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Abstract—We present a wavelet two-directional two- 

dimensional principal component analysis (WT2D2PCA) 

method for the efficient and effective extraction of essential 

feature information from high-dimensional signals. Wavelet 

multi-scale matrices constructed in the first step incorporate the 

spatial correlation of sub-band signals among channels. In the 

second step, the two-directional two-dimensional principal 

component analysis operates on the multi-scale matrices to 

reduce the dimension, rather than vectors in conventional 

principal component analysis (PCA). Results are presented 

from an experiment to classify 20 hand movements using 

89-channel myoelectric signals (MES) recorded in stroke 

survivors, which illustrates the efficiency and effectiveness of 

the proposed method for high-dimensional signal pattern 

recognition. 

 
Index Terms—Time-frequency analysis, wavelet transform, 

two-directional two-dimensional principal component analysis, 

myoelectric signals, pattern classification.   
 

I. INTRODUCTION 

Myoelectric signal (MES) is an electrical manifestation of 

skeletal muscle contractions. Classification of MES patterns 

can be utilized to control prosthetic hands or other 

human-machine interfaces [1]. Wavelet transform combined 

with principal component analysis (WT-PCA) has been one 

of the most powerful approaches for simultaneously 

extracting discriminative features and reducing the 

dimension for MES classification tasks [1]-[6]. Although the 

time-frequency (TF)-PCA algorithm, particularly WT-PCA, 

has achieved great success in the analysis of MES, most of 

these applications have been based on single site or multiple 

channel (typically <10) recordings. More recently, with the 

improvements in physiological measurement equipment, new 

technology permits registration of up to 256 channels using 

high-density multielectrode arrays. If the scheme of 

WT-PCA is duplicated directly to high-dimensional data, 

concatenating the huge number of wavelet coefficients into a 

1D array leads to a high-dimensional vector space, where it is 

difficult to evaluate the covariance matrix accurately due to 

its large size as well as the relatively small number of training 
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samples. Furthermore, there are other issues such as 

numerical instability in the subsequent pattern recognition as 

well as lowering down the computational complexity and 

storage requirements, among others.  

In fact, a two-dimensional time-frequency plane can be 

regarded as an image. It is thus feasible to apply image 

processing techniques to indicate time-frequency matrix 

(TFM) characteristics. Two-dimensional principal 

component analysis (2DPCA) developed by Yang et al. [7] is 

a 2D image representation and reduction technique, in which 

an image matrix does not need to be transformed into a 1D 

array. The purpose of this study is to develop an efficient and 

effective time-frequency feature extraction method for fully 

exploiting the spatial-time-frequency (STF) information of 

high-dimensional MES. The key idea is to divide the wavelet 

representation of high-dimensional signals into multi-scale 

matrices using wavelet transform. 2D
2
PCA is then performed 

to reduce the dimension of multi-scale matrices in a highly 

efficient manner for pattern classification. The method is, 

therefore, termed as wavelet two-directional 

two-dimensional principal component analysis 

(WT2D
2
PCA). To illustrate the efficiency and effectiveness 

of the proposed method, results are presented on the 

recognition of 20 hand movements from 89-channel 

myoelectric signals recorded in stroke survivors. 

 

II. METHODS 

A. 2D
2
PCA 

Without loss of generality, we consider an m by n 

time-frequency matrix A obtained from any time-frequency 

decomposition. Let n qX  and m pY  be matrices 

having orthonormal columns n q and m p , respectively. 

We can simultaneously project A onto X to yield the m q

matrix B AX , and onto Y to yield the p n  matrix

TC Y A . In contrast to conventional PCA for 

one-dimensional array applications, 2D
2
PCA operates on a 

matrix in both horizontal and vertical directions. Considering 

the m q matrix B AX obtained by projecting A onto X , 

the horizontal covariance matrix is denoted by 

[( ( )) ( ( ))],T

h E E E  G A A A A                       (1) 

which is an n n positive semi-definite matrix.  

Suppose that the training feature set is

( , , , )
1 2 N

Ω A A A , where each ( 1,2, , )i i A N denotes 

the ith m n  time- frequency matrix and N is the number of 

training samples. The average TFM is given by 
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Denoting the kth row vectors of 
iA and A by k

iA and k

hA , 

respectively, these TFMs can be represented by  

1 2[( ) ,( ) , ,( ) ] ,T T m T T

i i i iA A A A                      (3) 

and  

1 2[( ) ,( ) , ,( ) ] .T T m T T

h h hA A A A                       (4) 

The horizontal covariance matrix can then be obtained 

from the outer product of these TFM row vectors: 
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                  (5) 

Similarly, in order to obtain the p n  matrix
TC Y A by 

projecting A onto Y , the vertical covariance matrix vG  can 

be constructed. Zhang and Zhou [7] demonstrated that the 

optimal projection matrices X and Y are composed of the 

orthonormal eigenvectors 
1 2, , , qX X X  of hG

corresponding to the q largest eigenvalues and 
1 2, , , pY Y Y  

of vG corresponding to the p largest eigenvalues, 

respectively.  

After obtaining the projection matrices X and Y , 2D
2
PCA 

projects the m by n TFM A onto X and Y simultaneously, 

yielding the reduced p by q matrix    

 .TF Y AX                                     (6) 

Using the above procedure, an m n  dimensional feature 

matrix A is projected into a p q dimensional feature matrix

F .  

B. WT2D
2
PCA 

In this section, we describe the wavelet two-directional 

two-dimensional principal component analysis algorithm as 

follows: 

1) High-dimensional signals in channels 1 to S are first 

segmented by a moving window. Choose an appropriate 

mother wavelet function and decomposition depth. The 

discrete wavelet transform is then employed to 

decompose each time-segment of individual channels into 

details 1 2, , , LD D D  and approximate LA under the same 

decomposition level L. 

2) The multi-scale matrices are constructed: The wavelet 

approximation coefficients LA from each of the S 

decompositions are collected into one matrix LA , where 

the gth ( 1,2, ,Sg  ) row of LA  consists of the 

approximation coefficients of channel g. Similarly, the 

wavelet details 1D to LD for each of the S decompositions 

are collected into L matrices D1 to DL, where the gth row 

of  hD ( 1,2, , )h L consists of the detail coefficients 

of channel g at scale h. It should be noted that the sizes of 

matrices LA and DL are equal, whilst the sizes of D1 to DL 

vary. A total of (L+1) matrices is formed, each containing 

the spatial-time-frequency correlation information within 

the signal channels at the corresponding scale. 

3) 2D
2
PCA is subsequently carried out on each of the (L+1) 

matrices to extract the most informative features, as well 

as reduce the dimension based on the user-specified 

threshold of total energy preserved.  

4) The reduced feature matrices are sequenced into a vector. 

5) Since the discriminant abilities of principal components 

(PCs) at various scales are different, a simple 

distance-based technique is applied to re-order all PCs 

[8].  

6) Only those PCs with high discriminant ability are retained 

and others are discarded. 

7) Finally, the performance of the algorithm can be 

evaluated by feeding the vector of optimal PCs obtained 

into a classifier. 

C. Experimental Protocol and Performance Evaluation 

Data used to validate the proposed algorithm are 

89-channel high-density myoelectric signals recorded from 

12 stroke subjects. The experimental protocol for each 

subject consisted of 20 functional finger, hand, wrist, and 

elbow movements. Details relating to electrode placements 

and 20 arm/hand movements are described in Zhang and 

Zhou [9]. Each experimental trial contained five repetitions 

of one movement. The MES were sampled at 2000 Hz per 

channel, filtered with a fourth-order Butterworth band-pass 

filter (30–500 Hz) to remove movement artifacts and 

high-frequency noise. For each movement, the recorded MES 

was composed of five active segments corresponding to five 

repetitions of muscle contraction. For each active segment, 

the 89-channel MES were further segmented into a series of 

overlapping windows (window length: 256 ms, overlap step: 

128 ms). A mother wavelet was employed to simultaneously 

decompose 89-channel signals over five levels. The 

remaining procedures for WT2D
2
PCA described in Section 

II.B were employed to extract the PCs. Two typical 

classifiers, support vector machine (SVM) [10], extreme 

learning machine (ELM) [11], were employed to evaluate the 

classification performance of the proposed algorithm. The 

accuracy for each test was the percentage of correctly 

classified windows over all the testing windows including all 

the movements. Since the recorded MES consisted of five 

active segments for each movement, for each subject, the 

performance was evaluated as the averaged accuracy across 

the fivefolds. An overall performance was then evaluated as 

the mean and standard (SD) of classification accuracies 

across all the subjects. 

 

III. RESULTS 

A. Spatial Multi-Scale Muscle Activity Patterns 

Using the proposed multi-scale spatial matrix technique, 

the spatial MES activity at each scale was obtained. Since 

approximate coefficients at level 5 contained considerable 

low-frequency artifact, whilst the detail coefficients for level 

1 corresponded to high-frequency components greater than 

500 Hz, both of these were discarded in the analysis. Fig. 1 

shows the typical contour plots obtained for the twenty 

movements for subject 5 at scales D2-D5 of Coiflet 4 mother 
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wavelet. The five panels from left to right in the first row 

corresponded to the spatial-time-frequency activities of 

intended movements corresponding to ulnar wrist up, fingers 

3-5 flexion, index-finger flexion, thumb extension, and wrist 

extension. With each intended movement, a significant 

difference between the intensity of the myoelectric signals at 

D2 over the upper limb muscles can be readily discerned in 

these contour plots. The second row of Fig. 1 indicates the 

STF distributions of hand open, elbow flexion, wrist 

supination, index-finger extension, and wrist pronation at 

scale D3. The third row displays MES activities 

corresponding to wrist flexion, elbow extension, hand 

closing, tip pinch, thumb flexion at scale D4. The final row of 

Fig. 1 displays the specific characteristics of the five 

remaining movements, namely fingers 3-5 extension, lateral 

pinch, fine pinch, gun posture, and ulnar wrist down. Similar 

to the panels in the top row, there was significant discrepancy 

in the intensity distributions of the remaining contour plots, 

indicating useful discriminant information in the multi-scale 

matrices.  

 

 
Fig. 1. Contour plots of multi-scale matrices for 89-channel myoelectric signal traces of 20 hand movements obtained from subject 5. 

 

 
Fig. 2. The contour plots of multi-scale matrices reduced using 2D2PCA for 89-channel myoelectric signals of 20 hand movements obtained from subject 5. 

 

The proposed two-directional two-dimensional principal 

component analysis was then used to reduce the dimension of 

each matrix. Fig. 2 shows the contour plots of each matrix in 

Fig. 1 following dimension reduction using 2D
2
PCA when 

the total energy preserved was 88%. Compared with Fig. 1, 

the intensity difference between certain sub-panels in Fig. 2 

is further enhanced, including, for example, those in the first 

row. On the other hand, the matrix size at each scale (row) 

was significantly decreased. Table I summarise the matrix 

sizes at all scales before and after 2D
2
PCA for 93%, 88%, and 

83% total energy conserved for subject 5. If conventional 

PCA was used with all wavelet coefficients arranged into a 

1D array, the size of the covariance matrix would be

17800 17800 , i.e., 2(89 (81 52 37 30))    . It would be 

obviously problematic to compute such a high dimensional 

covariance matrix containing more than 
83 10  elements.  

B. Recognition of Intended Movements 

Pattern recognition analysis was performed using the 

optimal number of PCs and SVM and ELM classifiers with 

the fivefold cross-validation scheme. Table II summarizes the 

subject- specific classification accuracy for all 20 intended 
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upper-limb movements. A high average classification 

accuracy above 95% could be achieved for most subjects. 

Across all subjects, there was no significant difference in the 

accuracy of SVM and ELM (p>0.05), although the average 

accuracy for ELM was slightly lower. Compared with a 

previous study on the same MES dataset using PCA 

reduction in the time domain feature [9], 2D
2
PCA yielded 

higher average accuracy with much fewer PCs for the same 

SVM classifier, indicating the efficiency and effectiveness of 

2D
2
PCA. Although the PCs needed for ELM was higher than 

SVM, ELM exhibited better computational efficiency due to 

its unique learning scheme. In addition, the average accuracy 

of WS2D
2
PCA-ELM was also higher than LDA, and SVM 

classifiers used in conjunction with PCA in [9]. This further 

suggested that WT2D
2
PCA was more effective than PCA for 

high-dimensional MES classification.  

 
TABLE I: MULTI-SCALE MATRIX SIZE AT VARIOUS THRESHOLD VALUES OF 

TOTAL ENERGY CONSERVED FOR SUBJECT 5 

Size Total energy conserved (%) 

Scale 100% 93% 88% 83% 
D2 89 81   33 32  30 32  25 29  

D3 89 52  35 27  34 27  29 25  

D4 89 37  43 16  37 15  32 14  

D5 89 30  43 8  37 7  30 4  

 

TABLE II: PATTERN RECOGNITION RESULTS (MEAN ± SD) OF 89-CHANNEL 

MES FOR 12 SUBJECTS, AVERAGED ACROSS FIVEFOLD TESTS FOR EACH 

SUBJECT (UNIT: %) 

subject SVM ELM 

1 93.04 5.26   94.13 7.34  

2 87.39 13.27  86.24 10.89  

3 97.49 1.23  96.93 1.42  

4 92.26 7.37  91.40 5.25  

5 96.30 3.46  95.75 3.38  

6 97.64 1.88  96.96 2.31  

7 99.81 0.21  99.46 0.16  

8 99.90 0.15  99.34 0.92  

9 95.68 3.57  95.25 2.86  

10 98.55 1.44  98.89 0.98  

11 99.48 0.27  99.13 0.37  

12 99.45 0.71  98.87 1.02  

Average 96.41 3.81  96.02 3.95  

 

IV. CONCLUSION 

A novel wavelet two-directional two-dimensional 

principal component analysis for high-dimensional signal 

classification has been proposed and examined in this study. 

Spatial-time- frequency discriminant information from 

high-dimensional myoelectric electrode array can be 

effectively extracted and reduced using the proposed method. 

Compared with the time domain feature extraction in 

conjunction with PCA, WT2D
2
PCA performed better with 

higher classification accuracy and less PCs in MES 

classification. The efficiency and effectiveness of the method 

can be further validated by using other high-dimensional 

biosignals. Although the present study focuses on 

high-dimensional signal pattern classification, based on the 

PCs obtained at multiple scales, it is relatively 

straightforward to expand WT2D
2
PCA for high-dimensional 

signal compression, denoising, component extraction, and 

other related tasks. 
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