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Abstract—Visual object tracking in robotics applications 

comes riddled with challenges associated with almost incessant 

object motion, robot motion or in certain cases, both object and 

robot motion that may not be necessarily correlated. This 

problem is further compounded by appearance variations which 

result from scale and pose variations, rendering the 

establishment of robust online tracking schemes a challenging 

task. The paper presents and extension of the CSK tracker via a 

effectively incorporation of depth features and an improved 

model update scheme into a single tracking framework. In 

realizing this framework, feed-forward and feedback strategies 

are introduced into the CSK tracking scheme allowing for the 

seamless incorporation of depth features which are extracted on 

a per frame basis. Additionally, coherency is achieved between 

the depth and RGB feature spaces via a coupling scheme which 

is applied towards warping the depth and RGB spaces on a per 

frame basis. An intermediary stage between object detection and 

model update is further introduced towards intelligent and 

adaptive model and classifier parameter update schemes. The 

contributions of the paper are manifold. Firstly, the paper 

achieves an efficient incorporation of depth features into the 

CSK tracker towards classifier robustification; Secondly, 

intelligent and adaptive classifier and model parameter update 

strategies are achieved towards robust tracking by means of 

feed-back and feed-forward strategies; Finally, a coupling 

scheme allows for warping to be  achieved  between RBG and 

depth space thereby facilitating robustness in the tracker 

without introducing additional computational overhead and 

significantly trading off classifier speed. Experimental results 

suggest that the proposed scheme achieves tracking robustness 

in situations of partial occlusion and this offers a means by 

which the CSK tracker could be robustified towards feasibility 

in robotics applications. The scheme also allows the Circulant 

Tracker to operate at speeds feasible in online robotic 

applications. 

 
Index Terms—Robust tracking, tracking-by-detection, 

tracking for robotics, visual tracking. 

 

I. INTRODUCTION 

Visual object tracking offers a wide range of practical 

applications that span across various and diverse fields. Such 

applications include but are not limited to Human Computer 

Interaction (HCI) [1], bio-medical imaging [2], [3] and 

surveillance [4]. In visual tracking, the tracking task could 
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either be limited to domain specific objects such as faces [5], 

hands [6], humans [7] or even vehicles [8]. These domain 

specific trackers have achieved some remarkable success and 

this could partly be attributed to the feasibility of offline target 

modeling and training schemes towards the online detection 

and tracking task. However, in real world scenarios including 

robotic vision systems, the target to  be tracked could remain 

undefined until the tracker has been initialized with the target 

object parameters (e.g., shape, size, colour and depth). This 

rules out the feasibility of applying offline training schemes as 

such an approach would require tremendously large volumes 

of highly diversified training data, a task that is practically 

infeasible. This therefore requires the development of 

trackers with the capability of tracking an arbitrary object 

from the instance of initialization. In such schemes, once the 

tracker has been assigned an initialized state in one video 

frame, the goal of the tracker is then to estimate the location 

and state of the in object subsequent frames. It quickly 

becomes clear that attaining such a tracking goal would 

require an online modeling of the target object, coupled with 

online model update strategies and ultimately, online training 

of a classifier towards the tracking of the object in subsequent 

frames. This has given rise to tracking-by-detection [9] which 

tackles tracking by treating the tracking task as a detection 

task spanning across all the frames that constitute the video 

sequence. Tracking-by-detection strategies have dealt with 

target representation [10], [11], appearance modeling [12], 

[13] and motion modeling [13] with some components being 

merged in certain cases [14]. While tracking-by-detection is a 

comparatively new paradigm in tracking, some success has 

been achieved in [14]-[18]. A majority of these 

tracking-by-detection algorithms treat object detection as a 

binary problem and hence rely on the application of 

discriminative classification approaches towards the 

realization of feasible object detection schemes. In such 

schemes, each successful detection of the object provides a 

premise for the extraction of relevant features to facilitate the 

training of a classifier towards the detection of the object in 

future instances. Some various machine learning and pattern 

recognition schemes that have been applied towards 

tracking-by-detection include but have not been limited to 

support vector machines (SVM) [19], K-means [20], 

structured output SVM [15], ranking SVM [21], Bayes 

Classifier [22], and boosting [23]. Based on the tracking 

components that a tracking algorithm emphasizes one, the 

overall tracking performance tends to excel in certain aspects 

while falling short in other aspects [24]. While some trackers 

apply learning techniques towards the efficient encoding of 

background information into the tracking scheme [15], others 

apply this information towards the development of explicit 
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context information [17]. Such schemes have allowed the 

robustness of tracking to be improved significantly. In order 

to allow for trackers to adapt to partial changes in the target 

object, some techniques have relied upon local models [13], 

[25]. Dense sampling schemes [15]-[17] have also be shown 

to allow trackers to effectively tackle rapid object motion due 

to their ability to expand the search domain and hence 

discriminative models become effective in sorting out clutter 

that may exist between the object and the background [24]. 

The impact of these various schemes on overall tracking 

performance as well as their applicability to domain-specific 

tracking problems is an area that merits further research.  

In the domain of robotic vision, object tracking is 

increasingly attracting research attention due to its vast 

application potential. In this domain however, tracking 

challenges increase manifold due to an almost incessant 

object motion, robot motion or in some cases, both object and 

robot motion that may not necessarily be correlated. The 

problem is further compounded by the appearance variation 

of target objects, which results from scale and pose variations, 

rendering the establishments of reliable appearances models a 

challenging task [26]. Additionally, deployment environment 

of robotic vision systems could be riddled with illumination 

variations, camera perturbations and other forms of random 

interferences that could result in tracking drift or even 

complete target loss [27]. This establishes the premise for 

efficient and robust trackers with the capability of providing 

resolution speeds that match the demands and challenges of 

the robotics domain. Among the current state-of-the-art 

tracking-by-detection algorithms, the Circulant Structure 

Kernel [18] offers the highest speed which has been attributed 

to its proposed circulant tracking scheme. Although the CSK 

tracker achieves simple, fast and efficient tracking, it suffers 

from an inability to recognize and tackle partial occlusions 

[28]. This problem is further escalated by its naïve approach 

towards model update and online classifier training. The 

result of this shortcoming is a degradation of the object model 

in the conditions of partial occlusion and hence a gradual drift 

in tracker performance. While most classical and 

state-of-the-art algorithms operate with 2D data which is in 

fact a mapping of 3D information into a 2D framework and 

hence leads to a dimensionality reduction and hence loss of 

crucial information, the rapid development and reduction in 

the cost of Time of Flight (ToF) sensing technology has lead 

to a growth in 3D vision systems. While most of these ToF 

sensors are limited in range, a significant number of robotic 

vision systems are confined to indoor environments where the 

range limitations become insignificant. This paper proposes 

an extension of the CSK tracking framework through an 

incorporation scheme with depth information and an 

improved model updating strategy. Feed forward and 

feedback strategies are introduced into the CSK framework 

allowing for the incorporation of depth features which are 

extracted on a frame bases. In order to establish coherency 

between depth and RGB features within a single frame, a 

coupling scheme is applied in warping together the depth 

space and RGB space features on a frame basis. As the paper 

demonstrates, the depth information is robust to partial 

occlusion situations and this offers a means by which the CSK 

tracker can be reinforced in situations of partial occlusions. 

Towards the achievement of this goal, the paper proposes an 

intermediary stage between object detection and model 

update. This intermediary stage is capable of determining 

partial object occlusion which allows for much more 

intelligent and adaptive model and classifier parameter update 

schemes. Experimental results obtained on various scenarios 

demonstrate the effectiveness of this algorithm in maintaining 

object model integrity and alleviating classifier drift in 

occlusion situations through an adaptive learning scheme. 

This offers a means by which persistent tracking can be 

attained without a significant trade-off of speed and hence the 

algorithm is shown to satisfy the requirements of robotic 

vision systems. The rest of the paper is thus organized. 

Section II presents an in-depth literature review of the related 

work pertaining to the research effort presented here in the 

paper. This is followed by Section III where the proposed 

algorithm is presented in both theoretical and mathematical  

frameworks. In this section the modified circulant tracking 

scheme with an adaptive online learning strategy along with 

the depth incorporation mechanism coupled with the 

feedback strategy towards adaptive tracking are presented. 

Experimental results achieved with the proposed algorithm as 

well as results from comparison experiments are presented in 

the Section IV. The paper concludes in the Section V. 

 

II. RELATED WORK 

While some object tracking algorithms have succeeded 

with offline appearance modeling [29], [9] a considerable 

number of them have adopted online modeling schemes [14], 

[30]. This later category of algorithms offer higher feasibility 

to a much wider range of applications due to their versatility 

and ability to target arbitrary objects. In order to adapt to the 

object online, these methods apply on-the-fly appearance 

modeling and classifier training schemes that result in a trade 

off between classifier robustness and tracking speed. These 

tracking-by-detection methods have therefore excelled in 

achieving efficiency in arbitrary object tracking but suffered 

from some problems including drift and vulnerabilities 

associated with abrupt object appearance changes as well as 

illumination changes, [24], [17]. Some methods have 

attempted to robustify performance and mitigate drift through 

the incorporation of context information into the tracking 

framework [17]. By exploiting so-called distractors and 

supporters, the method proposed in [17] is able to overcome 

problems associated with tracking in unconstrained situations. 

While the method succeeds in overcoming occlusion and 

abrupt motion by taking advantage of context, fast appearance 

changes and articulated objects still prove challenging. By 

stressing on robust model update and the incorporation of a so 

called forgetting factor, the method in [11] is capable of 

tackling certain intrinsic (eg. Pose variation, shape 

deformation etc.) and extrinsic (eg. Illumination change, 

camera motion, occlusion etc.) appearance variabilities. 

While the method handles these challenges efficiently, it still 

suffers from occasional drifts and does not achieve significant 

tracking speeds. By taking a decomposition approach to 

tracking, the method proposed in [31] provides a scheme that 

achieves the efficient design of multiple motion and 
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observation models into multiple basic trackers. These basic 

trackers are then combined into a single compound tracker 

and by leveraging and strengths and weaknesses of the basic 

trackers, the resulting tracker is capable of achieving efficient 

performance in unconstrained video sequences. This 

decomposition scheme has however been associated with a 

performance bottleneck that has been directly linked with its 

adoption of sparse principal component analysis [24]. While 

occlusion has been well tackled by state-of-the-art trackers 

[15], [16], where dense sample and local sparse 

representations have been adopted, the area still merits 

research effort as these same trackers become vulnerable to 

background clutter leaving them open to degradation when 

initialized with larger scales [24]. 

Due to the complexity of the environments where robots 

are deployed, the need for tracking schemes with the 

capability to learn and adapt online while remaining robust to 

background clutter and appearance variations continues to 

rise. Recent methods have relied on the incorporation of depth 

information into detection schemes. The method proposed in 

[32] applies an RGB-D scheme in hand detection and 

localization towards design and realization of a natural 

interaction system for robots. This method however relies on 

a shape matching scheme and therefore limits itself to domain 

specific objects.  An RGB-D fusion scheme is proposed in [33] 

towards online tracking-by-detection. This work however 

stresses on fusion rather than tracker design and therefore 

adopts classical mean shift tracking towards realizing the 

proposed online RGB-D tracker. More related to the work 

discussed here in this paper is the method proposed in [34] 

which achieves arbitrary object tracking using an RGB-D 

incorporation framework. This framework applies 

compressive tracking on RGB frames while relying on a 

variance ratio features shift (VR-V) tracker for depth frames. 

While this coupling scheme is able to partially overcome 

occlusions and illumination changes, the parallel executions 

of two primary trackers introduces an obvious bottleneck in 

tracking speed which could limit the method only to situations 

without speed constraints. 

 

III. PROPOSED ALGORITHM 

Drawing from the tracking efficiency and speed of the CSK 

tracker, as well as the robustness and sensitivity of depth 

features to background clutter and occlusion, this paper 

proposes an RGB-D tracking method  with the capability of 

adapting to illumination changes and target occlusion via an 

adaptive online model update and classifier parameter 

adjustment scheme. The method is built upon the CSK tracker 

and succeeds in overcoming its vulnerability to occlusion and 

accumulation of faulty detections due to naïve model updates 

which eventually lead to tracking drift and target loss in 

certain situations. By subsuming depth information into the 

tracking framework, trackers can be realized via RGB-D 

combination schemes which possess the capability to 

overcome some basic challenges faced with 

tracking-by-detection algorithms. However, since adopting 

tracking schemes that are originally designed for RGB 

sequences and transferring them to depth sequences is a 

practically infeasible task, there is the need for the design of 

feature extraction schemes that operate exclusively on depth 

frames in order to realize such RGB-D tracking methods. 

Local Ternary Patterns (LTP), histogram oriented gradients 

(HOG) and Histogram of Oriented Vectors (HONV) have 

been some of the feature extraction schemes that have been 

adopted towards depth sequences [35], [36]. The proposed 

algorithm as illustrated in the Fig. 1 applies feed forward and 

feedback schemes towards a realization of efficient RGB-D 

fusion thereby ensuring a coherency in the tracking 

framework. Key contributions of the proposed scheme lie in 

the following: efficient incorporation of depth features into 

the CSK classifier training scheme, adaptive classifier and 

model parameter update strategies towards robust tracking 

and an efficient feedback strategy towards occlusion-robust 

tracking with the CSK tracker. 
 

 
Fig. 1. General framework of the proposed tracking approach. 

 

A. Circulant Structure Kernel Tracking with Adaptive 

Online Learning 

The CSK tracker which is originally proposed in [18] has 

the capability of achieving efficient tracking performance 

with a lightweight and high speed approach. The tracker 

achieves the highest tracking speed according to current 

evaluation schemes [24]. This speed has been attributed to its 

efficient exploitation of the circulant structure that emerges 

when a periodic selection of the local image patch is 

conducted. We refer to [18]in providing a brief overview of 

the algorithm. Once candidate patches are selected, a 

classifier is trained by means of a single image patch  of a 

fixed size, M N , which centers around the object of 

interest [18]. At the classifier training stage, cyclic shifts of 

the patch are also considered such that 

. Labeling of these 

cyclically shifted patches is performed by means of a 

Gaussian function. Training is achieved in this circulant 

tracking scheme by means of finding the parameters that 

minimize the regularized risk according to the generalized 

form expressed in (1).   

i=1

                   (1) 

The interested reader is referred to the original work [18] 
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for detailed reading. While this tracking scheme suffices in 

achieving efficient tracking-by-detection results, the tracker 

suffers drawbacks. Apart from short-comings in the presence 

of occlusion, which this paper proposes to tackle through the 

incorporation of depth features into the tracking framework, 

the CSK tracker also suffers from an inability to robustly 

update object appearance overtime.  In original form, the 

CSK adopts a target object model x̂  along with a 

transformed classifier coefficient A . The algorithm then 

adopts a simple linear interpolation scheme: 

a , towards updating the classifier 

parameters, where p  and  represent the current frame 

index and the learning rate parameter respectively. The 

problem with such a scheme is two-fold. Firstly, this basic 

linear interpolation scheme fails to consider all the previous 

appearances or representations of the target object and hence, 

crucial appearance information which could increase the 

adaptability of the object model is discarded over time. This 

has already been highlighted in recent studies [37]. Secondly, 

the learning rate of the classifier remains fixed and lacks the 

flexibility and adaptability required of the various tracking 

conditions that may be encountered in real-world scenarios. 

Both problems are further compounded by the fact that the 

classifier parameter update scheme operates at a constant rate 

on a per-frame basis, exposing the tracker to degradation 

when the object is occluded or misclassified in a particular 

frame. Therefore, while the incorporation of robust features 

such as depth could improve tracking performance and render 

such a circulant tracking scheme feasible in the robotics 

domain, we first need to address this parameter update 

scheme in an attempt to robustify the tracker before the 

incorporation of depth information and the feedback strategy 

proposed in this paper could succeed in significantly 

improving performance. 

The first drawback of the parameter update scheme is 

addressed in a manner similar to the work in [37]. Instead of 

discarding previous appearance representations of the target, 

we adopt all representations by means of a weighted average 

quadratic error which considers all frames of the target 

sequence in the same manner as shared in [37]. A fixed 

 is applied as the weight for each frame represented by 

k . This yields a cost function:  
 

            (2) 

 

The fourier transformed kernel is denoted as 

Ux

k = F ux
j{ }  and the weights of the frames, , are 

adjusted by means of the learning rate parameter . Finally 

the object appearance model, x̂ p , is updated as: 
 

                           (3) 
 

The classifier parameters are also updated in a similar 

manner as illustrated in the (4): 

                     (4a) 

          (4b) 

 

This model update scheme exploits the appearance of the 

object over all frames without explicitly storing all previous 

appearance models. This update scheme makes use of 

problem domain information towards robustifying the tracker 

and addresses the first parameter update drawback of the CSK 

algorithm. At this point it becomes clear that although the 

tracker enriches itself by learning from all previous models of 

the object, the weights of all previous appearances as well as 

the learning rate parameter remain fixed throughout the 

sequence. This further highlights the second drawback of the 

CSK model and classifier parameter update scheme. Towards 

resolving this second drawback and further improving the 

adaptability of the tracker to the target scene dynamics, this 

paper proposes a feedback strategy that incorporates depth 

features into the tracking scheme. While the feedback strategy 

aims at enhancing adaptability of the tracking in online 

scenarios, the incorporation of depth features improves the 

robustness of the tracker to occlusion and this combination 

scheme renders the tracker more adaptive and persistent even 

in challenging tracking scenarios. The second drawback is 

addressed with the adaptive classifier training and parameter 

update strategies in the section below by means of depth 

incorporation and a feedback mechanism. 

B. Depth Incorporation and Feedback Strategy towards 

Adaptive Occlusion-Robust tracking 

Our choice of depth information as a reinforcement 

mechanism in occlusion situations is motivated by the 

hypothesis that an object in a scene possesses a uniform 

distribution of depth values which causes an abrupt change in 

the associated depth values of the object in situations of 

partial occlusion in the same manner in which  edges are 

detected in RGB frames. These abrupt changes occur around 

the regions in the object where occlusion occurs as illustrated 

in the Fig. 2. Additionally, adaptive online tracking is 

achieved through an intelligent fusion scheme between RGB 

and depth features which are extracted on a frame bases and 

applied towards intelligent model update and classifier 

training. Since depth features are further robust to 

illumination changes, this combination scheme offers the 

potential to robustify the basic CSK tracker not only to partial 

occlusion situations but also to illumination variations. 

 
Fig. 2. Robustness of depth to partial occlusions. When the object is 

occluded, the depth values of its pixels change abruptly. 

 

The incorporation of depth features into already existing 

color trackers is an ongoing research effort. However, most of 

these schemes propose to run parallel trackers in both depth 
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and color space and then proceed to rely on mechanisms in 

leveraging both tracking performances into one compound 

tracker. In this paper however, in order to maintain the speed 

and simplicity of the CSK tracker, we propose to rely upon a 

simple core tracker while extracting features from the depth 

space and applying them towards adaptive classifier training 

via robust feedback mechanisms. 

Through the incorporation of depth information into the 

CSK tracking framework, an adaptive feedback strategy is 

proposed in this paper towards robustifying tracking 

performance. The feedback strategy is designed to facilitate 

the tracker and allow it in establishing a sense of occlusion 

and overcoming it in an adaptive and intuitive manner.  The 

strategy achieves an online coupling of the trackers 

performance in both depth and color feature spaces which 

enables the overall tracking framework to achieve an adaptive 

classifier and model parameter update strategy within the 

CSK tracking framework. 

Within the scope of this paper, depth features are extracted 

in the form of depth histograms which we represent as Dhist . 

While there exist other forms of depth features covered in 

recent literature, the experimental results presented 

demonstrate the depth histograms are sufficient in illustrating 

the efficiency if the proposed tracking scheme. In order to 

allow the CSK tracking to become occlusion aware and 

possess the capability of efficiently tackling this challenge 

which is inevitable in real-world scenarios especially in 

robotic applications, the feedback strategy proposed performs 

an analyses of the trackers performance within each frame. 

This approach allows for the depth similarities of the object 

within each depth frame to be computed and applied towards 

occlusion detection. The extracted depth histograms are 

applied towards occlusion detection through implementation 

with the Bhattacharyya coeffecient [38] as a supporting 

feature within the depth space in an ad-hoc manner. The 

Battacharyya distance computed between consecutive depth 

frames represents an approximate measure of the degree of 

overlap that exists between the subjective depth histograms 

and is illustrated in (5). 

                (5) 

where, Dhist  denotes the Bhattacharyya distance between the 

two normalized depth histograms Dt  and ; N  

represents the number of  bins within the histograms. This 

distance is a measure applied towards the detection of 

instances in which the object appearance has undergone 

significant changes resulting from partial occlusion or in 

certain cases, environmental factors. However, in a majority 

of robotic applications in indoor environments, 

environmental factors remain constrained and this parameter 

bears a strong correlation with occlusion. 

This measure of overlap offers a means by which partial 

occlusion can intuitively be detected within depth space and 

hence the coefficient allows the object’s depth representation 

across all frames of a sequence to be applied towards the 

detection of partial occlusion instances.   

This forms a crucial component within the feedback 

strategy that applies this occlusion awareness towards 

adaptive parameter update and search strategy within the CSK 

framework.  A detailed presentation of the feedback strategy 

with its constituent parameters and transitions is illustrated in 

the Table I. 

 

 
Fig. 3. The Battachryya distance towards occlusion detection in depth space. 

parameters. According to the proposed feedback strategy, the 

case one suggests a consistency in the tracking results as well 

as a high degree of similarity in the depth histograms 

measured by the Battachryya distance and coefficient. This 

causes the feedback strategy to retain the sampling radius as 

well as the learning rate parameter accompanied with a 

classifier update. In cases 2 and 4, the feedback strategy 

suggests that there exists a minimal level of inconsistency in 

either the depth histograms of the object or the tracking results 

between two consecutive frames. This implies that the target 

object is either varying in appearance or undergoing rapid 

motion. In such cases the strategy gradually increases the 

search radius as well as the learning rate parameter of the 

classifier in order to allow the tracker to rapidly adapt to the 

object’s changes over time. On other hand, in cases 3 and 5 

where a large discrepancy exists between the depth 

histograms of the object or the tracking results between 

consecutive frames, there exists a high likelihood that a partial 

occlusion has occurred or the object appearance has altered 

significantly. Additionally, these cases could imply that the 

object model has been corrupted. This causes the feedback 

strategy to significantly increase the sampling radius of the 

tracker while holding off on model and classifier updates in 

order not to degrade the object model or classifier. Finally, the 

case 6 represents a scenario where the Battachryya distance 

between the depth histograms is far greater than an upper 

threshold while the tracker’s results between consecutive 

frames are significantly inconsistent signifying that the object 

is either completely lost due to full occlusion or has exited the 

scene. In this case as well, in order to retain classifier and 
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In the Table I,  Dhist  represents the measure of similarity 

computed with the Battachryya distance between the t −1th  

and t th depth frames, It  represents the tracking results at 

the t th frame, r  represents the sampling radius defined by 
the bounding box size and remains the learning rate 
parameter. λ and δ represent feedback adjustment 



  

model integrity, model and classifier updates are suspended 

while detection is reinitialized using the present object model 

in a dense sampling manner. 
 
TABLE I: AN ILLUSTRATION OF THE FEEDBACK STRATEGY AND ITS 

ASSOCIATION PARAMETERS AND TRANSITIONS

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Setup 

Since the proposed tracking approach is aimed at satisfying 

real-time requirements of robotic applications, the robustness 

and efficiency of the approach are verified through both 

computer-based and robotic-based experiments. Both 

categories of the experiments are designed to validate the 

robustness of the proposed circulant tracking scheme to 

partial occlusion in scenarios that are characteristic and 

representative of robotic applications. Ideally, the first step in 

the verification phase of the proposed tracker would be the 

benchmarking of it performance against well established 

online tracking-by-detection algorithms including but not 

limited to STRUCK [15], TLD [16] and the convention CSK 

tracker [18]. However, this benchmarking is inhibited by the 

fact that these well established state-of-the art trackers are 

designed to operate on RGB or intensity frames while the 

proposed tracking approach based on an improved CSK 

tracker is designed to operate through a fusion scheme 

between RGB and depth features.  For this reason, the most 

unbiased comparison scheme between the proposed scheme 

and existing trackers would be to test the proposed scheme on 

a fusion of RGB+D frames while the state-of-the-art trackers 

are only tested on the RGB sequences while excluding the 

accompanying depth frames. Furthermore, online 

performance of the proposed scheme is validated in 

computer-based and robot-based experiments with proposed 

future extensions of the validation process though 

robot-based experiments. The computer-based experiments 

are conducted as follows: 

1) Computing platform: 2.8 GHz Intel Core i7 with 8 GB 

RAM @1067 MHz) 

2) Data Acquisition Scheme: RGB+D frames obtained via 

the Kinect sensor 

In conducting experiments towards qualitative and 

quantitative validation of the performance of the proposed 

circulant tracking scheme, video sequences containing both 

RGB and depth information were captured with the Kinect. 

The video benchmarking sequences applied towards the 

verification of the proposed scheme are designed pose 

specific challenges to the tracking task in a manner in line 

with the targeted application domain of robotics. Table II 

presents the individual sequences with the accompanying 

challenges they simulate.  
 

TABLE II: BENCHMARK SEQUENCES AND THEIR ASSOCIATED CHALLENGES 

Sequence Associated Challenges 

1. Stick-it-Note Partial Occlusion, Rapid Motion 

2. Mug 
Partial Occlusion, Random Motion, Illumination 

Changes 

3. Notebook Partial Occlusion, In-plane Rotation 

4. Palm Out-of-view, Random Motion, Partial Occlusion 

5. Magazine Partial Occlusion, Full Occlusion, Fast Motion 

 

Since the proposed scheme is aimed at robust tracking 

specifically targeting difficulties posed by partial occlusion, 

all the benchmarking sequences are designed to incorporate 

this challenge with at least one other form of tracking 

challenge. The proposed scheme is firstly compared with 

existing state-of-the-art trackers. In this initial comparison, 

the ground truth of the targets is applied towards computing 

the success rate, a core metric in comparing the performances 

of the trackers. The success rate is calculated according to (6) 

below: 

area
success =

area

( )

( )
G T

G T

BBR BBR

BBR BBR




               (6) 

where BBRG  represents the bounding box region of the 

ground truth and BBRT  represents the bounding box region 

of the tracker. The success rates of the selected trackers in 

comparison with the proposed algorithm are illustrated in 

Table III. 

B. Experimental Results 

The results illustrated in the Table III indicate that the 

proposed algorithm is capable to maintaining a stable tracking 

performance and robustness to various levels of target 

occlusion. Additionally, due to the incorporation of a depth 

features, the tracker is further robustified against significant 

illumination changes characteristic of most real-world 

situations. 
 

TABLE III: PROPOSED ALGORITHM VS. STATE-OF-THE-ART: SUCCESS RATE 

(ALL TRACKERS EXECUTED IN REAL-TIME WITH KINECT SENSOR) 

Sequence/ 

Frame count 
CSK TLD 

Mean 

Shift 

Sparse 

Flow 
Proposed 

Stick-it-note/400 22.8 32.7 18.1 15.2 27.3 

Mug/450 15.3 23.9 15.8 13.2 31.7 

Notebook/400 24.5 38.3 22.7 18.0 26.2 

Palm/400 24.6 36.1 25.2 20.5 32.9 

Magazine/300 18.0 32.7 16.3 13.8 25.5 

 

Comparatively, the tracker outperforms the traditional 

CSK tracker across most sequences but it is necessary to point 

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

201

 

Case Condition Adjustment 
Strategy 

Classifier 
State 

1 
Dhist < δ0 ; 
It−1 − It < λ0  

r = r0 ; 
γ = γ0  Update 

2 
Dhist < δ0 ; 

λ0 < It−1 − It < λ1
 

r =1.2r0 ; 

γ =1.2γ0  
Update 

3 
Dhist < δ0 ; 

It−1 − It > λ1  

r =1.5r0 ; 

γ = γ0  
Hold 

4 
δ0 < Dhist < δ1 ; 

It−1 − It > λ0  

r =1.2r0 ; 

γ =1.2γ0  
Update 

5 
Dhist < δ0 ; 

It−1 − It < λ0  

r =1.5r0 ; 

γ = γ0  
Hold 

6 
Dhist > δ1 ; 
It−1 − It > λ1  

r = r0 ; γ = γ0  Hold 



  

out that most of these outperformances are directly linked 

with frames where occlusion and drastic illumination changes 

occur. The TLD tracker achieves a more robust performance 

across all sequences except the “Mug” sequence where drastic 

illumination changes cause the all trackers except the 

proposed scheme to lose the target completely. In terms of 

tracking speed, the CSK maintains the highest and most stable 

speed due to its lightweight and simple kernel structure. The 

computational complexity of the proposed scheme however 

does not impede upon its real-time performance requirements. 

 

 

 

 

 

 

F

ig. 4. Tracking results of the proposed tracking scheme in comparison with 

state-of-the-art  trackers on real world scenarios. (a) “Magazine” scenario (b) 

“Mug” scenario (c) “Notebook” scenario (d) “Palm” scenario (e) 

“Stick-it-note” scenario. 

All the sequences applied in the testing of the proposed 

scheme contain varying levels of occlusion as well as varying 

rates of motion and rotation. These sequences are not only 

designed to verify the robustness of the proposed tracking 

scheme but to also highlight its relative strengths and 

weaknesses in comparison with some already 

well-established trackers. In order to ensure fairness in 

comparison, all trackers are initialized in synchrony both 

spatially and temporally. As illustrated in the tracking results 

in Fig. 5, the traditional CSK tracker although, fast and 

efficient in most scenarios, undoubtedly suffers from an 

inability to ascertain whether or not a target ahs been partially 

or fully occluded, hence is prone to classifier degradation in 

such situations. Throughout all the sequences, this remains 

the major area in which the proposed RGB+D circulant 

tracking scheme outperforms the traditional CSK.  The most 

outstanding performance is demonstrated by the TLD 

(Predator)which maintains the target in both partial and full 

occlusion situations through a decoupling of the tracking, 

learning and detection tasks. On the other hand, the most 

unstable performance is exhibited by the Sparse flow tracker. 

The Sparse Flow tracker which adopts the Lucas-Kanade 

method is resolving the flow within a local neighbourhood is 

highly unstable in most of the applied test sequences due to its 

reliance upon a 2-dimensional flow computation while 

assuming that the flow within the selected local 

neighbourhood remains a constant. The experimental results 

have shown that in cases of partial and full occlusion, the 

proposed tracking scheme indeed outperforms the traditional 

CSK tracker as well as the Mean Shift and Spare Flow 

trackers.  This performance is attributed to the tracker’s 

ability to incorporate depth features into the classfier’s feature 

space and therefore since depth features offer a means of 

detecting occlusion by means of the proposed feedback 

strategy, the proposed tracker is equipped to effectively detect 

occlusions of various intensities. In situations of occlusion, 

unlike the traditional CSK, the proposed tracker holds off on 

model updates and hence is capable of avoiding degradations 

of the target model and classifier. This allows the proposed 

tracking scheme to come second only to the TLD tracker 

which is also capable of maintaining model and classifier 

integrity by simultaneously tracking the target, learning its 

dynamic appearance and detecting it constantly across all 

frames.  

Due to the incorporation of depth features, the proposed 

tracking scheme is able to outperform all other trackers on the 

“Mug” video sequence illustrated in Fig. 4b. The mug 

sequence varies from all other sequences in that, it is the only 

sequence in which illumination changes are introduced into 

the tracking challenge. As illustrated in the results, all trackers 

are able to maintain the target up to frame #0300 when a 

significant change in illumination is introduced into the scene. 

At this point, the CSK, TLD, Sparse Flow and Mean Shift 

trackers all fail to detect the target although the target 

maintained a smooth and non-erratic motion. Trackers such as 

the TLD, which are equipped to reinitialize themselves in 

such cases still failed to reacquire the target due to the drastic 

change in illumination and the absence of prior learning data 

in previous training sequences. The proposed tracking 

scheme however succeeds in maintaining the target even 
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when full occlusion occurs at frame #0325 in the presence of 

relatively poor illumination conditions. This further 

highlights a contribution of this paper and the need for more 

illumination-robust trackers since constant and sufficient 

illumination are usually not guaranteed in most real world 

scenarios. As shown in the Fig. 4c, in plane rotation does little 

to impede the performance of the proposed tracking scheme. 

In terms of tracking speed however, the CSK remains the 

highest performing tracker with tracking speeds that even 

supersede that of the TLD tracker. 

 

 
Fig. 5. Prototype 6-legged spider robot adopted towards robot-based 

experiments. 

 

V. CONCLUSION 

Drawing from the inadequacies of the CSK tracker and the 

lack of sufficient robust trackers towards robotic real-time 

applications, this paper proposes a robust and persistent 

tracking-by-detection scheme which is built upon the core 

CSK tracking. The CSK tracker is selected for core tracking 

because its lightweight and simple kernel structure allows for 

the tracker to achieve the most remarkable tracking speeds 

amongst the state-of-the-art and this is real-time performance 

is crucial in robotic application. Additionally, drawing from 

the robustness of depth features to various degrees of 

illumination changes as well as the capability of the feature to 

maintain a sensitivity to occlusion, a new tracking scheme is 

proposed to draw from the strength of the CSK while 

mitigating the problem of naïve classifier and model updates 

via an adaptive feedback mechanism. This approach allows 

the tracking scheme to draw from depth features and apply 

them towards a more refined, adaptive and robust tracking 

framework. 

The proposed scheme is implemented and its performance 

is verified using the Kinect sensor. Experimental evaluation 

and comparison with state-of-the-art indicated that the 

proposed scheme is robust against various levels of 

occlusion-related challenges and outperforms state-of-the-art 

in terms of robustness to occlusion and drastic illumination 

changes. Furthermore, experimental results suggest that the 

significant increase in the computational complexity of the 

proposed scheme compared with the traditional CSK does not 

impede upon its real-time performance.  

Since the proposed tracking scheme aims to address 

challenges associated with robust real-time tracking of 

arbitrary target for robotic applications, the future extension 

of the work presented in this paper will be two-fold: 

1) The experimental evaluation of the proposed scheme will 

be extended to robot-based verification experiments 

aimed at subjecting the scheme to real-life challenges 

outside the constraints a lab-controlled environment. The 

target platform in these robot-based experiments will be 

conducted upon a prototype six-legged spider robot 

designed towards semi-autonomous structural inspection 

and maintenance of civil structures. 

2) While the proposed scheme effectively combines RGB 

and depth features into a single robust tracking 

framework via an intuitive feedback strategy, there still 

exists the potential to adopt a more systematic approach 

towards the incorporation of depth and RGB features. 

Such an approach would operate the circulant tracker 

directly upon and RGBD tensor rather than in the 

decentralized manner discussed in this paper. The 

potential of such a scheme remains unexplored to the best 

of our knowledge and opens the path for future 

extensions of this work. 
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