the rest in each of the test cases. Since the ANOVA models

suggests that there is significant difference in the

performance of the sampling techniques, the Tukey’s

Honestly Significance Difference (HSD) test specified in

[41] is used to carry out a post-hoc pairwise comparison to

determine which of the technique(s) resulted in significantly

different performance.

The HSD test results of the C4.5 decision tree learner

using AUC and G-Mean are shown in Table IV (a) and (b)

respectively, and the results of the OneR learner shown in

Table V (a) and (b). The first column in each table contains

the sampling techniques, the second and third columns

show the mean performance and rank of the respective

sampling techniques. In these tables, if two techniques have

the same letter in an HSD column it implies that their

performances are not statistically different.

TABLE IV: HSD TEST RESULTS FOR C4.5

Tech
AUC

Mean HSD

CUST 0.805 A

CBU 0.714 BA

SMOTE 0.709 B

RUS 0.705 B

ROS 0.660 B

OSS 0.656 B

NONE 0.630 B

Tech
G-Mean

Mean HSD

CUST 0.766 A

RUS 0.600 BA

CBU 0.593 BA

SMOTE 0.505 BC

OSS 0.447 BC

ROS 0.392 BC

NONE 0.366 C

TABLE V: HSD TEST RESULTS FOR ONER

Tech
AUC

Mean HSD

CUST 0.7478 A

CBU 0.6854 BA

RUS 0.6683 BAC

SMOTE 0.6152 BDC

OSS 0.5968 BDC

ROS 0.5821 DC

NONE 0.5673 D

Tech
G-Mean

Mean HSD

CUST 0.724 A

CBU 0.602 BA

RUS 0.563 BAC

SMOTE 0.405 BDC

ROS 0.357 DC

OSS 0.351 DC

NONE 0.259 D

In a summary, CUST statistically outperformed SMOTE,

ROS, OSS, and NONE in all cases considered. CUST also

outperformed RUS in the C4.5 classification algorithm

when AUC measure is used as shown in Table IV (a). It

performed statistically the same though with higher average

performances in the remaining three test cases as RUS,

which is reported in literature [4], [25], to be a very

competitive sampling technique. RUS, though performed

statistically the same as CUST, failed in all cases to

outperform SMOTE, ROS and OSS, which CUST

statistically outperformed and also, failed to outperform

NONE as in Table IV (a). CBU, a lesser known

undersampling technique which has never been studied

using these datasets particularly the software defect datasets,

also performed statistically the same as CUST and RUS.

CBU, failed to outperform SMOTE in all cases, ROS and

OSS in both cases of the C4.5 decision tree learner. Three

sampling techniques, SMOTE, ROS, and OSS have in all

cases performed statistically the same as NONE.

VI. CONCLUSION

Data classification or class prediction using machine

learning algorithms is widely studied and the aim is often to

build prediction models that can identify class of instances

in arriving data streams as much as possible in order to

allow optimum allocation of limited resources or to aid

timely decision making. Class imbalance, which is inherent

in most real world datasets militate against the classifiers

ability to adequately learn to correctly identify positive class

instances since they always constitute the minority in the

datasets

Besides the class imbalance problem, there are other

well-known data quality issues such as inconsistent/noisy

instances, repeated/redundant instances, and outliers, which

has the potential of negatively affecting the performance of

classification algorithms when present in training data in

substantial quantities. This study therefore designed,

implemented and examined a Cluster Undersampling

Technique that solves the class imbalance problem by

eliminating majority class instances from the training data

that fall into any of the above categories, thereby producing

a final training set that is virtually void of irrelevant

instances.

The proposed technique was empirically examined using

two machine learning algorithms; C4.5 decision tree and

OneR algorithm, ten real-world software defect datasets

from the NASA MDP and six other datasets from the UCI

repository. The performance of the classification algorithms

when CUST is used to sample the training data prior to

training was compared to the performance without sampling

the training data. The results using AUC and G-Mean

performance measures showed that using CUST improved

the performance of the algorithms in all the datasets

considered as compared to training the models without

sampling.

The performance of CUST was compared to five existing

sampling techniques which include RUS, CBU, SMOTE,

OSS, and ROS. The AUC and G-Mean measures showed

that CUST yielded better results in most of the datasets

using both C4.5 and OneR learners. RUS and CBU

produced competitive results particularly in datasets with

fewer repeated instances and higher percentages of minority

class instances. A Tukey’s HSD test on the mean

performance of the classification algorithms at α=0.05

showed that CUST statistically performed better that

SMOTE, ROS, OSS and NONE. RUS and CBU yielded

competitive results though they did not perform statistically

different from SMOTE, ROS and OSS in most cases.

The performance of the proposed technique across the

various datasets suggests that it increased the performance

of the learners much better in datasets with lesser

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

212

percentages of minority class instances. As this study

focused much on addressing the class imbalance problem in

software defect datasets and datasets from other few areas,

assessing the applicability and efficiency of CUST in other

application areas where the class imbalance problem is

equally predominant such as fraud detection, intrusion

detection, and cancer detection is highly recommended.

It is however, worth noting that CUST like CBU

becomes computational expensive when used on very large

datasets with a larger number of clusters. This is as a result

of the use of k-means algorithm whose computation

complexity depends on the value of k, number of instances,

the dimension of the dataset and the number of iterations

performed during clustering. Considering the computational

complexity of CUST, it is of interest to research into how

the time requirements of CUST can be minimized.

REFERENCES

[1] X. Li, W. Ying, J. Tuo, B. Li, and W. Liu, “Applications of
classification trees to consumer credit scoring methods in commercial

banks,” in Proc. IEEE International Conference on Systems, Man
and Cybernetics, 2004, vol. 5, pp. 4112–4117.

[2] V. U. B. Challagulla, F. B. Bastani, I-L. Yen, and R. A. Paul,

“Empirical assessment of machine learning based software defect
prediction techniques,” in Proc. the 10th IEEE International

Workshop on Object-Oriented Real-Time Dependable Systems, 2005

[3] R. Malhotra and A. Jain, “Fault prediction using statistical and
machine learning methods for improving software quality,” Journal

of Information Processing Systems, vol. 8, no. 2, June 2012.

[4] C. Seiffert, J. V. Hulse, T. M. Khoshgoftaar, and A. Felleco, “An
empirical study of the classification performance of learners on

imbalance and noisy software quality data,” Information Science,

2011
[5] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,

“Reflections on the NASA MDP data sets,” Special Issue on

Evaluation and Assessment in Software Eng., IET, 2011.

[6] E. Acuña and C. Rodríguez, “An empirical study of the effect of

outliers on the misclassification error rate,” Transactions on

Knowledge and Data Engineering, 2005.
[7] J. Zhang, and I. Mani, “kNN approach to unbalanced data

distributions: A case study involving information extraction,” in Proc.

the ICML’2003 Workshop on Learning from Imbalanced Datasets,
2003.

[8] M. Maloof, “Learning when data sets are imbalanced and when costs

are unequal and unknown,” in Proc. the ICML’03 Workshop on
Learning from Imbalanced Data Sets, 2003.

[9] N. V. Chawla, “C4.5 and imbalanced datasets: Investigating the

effect of sampling method, probabilistic estimate, and decision tree
structure.” in Proc. the ICML’03 workshop on Class Imbalances,

August 2003.

[10] T. M Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl,
“Accuracy of software quality models over multiple releases,” Annals

of Software Engineering, vol. 9, no. 1–4, pp. 103–116.

[11] C. Seiffert, T. M. Khoshgoftaar, and J. V. Hulse, “Improving
software-quality predictions with data sampling and boosting,” IEEE

Transactions on Systems, Man, and Cybernetics-Part A: Systems and

Humans, vol. 39, no. 6, November 2009.
[12] T. M. Khoshgoftaar and N. Seliya, “Comparative assessment of

software quality classification techniques: an empirical case study,”

Empirical Software Engineering, vol. 9, pp. 229-257, 2004.
[13] H. Parvin, B. Minaei-Bidgoli, and H. Alizadeh, “Iranian cancer

patient detection using a new method for learning at imbalanced

datasets” in Proc. Lecture Notes in Computer Science, 2011, vol.
6936, pp. 299-306

[14] M. Di Martino, F. Decia et al., “Improving electric fraud detection

using class imbalance strategies,” ICPRAM, 2012
[15] N. Qazi and K. Raza, “Effect of feature selection, SMOTE and under

sampling on class imbalance classification,” in Proc. 2012 UKSim

14th International Conference on Computer Modelling and
Simulation, 2012, pp. 145-150.

[16] V. García, A. I. Marqués, and J. S. Sánchez, “Improving risk
predictions by pre-processing imbalanced credit data,” in Proc. 19th

International Conference on Lecture Notes in Computer Science,

Doha, Qatar, November 12-15, 2012, vol. 7664, pp. 68-75.

[17] N. V. Chawla, L. O. Hall, K W. Bowyer, and W. P. Kegelmeyer,

“SMOTE: Synthetic minority oversampling technique,” Journal of

Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.
[18] M. Kubat and S. Matwin, “Addressing the curse of imbalanced

training sets: One sided selection,” in Proc. 14th Int. Conf. Mach.

Learn., 1997, pp. 179–186.
[19] B. Das, N. C. Krishnan, and D. J. Cook, “Handling imbalanced and

overlapping classes in smart environments prompting dataset,”

Springer Book on Data Mining for Services in Studies in
Computational Intelligence, 2012.

[20] NASA. [Online]. Available: http://mdp.ivv.nasa.gov/

[21] A. Asuncion and D. J. Newman, UCI Machine Learning Repository,
Irvine, CA: University of California, Department of Information and

Computer Science, 2007.

[22] H. He, “Introduction,” Imbalanced Learning: Foundations,
Algorithms, and Applications, 1st ed., New Jersey: John Wiley &

Sons, Inc., 2013, pp. 1-8.

[23] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9,

September 2009.

[24] T. Maciejewski and J Stefanowski, “Local neighbourhood extension
of SMOTE for mining imbalanced data,” IEEE, 2011.

[25] D. J. Drown, T. M. Khoshgoftaar, and N. Seliya, “Evolutionary

sampling and software quality modeling of high-assurance systems,”
IEEE Transactions on Systems, Man, and Cybernetics—Part A:

Systems and Humans, vol. 39, no. 5, September 2009

[26] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and
imbalanced data: problems in software defect prediction,” in proc.

22nd International Conference on Tools with Artificial Intelligence,

2010.
[27] I. Tomek, “Two modifications of CNN,” IEEE Transactions on

System, Man, and Cybernetics, vol. 6, pp. 769-772, 1976.

[28] D. Rocke and D. Woodruff, “Identification of outliers in multivariate
data,” Journal of the American Statistical Association, vol. 91, no.

435, pp. 1047-1061, 1996.

[29] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis, Wiley, New York, 1990.

[30] I. H. Witten, F. Eibe, and M. A. Hall, Data Mining: Practical

Machine Learning Tools and Techniques, Morgan Kaufmann Series
in Data Management Systems, 3rd ed., Burlington, USA, Morgan

Kaufmann Publishers Inc., 2011.
[31] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some

comments on the NASA software defect data sets,” November, 2011.

[32] R. Barandela, J. S. Sánchez, V. García, and E. Rangel, “Strategies for
learning in class imbalance problems,” Pattern Recognition, vol. 36,

no. 3, pp. 849–851, 2003.

[33] V. García, J. S. Sánchez, and R. A. Mollineda, “On the effectiveness
of preprocessing methods when dealing with different levels of class

imbalance,” Knowledge-Based Systems, vol. 25, pp. 13–21, 2012.

[34] J. R. Quinlan. C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[35] J. Aczel and J. Daroczy, On Measures of Information and Their

Characterizations, New York: Academic, 1975.
[36] S. Marsland, “Learning with trees,” Machine Learning: An

Algorithmic Perspective, Machine Learning & Pattern Recognition

Series, Chapman & Hall/CRC, Taylor & Francis group, 6000 Broken
Sound Parkway NW, pp. 133-151, 2009.

[37] R. C. Holte, “Very simple classification rules perform well on most

commonly used datasets,” Machine Learning, pp. 63–91, 1993.
[38] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code

attributes to learn defect predictors,” IEEE Trans. Software Eng., vol.

33, no. 1, pp. 2-13, Jan. 2007.
[39] G. M. Weiss, “Mining with rarity: A unifying framework,” SIGKDD

Explorer, vol. 6, no. 1, pp. 7–19, 2004.

[40] T. R. Hoens and N. V. Chawla, “Imbalanced datasets: From sampling
to classifiers,” Imbalanced Learning: Foundations, Algorithms, and

Applications, 1st ed., New Jersey: John Wiley & Sons, Inc., 2013, pp.

43-59.
[41] M. A. Agebure, “Improving software defect prediction using cluster

undersampling,” MPhil thesis, Dept. of Comp. Eng., Univ. of Ghana,

Legon, Ghana, July 2014.

Robert A. Sowah graduated from the Kwame

Nkrumah University of Science and Technology,
Kumasi Ghana in 2000 with the bachelor of science

degree in electrical & electronics engineering. Dr.

Sowah received his master of engineering and PhD in
electrical and computer engineering from Howard

University, Washington, DC, USA in 2005 and 2009

respectively, and has over ten years of teaching and

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

213

research experience at the tertiary level. He has authored and co-authored

papers published in refereed journals. His research interests include

computational intelligence applications to health insurance claims, research
and development of intelligent applications for countering energy thefts,

and fault detection and remedial control using signal processing algorithms

and wavelet neural networks, as well as modelling and simulation of
processes.

Moses A. Agebure received his BSc degree in

computer science from the University for Development

Studies, Tamale, Ghana in 2008 and master of
philosophy degree in computer engineering from the

University of Ghana, Accra, Ghana in 2014. After his

first degree he worked as a senior research assistant at
the Department of Computer Science of the University

for Development Studies and is currently an assistant

lecturer in the same department of the university for development studies.
He has co-authored papers published in journals. His research interests

include, data mining, machine learning, software engineering and mobile

computing systems.

Godfrey A. Mills received the bachelor degree in
electrical & electronics engineering from the

University of Science & Technology, Kumasi, Ghana

in 1991. He obtained the MSc and PhD degrees in
electronics and computing engineering from Gunma

University, Japan, in 2002 and 2005 respectively. Prior

to the graduate studies, he worked with the Electricity
Company of Ghana (ECG) as power systems planning

engineer for nearly a decade, where he carried out a number of networks

designs and planning activities for the electric power distribution sector of
Ghana. Godfrey has since March 2006, been working with the University

of Ghana as a lecturer in the Department of Computer Engineering. His

general research interests include signal processing, optical information
processing and application, cryptographic techniques, embedded system

design and computing. He is a corporate member of the Ghana Institution

of Engineers (GHIE), Member of IEEE, and Optical Society of America.

Koudjo Koumadi is a 2009 winner of the British

Computer Society’s Wilkes Best Paper Award
(Computer Journal). He holds a Ph.D and an MSc in

information and communications engineering from the

Advanced Institute of Science and Technology
(KAIST), Daejeon, S. Korea, as well as a BSc in

telecommunication engineering from Beijing University

of Posts and Telecommunications (BUPT), Beijing,
China. His research interests include radio resource management, machine-

to-machine communications, and network infrastructure sharing. He is

currently a senior researcher with Korea Electric Power Corporation,
(KEPCO), S. Korea, where he focuses on advanced metering infrastructure

(AMI) and machine-to-machine communications. Before joining KEPCO,

Dr. Koumadi was with the University of Ghana, Department of Computer
Engineering.

Seth Y. Fiawoo graduated with a BSc degree in

computer engineering from the University of Ghana in

2012. Upon completing his bachelor’s degree, Seth
worked as a teaching and research assistant in the

Computer Engineering Department at the University of

Ghana from 2012 till 2014. He is currently pursuing an
MSc in Computer Science from the University of

Manitoba and is a member of the Autonomous Agents

Lab. Seth’s current research interests include multi robot systems,
humanoid robotics, and machine learning.

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

214

