
  

 

Abstract—This paper compares random forest and SVM for 

raw data in drug discovery. Both machine-learning methods are 

often applied in drug discovery. We should select our methods 

depending on the problem.  This is very important. SVM is 

suitable for virtual screening when the target protein is known. 

In contrast, random forest is suitable for virtual screening when 

the target protein is not decided uniquely or unknown, because 

random forest can find good combinations of features from 

many features. Therefore, random forest is thus more effective 

for problems including many unknown parts. Incidentally, 

selecting the good features is important in both methods. In 

particular, we must narrow the features using importance 

calculations if we lack sufficient biochemical knowledge. In this 

study, we predicted the radiation protection function and 

toxicity for radioprotectors targeting p53 as a case study. When 

predicting the radiation protection function the target protein is 

known. In contrast, when predicting toxicity, the target protein 

is not decided uniquely or is unknown. We evaluated each 

experiment based on its AUC score. As a result, we found that 

when predicting the radiation protection function, SVM was 

better than random forest. By contrast, when predicting toxicity, 

random forest was better than SVM. 

 
Index Terms—SVM, random forest, drug discovery, 

radioprotector. 

 

I. INTRODUCTION 

In recent years, machine learning has become attractive in 

the drug discovery field [1]-[3]. The objective of using 

machine learning is to efficiently search for candidate 

compounds for new drugs based on the result of feature 

prediction, classification, etc. SVM [4] and random forest [5] 

are often used in the drug discovery field [6], [7]. 

In this study, we compared random forest and SVM for the 

raw data in drug discovery. 

We took up two types of problems in drug discovery. First, 

there is the problem in which the target protein is known. In 

this case, we search for a compound that bonds to the target 

protein. If the compound bonds to the target protein, the 

function of the protein is activated or inhibited. As a result, 

various symptoms are addressed. The second type is the 

problem in which the target protein is not decided uniquely or 

is unknown, for example when we do not know about the drug 

mechanisms or we cannot uniquely determine the  drug 

mechanisms. Predicting toxicity has the same problem. 
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SVM has high performance and is easy to apply to various 

problems. It is necessary to provide optimal features if one 

wishes to bring about the appropriate learning. In contrast, 

random forest is an ensemble algorithm using many weak 

discriminators. A weak discriminator consists of a random 

combination of features. Therefore, random forest is an 

effective method if we cannot determine which features are 

important. In this study, we predicted the radiation protection 

function and toxicity for radioprotectors targeting p53 as a 

case study. Predicting the radiation protection function is a 

problem in which the target protein is known. In contrast, 

predicting toxicity is a problem in which the target protein is 

not decided uniquely or is unknown. 

 

II. RADIOPROTECTOR 

This chapter describes the radioprotector. Cancer is one of 

the most common causes of death in the world. There were an 

estimated 367,000 cancer deaths in Japan in 2014 (218,000 

males and 150,000 females) [8]. Radiation therapy is one of 

the main approaches against cancer cells, although this 

therapy has adverse side effects, including p53-induced 

apoptosis of normal tissues and cells [9]. In brief, radiation 

kills the normal cells around the cancer cells. It is considered 

that p53 would be a target for therapeutic and mitigative 

radioprotection to avoid the apoptotic fate. 

 

III. DATASET AND LABELING 

This chapter describes the dataset used for learning in this 

study. This study used compounds in connection with a p53 

inhibitor. The Aoki group had a variety of successes in their 

study of radioprotectors [10]. Their experiment data was used 

in this study. Eighty-four compounds obtained in experiments 

were selected for learning. Two experiments were performed 

for each compound. First, experiments administering the 

compounds to normal cells were performed. These 

experiments were able to measure the toxicity. Next, 

experiments administering the compounds to gamma 

irradiated cells were performed. These experiments were able 

to measure the radiation-protection function. Their 

experiment (Fig. 1) measured the cell death rate for each 

concentration case.  

The death rate of the cells was used as an indicator in both 

experiments. If the death rate in the case of the unirradiated 

experiment was low and the death rate in the case of the 

irradiated experiment was greatly reduced, that compound is 

useful as a radioprotector.  
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Fig. 1. Example of experiments. 

 

Now, Define C and R as a threshold of toxicity and 

radioation protection.  

 

C = Cell death%(maximum) – Cell death%(minimum) (1) 

 

R = Cell death%(0μM) – 
Cell death%(Concentration when cell death due to toxicity is 20%) 

(2) 

 

With regard to the radiation protection function, we only 

used range of concentration unaffected toxic, in order to 

reduce the effects of toxicity (see Fig. 2). We set thresholds 

for labeling compounds based on the death rate of the cells 

(see Table I). 
 

 
Fig. 2. Definition of threshold. 

 
TABLE I: LABELING OF COMPOUNDS 

 
Threshold based on the death rate of the cells [%] 

Toxicity Radiation protect 

class0 ~ 20 ~ 10 

class1 21 ~ 100 11 ~ 100 

 

We performed classifications based on these labels. These 

were binary classifications. For toxicity, class1 has 42 

compounds. For the radiation protection function, class1 has 

39 compounds. The other compounds were defined as being 

in class0. 

 

IV. METHOD 

This chapter describes our method. We used SVM and 

random forest as machine-learning methods. Our method 

consists of four steps, including the importance calculation, 

normalization, the selection of features, and finally the 

machine-learning step. First, the importance of the various 

features was calculated based on Gini in random forest 

because we should prioritize in selecting compound features. 

It is not a good idea to use a lot of chemical characteristics of 

unknown relevance to radioprotection. There were 489 

calculated features in all. Roughly divided, the features 

consist of five types related to the structure, ALogP, size or 

weight, energy, or others. ALogP is an indicator of lipid 

solubility. These features were calculated by Discovery 

Studio, 3D modeling software that can calculate the chemical 

properties. Non-numeric data were excluded in this step. The 

dataset was normalized to a standard normal distribution for 

each feature. For compound i, the parameter pi is transformed 

by 
 

mean( )

( )

i
i

p p
p

sd p


  (3) 

 

where mean(p) indicates the mean value, and sd(p) indicates 

the standard deviation of parameter p. 

Features were selected based on their importance. The top 

5%, 10%, 15%, 20%, 25%, 30% and all features were used in 

this study. Next, we performed a classification based on a 

defined label using random forest and SVM. We used the 

scikit-learn package for Python3. 

We now describe the parameter settings. For random forest, 

there were 5000 trees, and the depth of search was determined 

using a grid search from 3 to 6. For SVM, the kernel was used 

as a radial basis function (RBF). This RBF is a non-linear 

kernel. If RBF is selected for use with SVM, it will require a 

cost parameter and a gamma parameter. Cost parameters and 

gamma parameters were determined using a grid search for 20 

split from 0.0001 to 10,000.  

Finally, we describe the evaluation. We used the Area 

Under Curve (AUC) score. AUC is part of the performance 

metric for binary classification. It is less affected by sample 

balance than the accuracy. As a reality, biological data are 

often unbalanced. The application of machine learning for 

drug discovery research often uses the AUC score for 

evaluation. When using raw data, there are few compounds . 

Thus, we used 10-fold cross-validation in all scenarios. The 

data was divided into 10 classes. The ratio between classes 

was the same as in the original data. Part of the divided data 

was used for testing, and the remaining data was used for 

training. To calculate the average, all of the divided data was 

evaluated. 
 

V. RESULTS 

 

TABLE II: LIST OF AUC SCORES 

 
 

The results for random forest and SVM are summarized in 

Table II. There are 28 scenarios in all. feature_num[%] 

represents the use rate of the feature based on the importance 

calculation in machine learning. In addition, Fig. 3 and Fig. 4 

indicate the importance of all the properties. The sum of 

importance values is 1. 
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Fig. 3. Importance of the properties in toxicity. 

 

 
Fig. 4. Importance of the properties in radiation protection. 

 

As a result, when predicting the radiation protection 

function, SVM is better than random forest as determined by 

the AUC score. In contrast, for predicting toxicity, random 

forest is better than SVM.  

In radioprotection using SVM, the AUC score dropped 

significantly if numerous features were selected. Additionally, 

In spite of performing a 10-fold cross validation, the SVM 

AUC score is unstable. In general, a collective-learning 

algorithm such as random forest has more stable accuracy 

than SVM. However, SVM can outperform other methods if it 

is possible to adequately refine the feature selection and 

amount. 

Given Fig. 3 and Fig. 4, using more than the top 30% of 

features would be inappropriate in this case study. The 

importance of more than half of these features was nearly 

zero.  

 

 
Fig. 5. ROC curve of toxicity. 

 

 
Fig. 6. ROC curve of radiation protection. 

Fig. 5 and Fig. 6 depict ROC curves representing the best 

AUC scores. The dotted line is a random line. The vertical 

axis is the true positive rate and the horizontal axis is the false 

positive rate. Each result corresponds to the best score in 

Table II. 

In addition, Table III provides a ranking of features based 

on importance. Tables IV and V list the top 5% of features. 

The molecular properties conform to the Discovery Studio 

software. 
 

TABLE III:  TOP 5% FEATURES IN TOXICITY 

 
 

TABLE IV:  TOP 5% FEATURES IN RADIATION PROTECTION 

 
 

In Tables III and IV, similar elements occupied the high 

ranks. 

 

VI. CONCLUSION 

This paper compares random forest and SVM for raw data 

in drug discovery. We predicted the radiation protection 
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function and toxicity for radioprotectors targeting p53 as a 

case study. SVM is better than random forest for predicting 

the radiation protection function. However, random forest is 

better than SVM in predicting the toxicity. In predicting the 

radiation protection function, the target protein is known. In 

contrast, in predicting toxicity, the target protein is not 

decided uniquely or is unknown. In general, a 

collective-learning algorithm such as random forest had more 

stable accuracy than SVM. However, SVM can outperform 

other methods if it is possible to adequately refine the feature 

selection and amount. 

There are often not enough suitable databases for machine 

learning to be applied to raw data. In such cases, selecting the 

appropriate features is important. We can obtain satisfactory 

results using existing machine learning techniques if it is 

possible to adequately refine the feature amount and quality. 
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