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Abstract—Automatic facial expression recognition (FER) is 

both interesting and important in computer vision and machine 

intelligence. While previous FER systems often focus on learning 

a classifier in a controlled environment, a more practical and 

robust scenario is now under consideration. More specifically, 

traditional FER requires collecting as many as possible facial 

photos so that they will accurately recognize expressions no 

matter a particular person wears sunglasses, hats, and other 

accessories or not. Such requirement is however inconvenient 

and could impose practical difficulties for users. To alleviate this 

problem, a robust one-shot FER system that only requires taking 

one single facial photo for each expression of each user is 

proposed in this paper. When taking the single photo, the user is 

free to choose whether to wear sunglasses or not. The sunglasses 

can even be of different shape and of various luminous 

transmittance.  Such one-shot recognition improves the 

user-friendliness of the FER system. Importantly, a novel and 

practical sunglasses detection and recovery approach is 

developed, which obtains an obvious accuracy improvement of 

6.09%, 5.86% and 4.33% with state-of-the-art classifiers 

including Support Vector Machine (SVM), Linear Discriminate 

Analysis (LDA) and K-Nearest Neighbors (KNN) respectively on 

the modified Japanese Female Facial Expression (JAFFE) 

benchmark database.  

 
Index Terms—Facial expression recognition, sunglasses 

detection and recovery, one-shot recognition system.  

 

I. INTRODUCTION 

Among various ways of human interpersonal 

communication, facial expression is mostly special since it 

directly represents human’s emotion, idea and thought. It is 

both interesting and important to explore automatic facial 

expression recognition (FER). According to the literature, 

there have been many proposals in this field. For example, 

Kung et al. [1] proposed an algorithm where each facial image 

is decomposed into an identity part and an expression part 

represented by their corresponding nonnegative bases. By 

devising graph-embedding constraints on the expression 

subspace, the intra-class variation issue in the expression 

recognition procedures can be mostly tackled and resolved. 

Another study is researched by Siddiqi et al. [2], which 
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employed the stepwise linear discriminate analysis for feature 

extraction, where the hidden conditional random field model 

is applied for the recognition task. And also, Wang et al. [3] 

introduced a geometric alignment technique to preprocess the 

original expression images, in which Local Binary Pattern 

features are extracted before classifying with classifiers 

including SVM. 

Despite the reported good performance, previous FER 

approaches have often focused on learning a classifier in a 

controlled environment. For example, if the classifier is 

trained with images without sunglasses, hats, or any other 

personal accessories, the test image is then strictly restricted. 

Obviously, these limitations significantly affect 

user-friendliness of the system and impose practical 

difficulties upon real application. 

To alleviate this problem, a robust one-shot FER system 

that only requires taking only one single facial photo for each 

expression of each user is proposed in this paper, focusing on 

making the system robust enough to tackle various sunglasses 

styles. Namely, when taking a single photo, the user is free to 

wear or not wear sunglasses. The sunglasses can even be of 

different shape and of various luminous transmittance. In 

contrast with previous studies, the training facial expression of 

one specific person may include sunglasses, while the testing 

one may not, and vice versa.  Such one-shot recognition 

system obviously promotes the user-friendliness of the FER 

system, and will be expected to be used in various real 

scenarios. To achieve this target, a novel, intelligent 

sunglasses recovery approach is now proposed. Firstly, a roll 

de-rotation operation based on relative positions between two 

eyes was applied, then a Canny Edge Detector was 

implemented to locate possible sunglasses area on the Region 

of Interest (ROI). By utilizing histogram matching that 

transforms darker grayscale value (representing detected 

sunglasses region) into brighter one (representing the facial 

area without sunglasses), the corrupted pixels due to 

sunglasses are excellently recovered. In addition, the 

proposed algorithm was tested on the modified dataset from 

JAFFE [4], a benchmark facial expression dataset, with the 

proposed robust scheme. Improvement with the recognition 

rate of 6.09%, 5.86% and 4.33% for classifiers of SVM, LDA 

and KNN respectively with the proposed one-shot recognition 

system is achieved. 

The significance of this research is as follows: 1). A robust 

one-shot facial expression recognition approach, hardly seen 

in previous FER systems, is proposed; 2). Investigation on 

robust recognition with sunglasses (of different shapes and 

various luminous transmittance) is majorly focused on, and 

the proposed automatic sunglasses recovery is novel; 3). A 

one-shot facial expression dataset with sunglasses, which was 
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modified from the JAFFE and served as a basis for relevant 

researchers, will be discussed in the future paper.  

The rest of this paper is organized as follows. In the next 

section, the proposed novel robust sunglasses detection and 

recovery algorithm will be introduced in details. In Section III, 

the robust detection and recovery algorithm in a one-shot 

facial expression recognition system will be applied, and 

results of a series of experiments will be reported. In Section 

IV, final remarks conclusions will be given. 

 

II. ROBUST SUNGLASSES DETECTION AND REGION 

RECOVERY 

In this part, the proposed novel robust sunglasses detection 

and region recovery algorithm is introduced. When a new 

image is input, the algorithm will detect if sunglasses exist in 

the facial region. If presents, the recovery algorithm is utilized 

to remove the sunglasses and recover the facial region blocked 

by the sunglasses. Detail steps are described in the following. 

A. Correction for Roll Rotation 

As suggested in [3], a roll difference (of which the axis is 

perpendicular to the paper) will influence the recognition 

performance. Hence, a de-rotation operation, mainly based on 

the difference of centers of the two eyes, is a necessary 

procedure. Fig. 1 illustrates the comparison for this operation. 
  

  
                      (a) Before Correction (b) After Correction 

Fig. 1. Roll rotation correction. 
 

To de-rotate the image, the two landmarks representing left 

and right eye centers generated from STASM are applied for 

rotation reference, as described in (1), where 
rx  and 

lx  

represent column indices for the left and right eye center 

points respectively, with
ry  and 

ly  the row ones. The image is 

then rotated by the angle of   with respect to the image 

center. 

    arctan /r l r ly y x x     
 (1) 

B. Sunglasses Region Detection 

To perform a recovery for the sunglasses region, it is 

essential to exactly localize the sunglasses region firstly. In the 

proposed approach, the Canny Edge Detector is utilized [5]. 

  
TABLE I: SUNGLASSES REGION DETECTION 

ORIGINAL 

IMAGE 

ORIGINAL 

ROI 

THRESHOLD

ROI 

COARSE 

EDGE 

FINAL 

CONTOUR 

     

     

As seen in Table I, the ROI is generated based on STASM 

[8], [9] (an Active Shape Model based facial components 

landmarks detector, which will be demonstrated in Section III) 

landmark positions of the corresponding eye and eyebrow. 

Since the Canny Edge Detector detects sharp edges easily, it 

leads to undesirable performance on the eye part (as well as 

the eyebrow part) due to their similar color compared with 

sunglasses. It is shown in the Original ROI column of TABLE. 

To tackle this defect, pixel values from both eye and eyebrow 

parts are transformed to the ones from their neighboring pixels. 

Before this, a simple average filter can be implemented to 

further weaken the surrounding edges. By applying a 

grayscale value thresholding operation to the target region, 

further enhancement will be achieved. 

C. Grayscale Value Histogram Shifting 

Wearing sunglasses can be regarded as an overall dropping 

operation on grayscale values for all pixels locating in 

sunglasses regions, since the grayscale value dropping rate 

(GVDR), is set to less than one (maximum grayscale value). 

Additionally, the distribution of the original values is reduced 

gradually. From Fig. 2, it is found that the histogram is shifted 

towards the lower grayscale section as GVDR increased  while 

the histogram distribution becomes centralized. 
 

 
Fig. 1. Histogram comparison among sunglasses with different GVDR. 

 

D. Histogram Matching for Sunglasses Recovery 

Observed from Fig. 2, it can be obtained that 

mathematically, by transforming histograms with multiple 

GVDR values to the one at 100% GVDR, the image region 

corrupted by sunglasses will be recovered. The proposed 

transformation, majorly based on histogram matching [6], is 

designed to match the histogram distribution from the source 

image to the one from the target image. In this research, the 

matching target is the corresponding image with GVDR at 

100% or the facial image without wearing sunglasses, since if 

GDVR is set to 100%, no grayscale change has ever been 

applied apart from the sunglasses frame. The target histogram 

model is calculated from the original face images, and then the 

matching can be divided into histogram equalization and 

matching. 

Histogram Equalization: The histogram equalization is 

firstly applied to both the source image (image to be matched) 

and the target image (matching target). In (2) and (3), 
ks  and 

kv  represent two equalized images of source image and target 

one respectively, /jn n  and /im m  represent statistical 

probabilities for gray value rk and zk, T(rj) and G(zi) represent 

the transformations that  will achieve the equalized images. It 

is illustrated in Fig. 3, where red and blue lines represent the 

source histogram and target one respectively. 

      
0 0

/
k k

k k r j j

j j

s T r p r n n
 

     (2) 
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     
0 0

/
k k

k k z i i

i i

v G z p z m m
 

                         (3) 

Matching from Equalized Histograms: After the 

equalization, histograms from both regions are stretched with 

the value range of [0, 255]. As the result, they now exist in one 

identical space. It can be considered as
k ks v , which means: 

   
0 0

/ /
k k

j i

j j

n n m m
 

                               (4) 

   k kT r G z                                      (5) 

The histogram matching scheme is given by the following: 

   1 1

k k kz G z G T r                             (6) 

 
(a) Original histogram 

 
(b) Equalized histogram 

Fig. 3. Histogram equalization. 

 

In Table II, by locating the smallest difference between  

statistical probability values for both the original and target 

image in equalized histogram, and  performing an inverse 

transformation (  1

kG z ) based on the target image, a 

mapping function can be simply found from the source 

grayscale value of 
kr  to the target one 

kz  [6], and Table II 

gives several examples of this matching performance. 
 

TABLE II: HISTOGRAM MATCHING EXAMPLES 

GVDR 

SHAPE 

& ID 

5% 

CIRCULAR 

KA.AN1.39 

30% 

RECTANGULAR 

KL.FE1.174 

60% 

CIRCULAR 

NA.SA1.205 

80% 

RECTANGULAR 

UY.HA2.138 
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III. EXPERIMENTS 

In the following section, experiments to verify the proposed 

algorithm are described. Since there is no available facial 

expression dataset with sunglasses, firstly a modified new 

dataset from the original JAFFE data was generated by 

automatically inserting different shapes of sunglasses with 

various luminance transmittance. The whole generation 

process is introduced in the following subsection.  

A. Data Preparation 

The original JAFFE dataset contains 213 images of seven 

facial expressions from 10 females. For each one, there are 

three or four pictures involved. All portraits in the original 

database are wearing no sunglasses, so various styles of 

sunglasses around each eye section were firstly added 

manually.  

By utilizing an Active Shape Model [7] based software 

package STASM [8], [9], in total 77 landmarks representing 

different facial component positions such as eyes, eyebrows, 

mouth, nose were detected. Eye regions were extracted with 

related landmarks automatically, generating positions to add 

sunglasses. Two shapes of sunglasses, including rectangular 

and circular ones, were added. By changing the grayscale 

values in the sunglasses region at a rate, namely, Grayscale 

Value Dropping Rate (GVDR) no greater than 100%, various 

luminance transmittance was created. Thus, for each image in 

the original dataset, there were in total 192 corresponding 

images with circular or rectangular sunglasses added manually 

with GVDR from 5% to 100%. 

 
TABLE III: MANUALLY-ADDED SUNGLASSES EXAMPLES 

ID KA.AN.139 KL.AN1.167 YM.AN1.61 

ORIGINAL 

IMAGE 

   
GVDR CIR REC CIR REC CIR REC 

30% 
      

60% 
      

100% 
      

 

In Table III, it is observed that higher GVDR leads to lower 

luminous transmittance for sunglasses (darker sunglasses), 

and hence, the more original information is erased. It is argued 

that if the GVDR is lower than 5%, there will be insufficient 

useful information remained. Hence such special cases will 

not be considered. This modified dataset is promised to be 

released. 

B. Experimental Setting 

In this section, the performance is evaluated based on the 

recognition improvement due to implementing the proposed 

recovery scheme. All images from both training and testing set 

were firstly recovered according to the scheme demonstrated 

in Section II, and then the recognition rate was recorded. 

However, experiments with non-recovered images for both 

training and testing sets were also be conducted for 
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comparison and evaluation. The recovery performance was 

quantified according to the recognition rate improvement. 

For recognition procedures, Gabor Wavelet Features with 

five scales and eight orientations were firstly extracted [10], 

after which Kernel PCA [11]  was performed to compress the 

feature data from 10240 dimensions into around 60-d with no 

less than 95% information preserved. Classifiers including 

SVM (LibSVM [12]), LDA and KNN were compared. It is 

also straightforward to evaluate other classifiers such as 

Bayesian Multinet [13] and different variants of SVM [14]. 

The final recognition rate was given as the average value over 

50 times repeated independent experiments. The best 

parameters (the kernel width and balance parameter in SVM 

and neighbor number for KNN) were optimized with grid 

search. 

Two major types of experiments were conducted. One was 

referred as Individual Training and Testing, where images 

from both training and testing sets were all from the identical 

GVDR group. The other one was called the Full Training and 

Testing, where images from the training set came from the full 

database with various styles of sunglasses, as did the same 

with those in the testing set. The Full Training and Testing 

type were the best simulation on real application cases. 

When dividing the database into training and testing sets, 

two methods including the conventional five-fold scheme and 

the proposed one-shot one were utilized and compared.  

Five-fold Scheme for Individual Training and Testing: 

When conducting the Individual Training and Testing with 

this scheme, 4/5 of images in the corresponding individual 

GVDR set were randomly chosen as the training set, while the 

remaining ones were put into the testing set.  

 

 
Fig. 4. Five-fold Separating Scheme Example for Full Training and Testing 

Portrait with the white frame is put into the training set; Portraits with “N/A” 

label are neither in the training nor testing set; Portraits with no special signs 

are all put into the testing sets. 

 

Five-fold Scheme for Full Training and Testing: When 

performing the Full Training and Testing, the following 

conditions should be met: 1). A random binary switch is set to 

specify whether the specific image in the original JAFFE 

database or one of its corresponding images with various 

styles of sunglasses is to be put into the training set (4/5 of the 

original JAFFE database); 2). Another random binary switch 

is set to specify if the sunglasses are worn, namely, half of 

randomly selected portraits in the training set are wearing 

sunglasses; 3). A random integer value is set for ones wearing 

sunglasses from 5 to 100 to specify the GVDR of source 

sunglasses for better simulation of real application scenario; 

4). Also a random binary switch is set to specify whether the 

portrait is wearing the circular sunglasses or rectangular ones. 

For the last three conditions, they are only valid when the 

image is put into the training set. Otherwise, those pictures in 

the remaining 1/5 part of the original database are all put into 

the testing set with all corresponding images with or without 

various styles of sunglasses. So not only will the images in the 

training set never appear in the testing set, neither will their 

corresponding images. Fig. 4 gives several examples for better 

explanation, where images with a white frame were put into 

the training set, those with no signs were put into the testing set, 

and ones with “N/A” labels were neither in the training nor 

testing sets. 

One-shot Scheme for Individual Training and Testing: 

As previously demonstrated in Subsection A, three or four 

images were involved for each expression of each portrait. In 

this Individual Training and Testing, only one randomly 

selected image from three or four were put into the training set, 

while the remaining two or three were placed in the testing set.  

One-shot Scheme for Full Training and Testing: For the 

Full Training and Testing with the One-shot Scheme, similar 

conditions were also met as described in the five-fold section, 

and the only difference is that the separating scheme here was 

one-shot scheme, rather than five-fold one. Fig. 5 gives 

several examples, in which two different expressions of two 

different portraits (Portrait: KA with Expression: Fear and 

Portrait: YM with Expression: Happy) were involved. For 

each expression of each portrait, only one image was selected 

for the training set (image with the white frame). For all the 

corresponding images of the selected training images, all other 

ones were neither in the training nor the testing sets. All 

images apart from those mentioned above were put into the 

testing set. Similarly, for images from the training set, their 

corresponding ones will never be part of the testing set. 

Additionally, the five-fold training set is larger than the one of 

one-shot. 

 

 
Fig. 5. One-shot separating scheme examples for full training and testing. 
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C. Experimental Results 

Individual Training and Testing with Five-fold Scheme: 

Table IV gives the performance by separating the proposed 

database with a five-fold cross-validation scheme. A 

significant improvement for recognition rate is obtained for 

lower GVDR groups when both training set and testing set are 

images with recovery scheme implemented, compared with 

those without. However, the improvement reduces gradually 

as GVDR increases, and when it reaches 90%, the 

improvement is weakened to negative values. Then there is in 

fact decrease rather than improvement brought due to the 

recovery scheme.  It indicates that for higher GVDR level 

images, surely there is less information corrupted when 

sunglasses are added manually, and improvement on 

recognition rate due to the proposed recovery method is 

relatively decreased. 
 

TABLE IV: INDIVIDUAL TRAINING & TESTING WITH FIVE-FOLD SCHEME 

GROUP 

GVDR 

SVM LDA KNN 

NON
a
 REC

b
 NON REC NON REC 

10%
c
 

75.833

±6.991 

82.071

±5.525 

61.000

±8.744 

70.048

±7.735 

65.524

±5.308 

73.000

±5.834 

20% 
77.524

±6.610 

82.881

±5.323 

61.571

±8.713 

70.333

±8.728 

66.881

±5.806 

74.429

±5.877 

30% 
79.262

±5.513 

84.286

±5.319 

61.833

±7.880 

70.095

±7.747 

69.310

±5.790 

74.833

±6.340 

40% 
80.262

±5.803 

83.738

±5.702 

62.429

±7.167 

69.500

±8.498 

70.310

±6.479 

75.976

±6.294 

50% 
80.952

±6.607 

84.143

±5.586 

63.524

±8.441 

68.143

±8.540 

72.833

±6.361 

76.690

±5.967 

60% 
81.310

±7.309 

83.952

±6.323 

63.929

±9.004 

67.738

±9.852 

73.286

±6.260 

75.690

±6.979 

70% 
81.857

±7.009 

83.619

±5.912 

65.238

±8.918 

66.881

±9.415 

74.738

±7.012 

75.238

±7.079 

80% 
82.381

±7.465 

83.286

±6.654 

66.167

±8.638 

67.048

±8.392 

74.286

±7.131 

74.571

±7.299 

90% 
83.167

±7.143 

82.976

±6.646 

66.476

±8.259 

66.214

±7.996 

74.905

±7.054 

74.357

±6.999 

100% 
83.333

±6.263 

83.310

±6.142 

66.690

±8.708 

66.167

±8.310 

74.619

±7.263 

74.095

±7.356 

ORG
d
 

86.000

±6.911 

85.714

±6.477 

67.762

±8.414 

67.667

±9.099 

84.286

±7.063 

84.143

±7.920 

a: No recovery applied for both training and testing sets; 

b: Recovery applied for both training and testing sets; 

c: Individual Training and Testing with images at 10% GVDR; 

d: Individual Training and Testing with on original database; 
 

TABLE V: INDIVIDUAL TRAINING & TESTING WITH ONE-SHOT SCHEME 

GROUP 

GVDR 

SVM LDA KNN 

NON REC NON REC NON REC 

10% 
69.804

±3.396 

77.112

±3.683 

67.874

±6.878 

73.056

±6.229 

61.888

±3.263 

70.385

±2.337 

20% 
71.112

±3.246 

78.643

±3.468 

68.147

±6.474 

72.154

±7.551 

63.580

±3.438 

72.399

±2.260 

30% 
72.762

±3.122 

79.224

±3.249 

68.580

±6.233 

73.056

±8.167 

65.203

±3.246 

72.986

±2.531 

40% 
74.238

±3.561 

79.986

±3.053 

69.748

±6.398 

73.280

±7.296 

67.126

±2.949 

73.706

±2.637 

50% 
75.804

±3.619 

80.720

±3.053 

70.692

±6.783 

74.455

±6.923 

68.951

±2.724 

74.399

±2.147 

60% 
77.056

±3.340 

80.538

±3.549 

71.524

±7.365 

74.294

±6.770 

70.524

±2.276 

74.371

±2.630 

70% 
78.427

±3.392 

80.469

±3.227 

72.406

±7.171 

74.035

±7.685 

72.399

±2.453 

74.7558

±2.425 

80% 
79.448

±3.049 

80.594

±3.520 

73.490

±5.928 

73.622

±7.038 

73.755

±2.417 

74.552

±2.759 

90% 
80.007

±3.125 

80.357

±3.281 

74.371 

±60.88 

73.315

±6.428 

74.434

±2.490 

74.371

±2.255 

100% 
80.483

±3.437 

79.937

±2.845 

74.294

±6.774 

73.028

±6.746 

74.175

±2.278 

74.427

±2.347 

ORG 
88.168

±2.747 

87.245

±2.902 

75.441

±8.677 

75.594

±8.148 

85.552

±3.126 

84.657

±3.181 

Individual Training and Testing with One-shot Scheme: 

Table V represents recognition rate with one-shot separating 

scheme for the Individual Training and Testing type. Still,  

consistent improvement for recognition rate can be acquired 

for lower GVDR groups when both training set and testing set 

are images with recovery scheme implemented. The similar 

decrease can also be found as GVDR increases, and when the 

GVDR is greater than 90%, the recognition performance is 

then weakened with the recovery scheme applied.  

The performance for both separating schemes is given in 

Figs. 6, 7 and 8 for SVM, LDA and KNN respectively with the 

individual training and testing type.  

Full Training and Testing with Both Schemes: Based on 

results given in Table IV and Fig. 9, a consistent promotion for 

SVM, LDA and KNN with both the five-fold scheme and the 

one-shot one is obtained.  

When comparing with results from Individual Training and 

Testing experiments, although there exists decrease for higher 

GVDR group in individual types, when considering overall 

performance with Full Training and Testing, the benefits from 

the proposed recovery scheme shall never be underestimated. 

It can be concluded that introducing recovered images into 

both the training and testing set is effective in promoting the 

classification performance of sunglasses expression images 

with the One-shot Scheme. Improvements are 6.092%, 

5.858% and 4.552% for SVM, LDA and KNN respectively, 

which is best simulates applications in real scenarios. 

Additionally, improvements are 6.512%, 6.979% and 4.821% 

respectively for SVM, LDA and KNN in the Five-fold 

Scheme. 
 

 
Fig. 6. Improvement based on final recognition rate with SVM classifier. 

 

 
Fig. 7. Improvement based on final recognition rate with LDA classifier. 

 

TABLE VI: FULL TRAINING & TESTING WITH BOTH SCHEMES 

TYPE 
SVM LDA KNN 

NON REC NON REC NON REC 

FIVE- 

FOLD 

69.090

±2.986 

75.182

±3.145 

64.302

±6.270 

70.160

±7.258 

63.855

±2.238 

68.407

±2.638 

ONE- 

SHOT 

69.090

±2.986 

75.182

±3.145 

64.302

±6.270 

70.160

±7.258 

63.855

±2.238 

68.407

±2.638 
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Fig. 8. Improvement based on final recognition rate with KNN classifier. 

 

 
Fig. 9. Overall performance improvement based on final recognition rate 

consistent improvement obtained for all of the 3 off-the-shelf classifiers. 
 

IV. CONCLUSION 

This paper has proposed a sunglasses recovery scheme 

based on Canny Edge Detection and histogram matching for 

automatic facial expression recognition. By randomly 

selecting one-shot images from a full database containing 

images with or without manually-added sunglasses with 

various luminous transmittance, the final recognition 

performance is greatly improved. 

The advantage is that it is now possible to utilize only 

one-shot image for each expression of each portrait in the 

training phase. In comparison with experimental results 

without the recovery implemented, improvement of 6.092%, 

5.858% and 4.33% on the final recognition rate has been 

achieved with classifiers of SVM, LDA and KNN 

respectively. 
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