
  

 

Abstract—Multi Knapsack Problem (MKP) is NP-hard 

combinational optimization problem, also known as the 

multi-constraint knapsack problem. MKP is one of the most 

studied problems in combinatorial optimization, with variety of 

real-life applications. In this paper a Stochastic Diffusion Binary 

differential evolution (SD-BDE) algorithm is applied for 

optimizing the Multidimensional Knapsack Problem (MKP). 

SD-BDE, is a Binary version of Differential Evolution 

hybridized with ideas extracted from Stochastic Diffusion 

search. SD-BDE algorithm, in this paper, is compared against 

state-of-the-art existing algorithms in solving MKP. 

Experimental results show that the SD-BDE algorithm 

outperformed the existing algorithms by finding either better or 

at least similar solutions for all tested benchmarks 

 
Index Terms—Differential evolution, stochastic diffusion 

search, np-complete problem, multidimensional knapsack 

problem. 

 

I. INTRODUCTION 

Differential Evolution (DE) is an evolutionary algorithm 

that has been proposed by Storn and Price [1], [2]. DE is 

similar to other evolutionary algorithms in that a population of 

individuals is used to search for an optimal solution. However, 

the main difference between traditional evolutionary 

algorithms and DE is that, in traditional evolutionary 

algorithms, mutation results in small random perturbations to 

the genes of an individual while in standard DE the mutation 

is an arithmetic combination of individuals [3]. DE was 

proposed to work on real-valued domain problems, however 

several researchers extended it to discrete and binary domains 

such as those proposed by Gong et al. [4], Tasgeiren et al. [5] 

and Wang et al. [6]. 

On other hand, Stochastic Diffusion Search (SDS) [7] is a 

population-based, naturally inspired search and optimization 

algorithm. It belongs to a family of swarm intelligence (SI) 

methods. SDS is based on direct (one-to-one) communication 

between agents. SDS has been successfully applied to a wide 

range of optimization problems. Omran and Salman [8] 

proposed a probabilistic Stochastic Diffusion search to tackle 

continuous optimization problems 

The meta-heuristic Stochastic Diffusion Binary 

Differential Evolution (i.e. SD-BDE) was proposed by 
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Salman [9] with an idea of hybridizing binary differential 

evolution with stochastic diffusion. Authors used ideas from 

all Gong et al. [4], Yuan et al. in [10], and [8] to build the core 

algorithm of SD-BDE: The concept of the diffusion for the 

characteristics of an “active agent” was used to enhance the 

overall quality of the population by increasing the chance of 

exposing individuals to DE operators only if these individuals 

are not “active” (aka was declared in-competent compared to 

a randomly selected competitor). Updating the non-active 

individual will push the whole population toward areas of 

better quality. Moreover, only those individuals that were 

randomly-selected in the mutation step as the target vector, 

and happen to be an active individual, have the chance to 

influence the mutation step, otherwise, the mutation is 

random. 

Salman [9] shows the superiority of such algorithm onto 

different well-crafted benchmark binary-valued problems as 

well as satellite broadcasting scheduling problem which is of 

a real-world importance. As a continuation, this work we 

further studied the performance of SD-BDE to solve MKP. 

Results presented here show that SD-BDE algorithm is a very 

promising optimization method for solving binary problems. 

The remainder of the paper is organized in the following 

manner: Section II presents a detailed overview about 

SD-BDE. Experimental results comparing to similar, 

state-of-the-art methods onto different MKP benchmark 

problems and are reported in Section III. Finally, Section IV 

concludes the paper. 

 

II. STOCHASTIC DIFFUSION BINARY DE 

DE uses the difference between randomly selected vectors 

(individuals) as the source of variation for a third vector, 

called the target vector. Trial solutions are generated by 

adding a weighted difference vector to the target vector. This 

process is referred to as the mutation operator where the target 

vector is mutated. A recombination, or crossover step, is then 

applied to produce an offspring, which is only accepted if it 

improves the fitness of the parent individual. 

The binary DE algorithms are described in more details 

below, in terms of the three evolution operators: mutation, 

crossover, and selection:  

A. Mutation 

For each parent xi(t) of generation t, a trial vector vi(t) is 

created by mutating a target vector. Randomly select the 

target vector xi3(t), with i ≠ i3. Then, the two individuals xi1(t) 

and xi2(t) are randomly selected with i1 ≠ i2 ≠ i3 ≠ i, and the 

difference vector xi1(t) - xi2(t), is calculated. The trial vector is 

then calculated as 
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vi(t) = xi3 (t) + F(xi1(t)  xi2(t))                        (1) 

where the term F(xi1(t) - xi2(t)) represents the mutation step 

size, and F is a scale factor used to control the amplification of 

the differential variation. Note that F  (0; ∞). For a binary 

DE, Gong et al. [4] considered each binary decision variable 

as a single dimension. Thus, the distance between two 

individuals for each dimension, Dj (xi1,j; xi2,j), is either 0 or 1. 

Eq. 1 is replaced with the following equation: 
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where, rand (0; 1) is a uniform distribution random number 

between [0, 1]. In Eq. 2, for each dimension j, F X Dj (xi1; j(t); 

xi2; j(t)) is used to decide the probability that a change is 

applied to xi1 in the corresponding dimension to produce vi. 

B. Crossover 

DE follow a discrete recombination approach where 

elements from the parent vector xi(t) are combined with 

elements from the trial vector vi(t) to produce the offspring, 

µi(t). Using the binomial crossover,  

              (3) 

where CR is the probability of reproduction (with CR  [0; 1]). 

Thus, each offspring is a stochastic linear combination of 

three randomly chosen individuals when rand (0; 1) < CR; 

otherwise the offspring is inherited directly from the parent. 

C. Selection  

The offspring mi(t) replaces the parent xi(t) if and only if the 

fitness of the offspring is better than that of the parent. 

The concept of the diffusion for the characteristics of 

an ”active agent” is used in SD-BDE to enhance the over-all 

quality of the population by increasing the chance of exposing 

individuals to DE operators only if these individuals are 

not ”active”. Updating the non-active individual is pushing 

the whole population toward areas of better quality. Moreover, 

only those individuals that were randomly-selected in the 

mutation step as the target vector, and happen to be an active 

individual, have the chance to influence the mutation step, 

otherwise, the mutation is random. Finally, this algorithm 

pushes toward updating only non-active individuals in the DE, 

which leaves active members untouched. This will create a 

problem when the population converges onto similar 

individuals; those individuals will have similar status (all 

active). If left the same, the algorithm will have no way to 

evolve further. To avoid such situation, the concept of 

probability of changes for active individuals (Pc) is 

introduced to force some very limited randomized changes 

even if individuals are active. The theory behind Stochastic 

Diffusion Search is well explained and discussed by Nasuto et 

al. [11] and Nasuto and Bishop [7]. 
 

 
Algorithm 1: Pseudo-code for the proposed stochastic diffusion binary DE 

algorithm (SD-BDE).
 

TABLE I: RESULTS FOR COMPARING SD-BDE TO ALGORITHMS REPORTED IN [12] ON EASY-SET OF MKP PROBLEM; RESULTS IN BOLD ARE STATISTICALLY 

SIGNIFICANT OVER OTHERS USING MANN-WHITNEY TEST  

Benchmark Best Known Algorithm Best Fitness Success Rate Average Fitness 

  KBPSO 3800 100% 3800 

Pet1 m=10 3800 

MBPSO 3800 100% 3800 

PBPSO 3800 100% 3800 

n=6 

 

 

DE 3800 100% 3800   

  SD-BDE 3800 100% 3800 

  KBPSO 8706.1 100% 8706.1 

Pet2 m=10  MBPSO 8706.1 100% 8706.1 

n=10 8706.1 PBPSO 8706.1 100% 8706.1 

  DE 8706.1 95% 8700.51 

  SD-BDE 8706.1 100% 8706.1 

  KBPSO 4015 100% 4015 

Pet3 m=10  MBPSO 4015 100% 4015 

n=15 4015 PBPSO 4015 100% 4015 

  DE 4015 70% 4006.00 

  SD-BDE 4015 100% 4015 
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  KBPSO 95168 20% 91879.15 

Pb4 m=02 95168 

MBPSO 95168 15% 92419 

PBPSO 95168 40% 93114.1 

n=29 

 

 

DE 95168 90% 95089.65   

  SD-BDE 95168 90% 95147.70 

  KBPSO 2139 65% 2131.1 

Pb5 m=10 

 MBPSO 2139 5% 2110.9 

2139 PBPSO 2139 75% 2134.45 

n=20  

DE 2139 50% 2119.55   

  SD-BDE 2139 60% 2130.35 

  KBPSO 776 10% 746.95 

Pb6 m=30  MBPSO 776 10% 708.60 

n=40 776 PBPSO 776 15% 752.85 

  DE 765 0% 734.60 

  SD-BDE 776 30% 764.55 

 
TABLE II: RESULTS FOR COMPARING SD-BDE TO ALGORITHMS REPORTED IN [12] ON COMPLEX-SET OF MKP PROBLEM; RESULTS IN BOLD ARE STATISTICAL 

SIGNIFICANT OVER OTHERS USING MANN-WHITNEY TEST  

Benchmark Best Known Algorithm Best Fitness Success Rate Average Fitness 

Sent1 

m=30 n=60 
7772 

KBPSO 7676 0% 7562.4 

MBPSO 7762 0% 7683.55 

PBPSO 7772 5% 7695.9 

DE 7772 10% 7716.85 

SD-BDE 7772 40% 7765.25 

Sent2 

m=30 n=60 
8722 

KBPSO 8655 0% 8603.5 

MBPSO 8711 0% 8651 

PBPSO 8722 5% 8671.1 

DE 8721 0% 8709.95 

SD-BDE 8722 55% 8721.05 

Weish12 

m=5 n=50 
6339 

KBPSO 6339 15% 6295.1 

MBPSO 6339 35% 6317.05 

PBPSO 6339 45% 6331.75 

DE 6339 80% 6329.35 

SD-BDE 6339 100% 6339.00 

Weish20 

m=5 n=70 
9450 

KBPSO 9146 0% 9092.05 

MBPSO 9445 0% 9352.95 

PBPSO 9450 5% 9362.05 

DE 9450 70% 9442.75 

SD-BDE 9450 100% 9450.00 

 

TABLE III: AVERAGE EXECUTION TIME (WITH STANDARD DEVIATION) FOR 

SD-BDE AND STANDARD BINARY DE FOR MKP PROBLEM 
 

Benchmark SD-BDE DE 

Pet1 2.769(0.08) 1.51(0.02) 

Pet2 2.43(1.05) 1.61(0.01) 

Pet3 2.88(0.10) 1.69(0.02) 

Pb4 1.61(0.05) 1.57(0.09) 

Pb5 2.96(0.073) 2.86(0.27) 

Pb6 7.66 (0.20) 7.09(0.27) 

Sent1 32.66 (6.62) 34.25(9.82) 

Sent2 29.49 (8.99) 30.19(3.71) 

Weish12 7.47 (1.42) 7.74(1.74) 

Weish20 10.86(1.92) 9.69(2.26) 

III. EXPERIMENTAL RESULTS 

A. Experiments Setup 

All proposed methods are implemented using MATLAB. 

All tests are run on a PC with Intel Core Due 2 processor 

running at 2.20 GHz with 3GB of RAM. For all bench-marks, 

(unless stated otherwise in the following subsections), 

SD-BDE algorithm parameters were set as follows: The 

population size s = 20, F = 0:05, Pc = 0:05, and CR = 0:7. The 

meta-heuristic Stochastic Diffusion Binary Differential 

Evolution (i.e. SD-BDE) were set as follow, for easy set 

shown in Table I, all algorithms were run for a maximum of 

9000 FE, while for the complex set shown in Table II, they 

were run for a maximum of 24000 FE. Table I shows results 

for easy-set MKP. Results show that SD-BDE managed to 

either beat or produce similar optimal results like others 

techniques. In particular, SD-BDE had always the same or 

better success rate than others. Moreover, Table II shows 

results for the complex-set MKP. SD-BDE was clearly better 

than others by far on all aspects: best-fitness, success rate, and 

average fitness. Those results indicates the superiority of 

SD-BDE over other binary-coded similar algorithms. On the 

other hand, comparing SD-BDE with original BDE shows 

that using SD-BDE has an advantage in this problem as well 

as the previous problem (i.e. SBS). 

Looking at the success rate shown in Tables I and II one can 

find that SD-BDE by far is able to find optimal solutions 
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much frequent than original BDE. Table III shows that the 

time overhead needed by SD-BDE is very accept-able and 

sometimes negligible. 

 

IV. CONCLUSION 

This paper present a solution for the Multidimensional 

Knapsack Problem using a newly developed algorithm (aka, 

SD-BDE). The algorithm is very effective compared to 

previous well-known state of the art algorithms pro-posed in 

the literature. Experimental results show that SD-BDE is 

robust and able to find optimal solution with reasonable 

computational time. Furthermore, the SD-BDE algorithm 

outperformed or at least obtained similar solutions found by 

previously proposed algorithms. 
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