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Abstract—This paper presents a novel online learning 

algorithm, in an actor-critic structure, to find state-feedback 

optimal controllers for partially unknown nonlinear systems. 

The algorithm converges online to the optimal solution under 

the condition of initial stabilizing controller. It is derived from 

integral reinforcement learning (IRL) technique, and makes use 

of semi-parametric regression model (SPRM) to approximate 

the optimal controller and the optimal cost function of a control 

dynamic system. The convergence to the optimal controller is 

proven, and the stability of the closed-loop nonlinear system is 

also guaranteed. The feasibility of the proposed learning 

algorithm is demonstrated in simulation on two example 

systems. 

 

Index Terms—policy iteration, optimal control, actor-critic 

structure, SPRM, nonlinear systems. 

 

I. INTRODUCTION 

During the past several years, the optimal methods have 

been the mainstay design technique for feedback control 

systems and been developed widely to deal with complex 

design problems in aerospace control, process control, 

vehicles, communications system, robotics and numerous 

other applications [1]. A core challenge of obtaining the 

solution of nonlinear optimal control problems is that it often 

falls to solve the Hamilton-Jacobi-Bellman (HJB) equation 

which is required the full knowledge of the system dynamics.  

However, the HJB equation is intractable or impossible to 

solve analytically for nonlinear systems. In addition, from the 

perspective of real-world control applications, it is desired to 

design online optimal controller under the absence of the 

knowledge of dynamics, especially for the system without the 

knowledge of internal dynamics. 

To address the above issues, reinforcement learning (RL) is 

introduced. RL provides online direct adaptive schemes that 

converge to optimal control solutions for unknown systems. A 

computational intelligent learning technique known as policy 

iteration (PI) based on RL [2] has been widely used to 

approximate an optimal controller and optimal cost function 

for both linear [3]-[8] and nonlinear [9]-[12] partially 

unknown or completely unknown systems. The PI technique 

includes two-step iteration: policy evaluation and policy 

improvement, which starts with a given initial admissible 
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control policy, and evaluates the performance of current 

policy and then obtains improved policy sequentially or 

simultaneously until the policy improvement no longer 

changes. During the development of adaptive optimal control 

based on PI algorithm, the offline iteration algorithm and the 

online update algorithm have been presented to approximate 

optimal control policy [13]-[17]. Naturally, the value function 

approximation (VFA) that is essential to implement the PI 

algorithm has played a vital role in an actor-critic structure 

[13]. Obviously, the approximate accuracy will impact 

directly the performance of system and the convergence of the 

optimal controller, which depends on the choice of the 

function approximator. 

To the best of our knowledge, however, almost all of the 

existed works have chosen BP neural network (NN) or RBF 

neural network as the functional approximator to implement 

the PI algorithm. Nevertheless, the neural network 

approximator belongs to parametric function approximator, 

which has some drawbacks such as over learning, local 

minima and poor convergence problems. The learning result 

is relative to an initial value and it is difficult to converge to a 

unique optimal policy [18]. In addition, as a typical 

non-parametric kernel method, support vector machine 

(SVM), which is based on Vapnik’s structural risk 

minimization (SRM) [19], has perfect generalization property 

and can be able to overcome the existing weakness in 

parametric function approximator. But it will decrease the 

interpretative capability of the model, when the large amount 

of information is provided by experience. Therefore, in this 

paper, we presented an approach to approximate value 

function, named semi-parametric regression model (SPRM) 

that elegantly combined the advantages of parametric with 

non-parametric approaches. Compared with pure parametric 

or non-parametric models, the SPRM has better adaptability 

and stronger interpretative capability [20]. 

  Based on the above analysis, a novel adaptive optimal 

control by using PI algorithm based on SPRM is proposed and 

the SPRM is used to online approximate value function 

during the process of learning. Compared with the method 

presented in [18], the novel approach in this paper regarded 

the SPRM as a function approximator to get the value 

function, thus accomplishing the adaptive optimal control 

based on the idea of IRL to improve the generalization ability 

and the robustness, which is a promising and practical method 

to overcome the problems of NN approximator. 

 

II. PRELIMINARIES OF OPTIMAL CONTROL PROBLEMS 

Consider a nonlinear time-invariant affine in the input 

dynamical system given by 
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0)0();())(())(()( xxtutxgtxftx                (1) 

where state
nRtx )( , internal dynamics nRtxf ))(( , input 

coupling matrix mnRtxg ))((  and control input mRtu )( . 

Assume that 0)0( f and uxgxf )()(  is Lipschitz 

continuous on a compact set that contains the origin, and 

that the system is stabilizable on . That is, there exists a 

control policy )(tu such that the given system is 

asymptotically stable on . 

For optimal control problem, the control objective is to 

design an optimal control law for the system (1) that ensures 

all the signals involved in the closed-loop system are 

uniformly ultimately bounded (UUB), while minimizing the 

infinite horizon performance cost function: 

0)0(;))(),(()(
0

0  


VduxrxV                   (2) 

where RuuxQuxr T )(),(  with )(xQ positive definite, 

i.e. 0)(,0  xQx and 0)(0  xQx and the weighted 

matrix
mmT RRR  0 . 

The optimal control problem can be formulated: given the 

continuous-time system (1), a admissible control setU and an 

infinite horizon cost function (2), then find a control 

policy )(tu  that minimizes the cost function [9]. 

Now we define the Hamiltonian function as 

 
))()()(())(),((),,( tuxgxfVtutxrVuxH T

xx 
     (3) 

The optimal cost function )(* xV satisfies the HJB equation 
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x
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VuxH                        (4) 

where
x

V denotes the gradient of the cost function 

)(xV with respect to x , which is a column vector. 

A necessary condition for optimization of ),,(
x

VuxH  with 

respect to )(tu is that 
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Which results in  
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Substituting (6) into Eq. (3), and the HJB equation in terms 

of 
*

x
V is obtained: 
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Remark 1: The HJB equation (7) relates to solving the 

partial differential equations, which is extremely difficult to 

solve. From the perspective of real-time applications, the 

requirement of the full knowledge of the control system 

dynamics is intractable to satisfy. 

 

III. SEMI-PARAMETRIC REGRESSION MODEL (SPRM) 

It is noted that the support vector machine (SVM) learning 

formulation is based on the principle of structural risk 

minimization (SRM), which is a non-parametric regression 

model. Unlike parametric regression that minimizes an 

objective function based on training data, SVM attempts to 

minimize a bound on the generalization error, which 

overcomes some disadvantages of parametric regression such 

as over learning, local minima and poor convergence 

problems. Hence, we combine a  -SVM with parametric 

regression model (NN model) so as to construct a SPRM, and 

further use it to approximate the value function in optimal 

control. Here, we will present the principle of SPRM that is a 

key step to accomplish our control objective. 

  The value function )(xV  can be formulated as 

                   )()(,)( xWxwxV ll                             (8) 

where x is the input data of the SPRM, 
nRx )( is a 

nonlinear mapping from the input space to a high-dimension 

feature space, w  and 
l

W  are weight vector of the 

non-parametric and parametric model, respectively, 
n

l
Rx )(  is a basis function vector,  , denotes inner 

products.  

The optimization problem can be formulated in the primal 

space [21]. As the following 
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in which  is the maximum value of tolerable 

error, i
 and

*

i
 are slack variables,  is the Euclidean norm, 

and C is a punishment factor that denotes the trade-off 

between the model complexity and the tolerance to the error 

large than . 

Construct the Lagrange function 
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Take the partial derivative of the Lagrange function with 

respect to *, ,
i

w b   and
i
 , respectively. We get the following 

equations: 
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Thus, the dual form of (9) can be rewrite a quadratic 

programming (QP) problem as follows [18]  
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where ),(
ji

xxK  is a kernel function given by  

)()()(),(),( j

T

ijiji xxxxxxK   . 

Solving the above dual problem, the regression model of 

value function )(xV can be obtained 
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Comparing with                           (8), we can get 
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By applying the Karush-Kuhn-Tucker (KKT) condition, 

we obtain 
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  . Hence, the weight 

vector
l

W  can be obtained by solving the linear equation             

(15) easily. 
 

IV. POLICY ITERATION ALGORITHM FOR SOLVING THE HJB 

EQUATION 

In this part, a novel online iteration algorithm, named 

policy iteration (PI), was adopted to solve infinite horizon 

optimal control problem by solving the HJB equation (7) 

without requiring the knowledge of the internal dynamics 

)(xf . 

Given an admission policy ))(()0( tx  and an integration 

time interval 0T , according to the idea of the dynamic 

programming, the value function (2) can be revised as the 

following form: 
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in which the integrand  
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is known as the integral reinforcement (IRL) learning form on 

the time interval ],[ Ttt  . 

It should be noted that the formula (7) named as the IRL 

Bellman equation does not contain system dynamics 

 )(),(  gf , which makes the PI algorithm possible without 

giving )(xf . 

Let )())(()0( tx be an admission policy, then there 

exists a time interval 0T , such that, if )(tx , then 

also  )( Ttx . Thus the PI algorithm can be implemented 

between the following two steps: policy evaluation and policy 

improvement. 

1) (Policy evaluation step) Solve for the value function  
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i  using the equation (7) 
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2) (Policy improvement step) Update the control policy 

using 
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Ti VxgRx                        (18) 

The proposed PI algorithm is derived from the success of 

the online adaptive critic techniques proposed by 

computational intelligence researchers [22], which is a 

contraction map guaranteeing the convergence of the PI 

algorithm.  

It’s easy to prove the solution
)( i

V  of the formula (17) is 

equivalent to solving the solution of  
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by integrating (19) over the time interval  Ttt ,  (see [11] 

and references therein). 

Remark 2: Note that although the formulas (17) and (19) 

have the same solution for optimal control problems, the 

formula (17) does not contain the knowledge of the internal 

dynamics )(xf , which needs to be known explicitly in (19). 

Thus, the PI algorithm is necessary for us to deal with the 

partially unknown systems presented in this paper. 

Lemma 1: The PI algorithm proposed converges uniformly 

to the optimal control solution on trajectories originating 

in , that is 
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Proof: the proof is presented in the paper [23] for details. 

Remark 3: Lemma 1 presents the fact that the optimal 

control based on PI algorithm guarantees the control policy 

converges uniformly to the optimal control solution under an 

initial stabilizing controller.  

 

V. THE CONVERGENCE AND IMPLEMENTATION OF PI 

ALGORITHM BY USING SPRM APPROXIMATION 

This section combines the SPRM with PI algorithm in an 
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actor-critic structure to implement the proposed algorithm 

and to improve the accuracy of approximation, and the 

convergence of the proposed algorithm is presented.  

The value function )(xV  always can be described as 

follows: 

)()()(,)( xWxWxwxV T

l               (21) 

where TT

l
WwW ][   denotes the augmented regularization 

weighted vector of SPRM and )]()([)( xxx   is the vector 

of augmented function. 

Considering the approximate error of the SPRM, the output 

of the SPRM can be noted 

)(ˆ)()(,)(ˆ xWxWxwxV T

l                (22) 

Using the SPRM description for the cost function, equation       

(17) can be written as  
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The policy improvement step       (18) then can be written as  
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Define the residual error produced by the SPRM 

approximation as
HJB

 . Then, applying the formula (10) and 

(11), the residual error can be obtained: 

HJB

TT xQWxDWxfxW   )()(ˆ
4

1
)()(ˆ          (25) 

with )()()()()( 1 xxgRxgxxD TT    . 

Remark 4: The objective of the SPRM is to drive the 

residual error to converge to zero. Thus, the parameters 
)( i

W   

of the cost functional approximation 
)( i

V   converge to the 

optimal weights and the control policy converges to the 

optimal control policy. 

Now, we will discuss the convergence of the proposed PI 

algorithm and the optimal solution by using SPRM to 

approximate the exact cost function. The next notion of 

practical stability is needed. 

Definition 1:[9] (UUB) A time signal )(t  is said to the 

uniformly ultimately bounded (UUB) if there exists a compact 

set nRS   so that for all S)0(  there exists a bound B  

and a time ))0(,( BT  such that Bt )(  for all Ttt  0 . 

Theorem 1: Based on the convergence of the PI algorithm, 

then, the Hamiltonian function 
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Proof: According to the principle of the SPRM, we know 
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Substituting the weight estimation error ˆW = W - W  into 

the ( )ˆˆH u,W, x , we get 
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Since the term   
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By taking norms on both sides and taking into account 

the  
 HJBx

sup  and letting 
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All the signals on the right-hand side of (30) are UUB. 

So ),ˆ,ˆ( xWuH is UUB and the convergence to the approximate 

HJB solution is obtained. Because of the convergence of PI 

algorithm and equation (24), we get û converges to the 

optimal solution. 

Next, we will introduce the structure of the whole algorithm 

bridged with the PI algorithm and the machine learning, 

which denotes the basic idea of this paper. 

The structure of the IRL adaptive optimal controller is 

presented in Fig. 1. The PI technique in this section has been 

implemented through applying the proposed SPRM to 

converging in real time to an optimal control solution by 

measuring data along the system trajectories and without 

knowing the internal dynamics of the system.  

In this structure, a series of state-action 

pairs ),(
tt

x  comprised of each action
t

 computed by (24) 
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and the current system state
t

x can be constituted. The 

state-action pair ),(
tt

x  and the estimated cost function
t

V are 

regarded as the input and the output of the SPRM, 

respectively. In order to reduce the number of adjustable 

parameters in (21) improving the learning speed, a model 

interval is established with fixed length and a sliding time 

window is introduced into the learning system. In addition, 

two sample sets are designed, i.e., a data buffer memory DB 

and a working sample set WD. Define the size of WD and DB 

are L  and l , respectively. Then, the samples in the WD can 

be described as  1,,1,|),,( 1  tLtLtiVx iii  .  

IRL Bellman 

equation

Semi-parametric 

regression model

uxgxftx )()()( 
t

tx t

tV

kV

Actor

Critic

WDset

sampleworking

μ(x)

controller

date buffer 

memory DB  1),,( ttt Vxdatanew 
 

Fig. 1. The actor-critic structure based on semi-parametric model. 

 

According to the sliding time window theory, the working 

sample data will be updated during the learning process. 

When the number of the samples in DB exceeds a predefined 

threshold, the samples in DB will be sent to the working 

sample set WD while the same amount samples in WD will be 

removed following the rule that first-in-first-out to keep a 

fixed length sample window.  

Remark 5: The structure proposed is a hybrid 

continuous-time/discrete-time adaptive control structure, 

which is different from a traditional control structure. 

Obviously, it has a discrete-time sampled portion for policy 

evaluation and policy updates and continuous-time 

controllers. 

 

VI. SIMULATIONS 

To support the new online PI algorithm for continuous-time 

systems, two simulation examples are offered: one is linear 

system and one is nonlinear system. Both the two cases 

validate the proposed online adaptive optimal algorithm and 

guarantee the system and the cost function converge to actual 

optimal values.  

A. Linear System Example  

Consider the continuous-time F16 aircraft longitudinal 

plant with quadratic cost function used in [10], which has the 

dynamics BuAxx  given by 

uxx





















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
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















1

0

0

100

17555.007741.18225.0

00215.090506.001887.1

            (31) 

where the system state vector is T

e
qx ][  , 

where  denotes the angle of attack, q is the pitch rate 

and
e

 is the elevator deflection angle. The control input is the 

elevator actuator voltage. The cost function 

dtRuuQxxJ TT )(
0

 


, with 0 TQQ and 0 TRR .  

In this linear system, in order to validate the proposed 

algorithm, the design parameters are chosen as 

1)101010(]3.001.0[0  RdiagQx T ，，，， . The length of 

train data is 50L  and the length of data buffer memory is 

20*4.0  Ll . In the SPRM, the Gaussian kernel 








 


2

2

2

)(
exp),()(




yx
yxKx  is chosen for SVM 

regression model with kernel parametric 50 , the penalty 

factor 8C  and tolerance error 0002.0 . While in the 

parametric part of the SPRM, the symmetric sigmoidal 

function 
x

x

e

e
x










1

1
)(  is chosen to be used as basis function. 

The initial input train sample is randomly chosen in the 

subset ]1,0[ and the initial output train sample is set to zero. 

The sampling period is T=0.1s, in this way, every 2s, the cost 

function was solved for and a policy update was performed. 

The results of applying the algorithm is presented in Fig.  and 

Fig. . 
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Fig. 2. The trajectories of system states and control input. 

 

The Fig.  shows that the system states converge to the 

steady state  Tx 000  after about 20s by using appropriate 

control input. In other words, the proposed algorithm 

guarantees the F16 aircraft longitudinal plant to converge to 

zero under reasonable control input. One can see that the 

control input is a discrete signal because of the actor-critic 

structure that has a hybrid continuous-time/discrete-time 

adaptive optimal structure. At every 2s period, the data buffer 

memory collects the train data set at the sample times 

lTtTtTtt  ,2,, . The cost function in critic part was 

evaluated while the control input in actor part held until a new 

policy updated.  

Furthermore, compared with the adaptive optimal control 

based on parametric regression model by using Neural 

Network (NN) presented in [10], the adaptive optimal control 

International Journal of Machine Learning and Computing, Vol. 6, No. 3, June 2016

176



  

based on SPRM in this paper performs better robustness and 

less experiment time that was about 750s in [10]. 
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Fig. 3. Converge of the cost function.  

 

The Fig. 3 presents the convergence of the cost function 

and the gradient of cost function )(xV with respected 

to x which are continuous in critic part. After about 15s, both 

the cost function and the gradient of cost function )(xV with 

respected to x  no longer change. It means that the control 

input WxxgRx TT )()(
2

1
)( 1    closes to optimal value and 

then drives the system to converge to the steady states. 

B. Nonlinear System Example 

Consider the following affine in control input nonlinear 

system with quadratic cost function applied in [11], which has 

the dynamics 2)()( Rxuxgxfx  ，  given by 

u
xxxxx

xx
x 























)sin(

0

)(sin)( 11

2

22
1

212
1

21          (32) 

with the cost function 

1,)(,))((
2

2

2

1
0

 


RxxxQdtRuuxQJ T .  

In this nonlinear affine system, the design parameters are 

chosen as follows: the initial states
Tx ]01.0[

0
 . The length 

of train data is 50L  and the length of data buffer memory 

is 20*4.0  Ll . In the semi-parametric regression model, the 

Gaussian kernel 







 
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2

2

2

)(
exp),()(




yx
yxKx  is chosen for 

SVM regression model with kernel parametric 6.0 , the 

penalty factor 300C  and tolerance error 0002.0 . 

While in the parametric part of the SPRM, the symmetric 

sigmoidal function 
x

x

e

e
x










1

1
)(  is chosen to be used as 

basis function. The initial input train sample is randomly 

chosen in the subset  ]1,0[ and the initial output train sample 

is set to zero. The sample time is T=0.1s, in this way, every 2s, 

the cost function was solved for and a policy update was 

performed. The results of applying the algorithm is presented 

in Fig. 4 and Fig. 5. 
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Fig. 4. The trajectories of system states and control input. 
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Fig. 5. Converge of the cost function. 

 

The Fig. 4 and Fig. 5 point out that the adaptive optimal 

algorithm based on SPRM proposed in this paper performs 

desired virtues and promising potential. One can see that the 

system states converge to the steady state quickly under 

admissible control input and the cost function and the gradient 
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of cost function with respect to x converge to zero at about 

12s, the input WxxgRx TT )()(
2

1
)( 1     closes to optimal 

value since the objective of our controller is stabilizing 

control rather than tracking control which is the same as linear 

system example. 

The two examples validate the proposed adaptive optimal 

algorithm based on SPRM in which the internal 

dynamics )(xf is not required. It shows that the SPRM exerts 

its advantages such as simplicity, generalization performance 

and robustness compared with parametric model such as NN 

regression model. Besides, in order to guarantee the initial 

output finite in SPRM, additional small noise signal is added 

to guarantee the difference of the output of the parametric 

model part, thus resulting the fluctuating of the cost function 

and the gradient of cost function with respect to x while it is 

no needed when the system converges to the optimal values. 

 

VII. CONCLUSION 

In this paper, a novel online continuous-time optimal 

control PI algorithm without the knowledge of internal 

dynamics of the nonlinear system has been proposed and the 

HJB equation is solved by using SPRM composed by SVM 

model and NN model which is an intractable problem in 

traditional optimal control. A data buffer memory is 

introduced to improve the learning speed and lessen 

calculative burden. The proof of convergence for the online 

adaptive optimal algorithm based on SPRM is presented. The 

two examples verify the effectiveness of the proposed 

adaptive optimal algorithm, which is similar to the persistent 

excitation (PE) condition. 
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