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Abstract—The biological motivated problem that we want to 

solve in this paper is to predict the new members of a partially 

known set of genes involved in specific disease (i.e. disease gene 

prioritization). In this problem, we are given a core set of genes 

(i.e. the queries) involved in the specific disease. However, the 

biologist experts do not know whether this core set is complete 

or not. Our objective is to find more potential members of this 

core set by ranking genes in gene-gene interaction network. One 

of the solutions to this problem is the random walk on graphs 

method. However, the random walk on graphs method is not 

the current state of the art network-based method solving 

bioinformatics problem. In this paper, the novel un-normalized 

graph (p-) Laplacian based ranking method will be developed 

based on the un-normalized graph p-Laplacian operator 

definitions such as the curvature operator of graph (i.e. the 

un-normalized graph 1-Laplacian operator) and will be used to 

solve the disease gene prioritization problem. The results from 

experiments shows that the un-normalized graph p-Laplacian 

ranking methods are at least as good as the current state of the 

art network-based ranking method (p=2). 

 
Index Terms—Graph, p-Laplacian, ranking, disease gene 

prioritization. 

 

I. INTRODUCTION 

A genetic disorder is a disease caused by changes and 

mutations that happen in a single gene or multiple genes in 

the genome. Some examples to famous single-gene disorders 

are sick cell anemia, Marfan syndrome, and Huntingtons 

disease. Oppositely, some diseases such as heart disease, high 

blood pressure, and cancer are complex diseases that need the 

interaction of multiple genes. Identification of the genes 

associated with the latter kind of diseases is a greater 

challenge since the impact of each gene involved can be 

insignificant and difficult to identify separately. 

Identification of disease genes is significant to better 

understand gene functions as well as to improve medical care 

[1]. Genome-wide linkage and association studies in healthy 

and affected populations provide chromosomal regions that 

most probably have disease-associated genes [2]. 

Experimental identification of most significant genes among 

hundreds of candidates by employing an extensive range of 
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data sources is an expensive and time consuming task. Thus, 

computational methods based on gene expression data [3] 

and protein-protein interaction (PPI) network data [3], [4] are 

proposed up to now. 

In this paper, we mainly focus on PPI networks that model 

physical interactions between proteins. These interactions are 

captured via a variety of experimental and computational 

methods [5], [6]. Reconstructing a reliable and 

comprehensive protein interaction network for different 

species is one of the most significant challenges in molecular 

biology. Thorough analyses on these networks are shown to 

be very significant in understanding cells and diseases on a 

system-wide level. Despite the rise of high-throughput 

technology, reconstruction of a full network is still far from a 

realistic goal. Present public PPI databases only cover a 

portion of these interactions. Thus, accumulations of data 

from several sources are used in many applications. PPI 

networks are frequently abstracted by graph models, in which 

the proteins are nodes of the graph and the physical 

interactions among them are the undirected edges. This 

concept supports the application of graph theoretical 

approaches to the investigation of cellular organization. 

Recently, several algorithms have been proposed to 

include topological properties of PPI networks in 

understanding genetic diseases [7]-[9]. These algorithms 

mostly concentrate on prioritization of candidate genes and 

mainly utilize the idea that the products of genes associated 

with similar diseases have a higher possibility of being 

connected in the PPI networks. However, a significant 

challenge for these applications is the partial and noisy nature 

of the PPI networks [10]. Missing interactions and false 

positives affect the accurateness of “local methods” based on 

local information such as direct interactions and shortest 

distances. Few “global methods” based on simulation of 

information flow in the network (e.g., random walks [8], [9] 

or network propagation [11]) avoid this problem by 

considering numerous different paths and the whole topology 

of PPI networks. To solve the disease gene prioritization 

problem, [8], [9] simulates a random walker that starts from a 

set of nodes (i.e. the queries or the set of genes involved in the 

specific disease) instead of a single node. Thus, given a set of 

proteins that is involved in a specific disease as the start set, 

the random walk on graphs method ranks the remaining 

proteins in the protein-protein interaction network with 

respect to their proximity to the queries’ complex. This 

ranking method [8], [9] has also been employed by Google 

Company to exploit the global hyperlink structure of the Web 

and produce better rankings of search results [12]. Its idea 

[8], [9], [12] has also been employed in [13] to solve the 

protein function prediction problem (i.e. the classification 

problem). However, based on [13], the random walk on 

graphs method is not the best network-based method solving 
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the classification bioinformatics problems such as protein 

function prediction [13], [14] and cancer classification [15]. 

Unlike the random walk method utilizing the random walk 

graph Laplacian, the network propagation method [11] 

employs the symmetric normalized graph Laplacian. 

Moreover, to the best of our knowledge, the un-normalized 

graph (p-) Laplacian based semi-supervised learning method 

is considered the current state of the art network-based 

method solving protein function prediction problem [14], 

[16] and cancer classification problem [15]. However, the 

un-normalized graph (p-) Laplacian based ranking method 

has not yet been developed and obviously has not been 

applied to any practical applications. In this paper, the 

un-normalized graph (p-) Laplacian based ranking method 

will be developed based on the un-normalized graph 

p-Laplacian operator definitions such as the curvature 

operator of graph (i.e. the un-normalized graph 1-Laplacian 

operator). Finally, this proposed method will be used to solve 

the disease gene prioritization problem. 

We will organize the paper as follows: Section II will 

introduce the preliminary notations and definitions used in 

this paper. Section III will introduce the definition of the 

gradient and divergence operators of graphs. Section IV will 

introduce the definition of Laplace operator of graphs and its 

properties. Section V will introduce the definition of the 

curvature operator of graphs and its properties. Section VI 

will introduce the definition of the p-Laplace operator of 

graphs and its properties. Section VII will show how to derive 

the algorithm of the un-normalized graph p-Laplacian based 

ranking method from regularization framework. In section 

VIII, we will compare the accuracy performance measures of 

the un-normalized graph Laplacian based ranking algorithm 

and the un-normalized graph p-Laplacian based ranking 

algorithms. Section IX will conclude this paper and the future 

direction of researches of other practical applications in 

bioinformatics utilizing discrete operator of graph will be 

discussed.   

 

II. PRELIMINARY NOTATIONS AND DEFINITIONS  

Given a graph G=(V,E,W) where V is a set of vertices with 

     ,       is a set of edges and W is a     

similarity matrix with elements                . 

Also, please note that        . 

The degree function        is  

          ,                                      (1) 

where     is the set of vertices adjacent with i. 

Define                   . 

The inner product on the function space    is 

                                                (2) 

Also define an inner product on the space of functions    

on the edges 

                                                  (3) 

Here let                  and           
.,.> ) be the Hilbert space real-valued functions defined on 

the vertices of the graph G and the Hilbert space of 

real-valued functions defined in the edges of G respectively.  

III. GRADIENT AND DIVERGENCE OPERATORS 

We define the gradient operator             to be 

                  ,                               (4) 

where       be a function of     .                 
We define the divergence operator               to 

be 

                                             (5) 

where                      
Next, we need to prove that 

             

   

          

Proof: 

               
       

 

      

       

           

      

       

           

       

      

       

      

            

      

      

          

   

         

   

    

   

 

    
   

     

   

          

Thus, we have  

                                                (6) 

 

IV. LAPLACE OPERATOR 

We define the Laplace operator             to be 

    
 

 
                                          (7) 

Next, we compute 

      
 

 
     

   

                

 
 

 
     

   

                          

     

   

        

       
   

     

   

   

          

   

   

Thus, we have  

                                            (8) 

The graph Laplacian is a linear operator. Furthermore, the 

graph Laplacian is self-adjoint and positive semi-definite.  

Let             , we have the following theorem 1 
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                                       (9) 

The proof of the above theorem can be found from [15], 

[17].  

 

V. CURVATURE OPERATOR 

We define the curvature operator             to be 
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Next, we compute 

      
 

 
     

   

  
  

      
     

  

      
     

 
 

 
     

   

 
 

     
            

 

     
             

 
 

 
    

   

 
 

     
 

 

     
         

Thus, we have 

      
 

 
        

 

     
 

 

     
                  (11) 

From the above formula, we have 

                
                               (12) 

The local variation of f at i is defined to be  

              
 

                
 

           (13) 

To avoid the zero denominators in (11), the local variation 

of f at i is defined to be 

              
 

     ,                       (14) 

where        . 

The graph curvature is a non-linear operator.     

Let              , we have the following theorem 2 

                                            (15) 

The proof of the above theorem can be found from [15], 

[17]. 
 

VI. P-LAPLACE OPERATOR 

We define the p-Laplace operator              to be  

     
 

 
                                      (16) 

Clearly,      and     . Next, we compute 

       
 

 
     

   

                          

 
 

 
     

   

      
                    

   
       

      

 
 

 
    

   

      
         

   
         

Thus, we have 

       
 

 
             

         
   

          (17) 

Let       
 

 
      

 
 , we have the following theorem 

3      

                                               (18) 

The proof of the above theorem can be found from [15], 

[17]. 

 

VII. DISCRETE REGULARIZATION ON GRAPHS AND PROTEIN 

FUNCTION CLASSIFICATION PROBLEMS 

Given a protein network G=(V, E). V is the set of all 

proteins in the network and E is the set of all possible 

interactions between these proteins. Let y denote the initial 

function in H(V).    can be defined as follows 

    
                           

                               
  

Our goal is to look for an estimated function f in H(V) such 

that f is not only smooth on G but also close enough to an 

initial function y. Then each protein i is ranked as value of   . 
This concept can be formulated as the following optimization 

problem 

                   
 

 
                       (19) 

The first term in (19) is the smoothness term. The second 

term is the fitting term. A positive parameter   captures the 

trade-off between these two competing terms. 

A. 2-Smoothness 

When p=2, the optimization problem (19) is 

             
 

 
      

 
  

 

 
                   (20) 

By theorem 1, we have     

Theorem 4: The solution of (20) satisfies 

                                          (21) 

Since   is a linear operator, the closed form solution of 

(21) is 

            ,                                (22) 

Where I is the identity operator and      . (22) is the 

algorithm proposed by [13], [16].      

B. 1-Smoothness 

When p=1, the optimization problem (19) is  

                     
 

 
       ,           (23) 

By theorem 2, we have 

Theorem 5: The solution of (23) satisfies 

           ,                            (24) 

The curvature   is a non-linear operator; hence we do not 

have the closed form solution of equation (24). Thus, we have 

to construct iterative algorithm to obtain the solution. From 

(24), we have 
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Define the function       by      
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Then (25) 

    

   

                   

can be transformed into 

                                         (27) 

Define the function       by  

     

   

         
       

 

         
       

                            (28) 

Then  

                                               (29) 

Thus we can consider the iteration  

  
     

     
   
  
   

       
   
        

to obtain the solution of (23). 

C. p-Smoothness 

For any number p, the optimization problem (19) is  

             
 

 
      

 
  

 

 
       ,           (30) 

By theorem 3, we have 

Theorem 6: The solution of (30) satisfies 

            ,                              (31) 

The p-Laplace operator is a non-linear operator; hence we 

do not have the closed form solution of equation (31). Thus, 

we have to construct iterative algorithm to obtain the 

solution. From (31), we have 

 

 
          

         
   

                     

                                              (32) 

Define the function       by      
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Then equation (32) which is  

    

   

                   

can be transformed into 

                                         (34) 

Define the function       by  

     

   

         
       

 

         
       

                               (35) 

Then  

                                              (36) 

Thus we can consider the iteration  

  
     

     
   
  
   

       
   
        

to obtain the solution of (30). 
 

VIII. EXPERIMENTS AND RESULTS 

A. Datasets 

In this paper, we use the dataset available from [18] and 

references therein. This dataset contains the gene-gene 

interaction network containing 8959 genes and 68360 

undirected interactions (i.e. edges). In order to evaluate the 

performance of the un-normalized graph p-Laplacian based 

ranking algorithms, we used the default seed set of three 

genes available from [18] and is involved in one specific 

disease. The IDs of these three genes are 673, 2064, and 

5071. 

B. Experiments 

In this section, we experiment with the above proposed 

un-normalized graph p-Laplacian ranking methods with 

p=1.7, 1.8, 1.9 and the current state of the art method (i.e. the 

un-normalized graph Laplacian based ranking method p=2) 

in terms of accuracy performance measure. All experiments 

were implemented in Matlab 6.5 on virtual machine. The 

leave-one-out testing strategy is used to compute the 

accuracy performance measures of all methods used in this 

paper. For the default seed set, one member gene is left out 

and the remaining genes are used as the core set in the 

membership queries. Effective ranking methods should 

report the left out gene in top k ranks. The parameter   is set 

to 1. The accuracy performance measures of the above 

proposed methods and the current state of the art method is 

given in the following Table I. 

The results from the above table shows that the 

un-normalized graph p-Laplacian ranking methods are at 

least as good as the current state of the art method (p=2). 
 

TABLE I: THE COMPARISON OF ACCURACIES OF PROPOSED METHODS WITH 

DIFFERENT P-VALUES 

Top k ranks k=1000 k=1500 k=2000 

Accuracy 

performance 
measures (%) 

p=1.7 0 0 33 

p=1.8 0 0 100 

p=1.9 0 67 100 

p=2 (current state 
of the art method) 

0 67 100 

 

IX. CONCLUSIONS 

We have developed the detailed regularization frameworks 

for the un-normalized graph p-Laplacian ranking methods 

applying to disease gene prioritization problem. Experiments 

show that the un-normalized graph p-Laplacian ranking 

methods are at least as good as the current state of the art 

method (i.e. p=2).  

Recently, to the best of my knowledge, the un-normalized 

directed graph p-Laplacian based ranking methods have not 

yet been developed and applied to any practical problems. 

This method is worth investigated in the future because of its 

difficult nature and its close connection to partial differential 
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equation on directed graph field. 
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