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Abstract—This paper studies the problem of constructing a 

suitable hierarchy for hierarchical classification. It presents a 

new method to fuse multiple similarity relatedness between 

concepts. The method is based on the kernel target alignment 

technology. We also develop a method to construct a hierarchy 

for image classification automatically. The hierarchy is 

constructed based on the previous fused similarity measure. 

Then, we utilize the structured support vector machine (SVM) 

for classification with a meaningful hierarchy. Experiments on 

tow real-world datasets show that hierarchical classification 

perform better than flat classification, and the structured SVM 

with the fused classes hierarchy provides a better image 

classification. 

 
Index Terms—Hierarchies construction, hierarchical 

classification, taxonomies, structural learning. 

 

I. INTRODUCTION 

With the development of information technology, 

multimedia data grow rapidly. A large amount of data 

contains thousands classes and varies significantly in 

semantics. For real-world applications, they are faced the 

scalability problem which dealing with a huge number of 

object classes. In practical, humans can easily categorize at 

least ten thousands of objects and scenes [1]. Humans handle 

large number of objects through a hierarchical structure built 

in the semantic space. By means of the hierarchy, humans 

make fast and meaningful recognition. Several studies [2]-[4] 

have focused on exploiting hierarchical structure for 

large-scale classification of text and visual application. 

Interpretation of image objects at high level semantic is 

one of the most critical problems in computer vision. 

Although many researches have made progress in object 

recognition, the machine recognition performance is still far 

from the human intelligence. The process of humans 

understanding objects happen in high-level semantic space, 

however most of the machine learning approaches just 

interpret the object through learning from low-level features. 

Those approaches can depict the virtual content of the images 

but they are unable to understand the semantic meanings of 

the images like humans do. Humans categorize objects in a 

hierarchical way, which take the similarity between two 

concepts into count. For example, one may classify a wolf 

into a dog by mistake, but hardly categorize a wolf as a car. A 

natural way to incorporate the similarity relatedness into 

classification is utilize the hierarchical taxonomy [5]-[7]. 
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Several methods have been proposed to construct semantic 

hierarchies for classification. Many works [2], [5], [8] 

construct hierarchies based on the well-known large 

taxonomy–WordNet [9], which group words into sets 

according their superior-subordinate relations. A semantic 

hierarchy is constructed based the WordNet in [8]. They 

extract the relevant subgraph linked all the given concepts 

from the WordNet. In [2], they propose a large-scale image 

hierarchy classifier based on the WordNet. The above 

approaches utilize the high-level conceptual information to 

build the hierarchy. These conceptual hierarchies contain 

semantic meaning of the concepts, but they ignore the rich 

visual information which is also beneficial to classification. 

Some approaches [10]-[11] utilize the visual feature 

information to construct the hierarchies. Bart et al. [10] 

propose a completely unsupervised non-parametric bayesian 

model to learn a tree hierarchy. Marcin & Cordelia [11] use 

the 2  distance to compute dissimilarity relatedness between 

classes and construct a relaxed hierarchy by recursively 

splitting the class sets until they contain only one class. 

Only visual or conceptual information is insufficient to 

depict the rich contents of images. So some works exploit 

multiple relatedness information, such as visual feature 

similarity, tags of images and so on. A graphical model is 

exploited to automatically construct a “semantivisual” 

hierarchy which using both visual feature and tags 

information in [12]. Fan et al. [13] construct a hierarchy by 

adding weighted visual similarity and conceptual similarity. 

Bannour & Hudelot [14] incorporate three types of similarity 

information (visual, conceptual, and contextual) to develop a 

“semantico-visual relatedness of concepts” similarity 

measure, which is used to construct a faithful hierarchy. 

Various classification techniques have been proposed for 

categorization with a hierarchical structure. In order to 

improve the efficiency of classification, Gregory & Pietro [15] 

adopt a complete top-down greedy strategy along the 

hierarchy, which chooses only the most probable child at 

each node and ignores other unlikely children until reaching a 

leaf node. Some other studies [5], [13] also exploit 

hierarchies to improve the classification performance. In [5], 

the semantic distance between two nodes in the hierarchical 

tree is used to define the hierarchical loss, which is used to 

penalize the misclassifications semantically. Fan et al. [13] 

propose a multi-task learning algorithm that simultaneously 

learn the correlated classifiers for the sibling nodes sharing 

the same parent in the hierarchy. Another hierarchical 

classification approach that exploits the entire tree structure 

is the popular structured learning framework [6], [16]. In the 

structured framework [6], the features map function and 

hierarchical loss function are defined according to the 

hierarchy, and then learning the hierarchical classifier based 
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on the structural support vector machines. 

Exploiting semantic hierarchies can help categorize 

objects in a way. However, there are two issues may 

complicate the usage of hierarchies for classification. First, 

the conceptual relatedness in the hierarchy is inconsistent 

with the visual features [17]. Some structure in the hierarchy 

may damage the classification. For instance, whale and 

human are semantically similar in the WordNet, but their 

visual features are dramatically diverse. Shark and whale are 

fairly semantic distant, but they share some visual features. 

Second, single semantic hierarchy is insufficient to depict the 

complex image content. Some previous studies [8], [10], [15] 

only consider one semantic relatedness. However, in reality, 

objects have different degrees of relatedness based on 

different views (e.g., conceptual similarity based on WordNet 

or visual similarity based on visual features.) Thus, some 

approaches [13], [14] incorporate multiple similarity 

relatedness to construct the hierarchy. However, the main 

drawback of these methods is its similarity measure is just 

summing the relatedness matrices using weights pre-defined 

by human. 

To address above problems, we present an approach to 

construct a suitable hierarchy, which utilizes kernel target 

alignment method [18] to fuse multiple similarity relatedness. 

We also develop a method to build a hierarchy automatically. 

For the hierarchical classification with a semantic hierarchy, 

we translate the hierarchical classification problem into the 

structured learning framework. We also define a semantic 

loss function based on the fused similarity  measure. 

Our main contributions are fusing multiple relatedness 

measures to construct an appropriate hierarchy, developing a 

method to build a hierarchy automatically, translating the 

hierarchical classification problem into the structured 

learning framework, and defining a novel semantic loss 

function. We demonstrate our framework on PASCAL VOC 

and a subset of the Animals with Attributes dataset. The 

results of a thorough experiment are reported, where the 

structured SVM with our fused semantic hierarchy provided 

better performance than flat approaches. 

The rest of the paper is organized as follows. The next 

section introduces the proposed fusing relatedness approach, 

constructing hierarchy method and structured SVM 

framework. The experimental results and analysis are given 

in Section III. Finally, Section IV concludes this paper. 

 

II. FUSING MULTIPLE SEMANTIC RELATENESS 

Our goal is to construct a suitable hierarchy for 

hierarchical classification. We want to fuse multiple semantic 

relatedness to construct the hierarchy automatically. In order 

to determine the weight of each semantic relatedness, we 

adopt the alignment-based techniques [18], which can 

learning the weight of each kernel in multiple kernel learning 

(MKL). And then the hierarchy is constructed by a top-down 

clustering method. In the following, we first introduce the 

fusing algorithm and the constructing method in Sec. II.A and 

Sec. II.B, then we describe the structured learning framework 

in Sec. II.C. 

A. Fusing Multiple Semantic Relatedness 

We have a dataset,     1 1, , , ,N Nx y x y X Y   , where 

d

ix R  denotes the i-th example, and  1,2, ,iy C   is its 

class label, where C  is the number of classes. We want to 

fuse multiple similarity relatedness, and each similarity 

relatedness can be express as a symmetric matrix C CK R  , 

where ( , ) [0,1]i jK y y  , represent the similarity between 

classes 
iy   and jy . 

Each symmetric matrix K  can be regard as a kernel 

matrix, because the element in kernel matrix represents the 

dot product of two examples and the dot product can measure 

the similarity of two examples. Then, we utilize the kernel 

target alignment (KTA) objective function [18] to learn the 

weight of each similarity matrix. We define the ideal 

similarity matrix as the identity matrix 
IK .  

For the give M  similarity matrices 
1 2, MK K K  and the 

ideal similarity matrix 
IK , we use Min-Max Normalization 

to normalize each K  into the same interval. To avoid the 

kernel scaling problem, each matrix K  is centered by the 

following equation: 
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Following, each  ,cm i jK x x  is normalized to have trace 

equal to one. Then these M similarity matrices are linearly 

weighted combined by  
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where 
mw  is the weight of the corresponding 

cmK  and 

1
1, 10

M

mmm ww


   . The weights are learned by 

maximizing kernel target alignment  objective function:  

 ,
(

(
) (

)
)

Similar I
I

Simi

Simil

lar

ar

I ISimilar

K K
K K

K K K K





  
            (3) 

This optimization problem can be efficiently solve by 

quadratic program. For optimization implementation details, 

please refer to [18]. 

The definition of ideal similarity matrix 
IK  is to handle 

the inconsistencies between different relatedness measures. If 

two classes are similar (or dissimilar) in both the visual and 

conceptual measure, after summing the linear weighted 

matrices, the two classes still  maintain similar (or dissimilar) 

due to restricting the sum of weights to one. However, if two 

classes are inconsistent on visual and conceptual relatedness,  

the objective function will give a small weight to a large 

similarity value. For example, the visual similarity between 

whale and human is smaller than conceptual similarity: 

( , ) ( , )visual conceptualK whale human K whale human . We will obtain 

a smaller weight for concuptualK  and this can deal with the 

inconsistencies problem. 

B. Semantic Hierarchy Constructing 

After learning the weights of every similarity matrix, we 

obtain the semantic similarity measure between classes. We 
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develop a method that construct the semantic hierarchy by 

top-down recursive partitioning the set of classes until every 

set only contains one class. At each step, one class set is 

partitioned into small sets, in which classes are more similar. 

Each partition procedure can be regarded as a graph cut 

problem, and it can be solved by standard spectral clustering. 

We use the Self-Tuning Spectral Clustering [19] to spilt set. 

This is a variant of the Spectral Clustering algorithm which 

can automatically select the number of clusters. Thus, we 

need not to decide the number of small sets at each partition 

step. For the affinity matrix in spectral clustering, we use the 

similarity measure matrix instead of it. By recursively 

partitioning the classes set, we can obtain a semantic 

hierarchy. The hierarchy constructed by our method on the 

Pascal VOC dataset is depicted in Fig. 1, and the hierarchy 

constructed on the Animal with Attribute dataset is depicted 

in Fig. 2. 
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Fig. 1. Semantic hierarchy built on Pascal VOC dataset. 
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Fig. 2. Semantic hierarchy constructed on Animal with Attribute dataset. 

 

C. Structural Learning with Taxonomies 

Given a hierarchy, we translate the hierarchical 

classification into the structured SVM learning framework. A 

hierarchy can be defined as a directed graph  ,T V E , 

where 1 2 | |( , , , )VV v v v  and Y V  are identified with leaf 

nodes. The path from root to one leaf node y is defined as a 

set of nodes  y . The set  y  can be encoded by a binary 

vector   y , where the i-th element is given by 

 
 1     if  

0    otherwise

i

i

v y
y





 


                            (4) 

So the class leopard in Fig. 2 is represented by 

   0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1leopard  . 

In structured SVM framework, the discrimination function 

is defined as  

    , , ,i if x y w x y                             (5) 

In the hierarchical structure, the mapping function  ,ix y   

is defined as    ,i ix y y x   , where   is the tensor 

product. For the learning objective, we follow the structured 

learning framework formulated by Tsochantaridis & 

Joachims [16]. We formulate the learning objective with a 

margin rescaling as: 
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where C >0 is a constant that controls the tradeoff between 

training error minimization and margin maximization. In this 

minimization problem (6), the constraint is added to every 

training instances and each constraint corresponds a slack 

variable 
i , which is added as an upper bound on the error 

 Δ ˆ,iy y . This will make violating a margin constraint with a 

high  Δ ˆ,iy y  value incurs a more severe penalty. The 

optimization problem can be solved using the cutting plane 

algorithm in the SVMStruct software package [20]. 

The loss function in the structured framework is based on 

the given ground truth label y  and the predicted label ŷ . In 

order to classify images more semantically, we take the 

hierarchical loss into count. In the hierarchical loss criterion, 

misclassifying an image into a wrong but semantically close 

class should suffer a smaller loss than misclassifying it into a 

semantically distant class. Based on this consideration, we 

define loss function as: 

   fuse

1

dΔ , 1 ,ˆ ˆ
M

m m

m

y y w K y y


                          (7) 

This semantic loss function is based on the fused similarity 

measure and can describe the meaningful distance between 

the true label y and the prediction ŷ . 

 

III. EXPERIMENTS 

We perform an empirical study on two real-world datasets, 

Pascal VOC [21] and Animals with Attributes [22]. 

A. PASCAL  VOC 

We perform experiments on the Pascal VOC2010 dataset, 

which contains 20 classes and a total of 11,321 images. For 

the features, we adopt a bag of words (BoW) model. The 

BoW feature vector is built as following: compute dense 

scale-invariant feature transform (SIFT) descriptors, generate 

codebook and encoding SIFT. The dense SIFT features are 

computed using the VLFeat package [23]. Then, the dense 

features are further processed to form a visual codebook of 

D=1000 visual words using K-means clustering. Every dense 

feature in one image is assigned to one visual word in the 

codebook through a KD-Tree, and the image is represented 

by a histogram of  D visual words. We also adopt the explicit 

feature map approach [24], that enable linear SVM obtain 

comparable performance to the nonlinear SVMs with implicit 

kernels. In our setups, the 2  kernel is adopted with 

approximation order N=1. Then, one image is represented as 

a BoW vector  with 1000 dimensions. 

For the multiple similarity relatedness, we computed three 

similarity relatedness measures as follows [14]: visual 

similarity, which computes the similarity between centers of 

different classes; conceptual similarity, which represents the 
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distance of paths connecting two concepts in WordNet; and 

the co-occurrence probability between each pair of concepts. 

We performed classification on Pascal VOC2010 dataset 

using the structured SVM. We trained on the divided training 

set and tested on the validation set supplied by the dataset. 

The classification performance was evaluated using the 

average precision (AP) score, a standard evaluation criterion 

supplied by the PASCAL challenge. The AP score represent 

the area under the precision/recall curve, and a higher value 

indicates a better performance. The mean average precision 

(mAP), which computes the mean AP score for the 20 

classes, is reported. 

 

 
Fig. 3. Precision/recall curve for Pascal VOC2010. The fused hierarchical method performs better than the flat method on most classes. We only listed the first 

four classes due to space constraints. The other classes are similar with the same relationship between two methods. 

 

We firstly compared the hierarchical classification with the 

flat classification, which only adopts the joint feature 

representation but ignores the hierarchy structure. Results are 

shown in Fig. 3. The fused hierarchical classification 

performs better than the flat classification on most classes. 

This shows that exploiting hierarchies can enhance the 

recognition performance. In order to evaluate our fused 

hierarchy, we compared our hierarchy (SSVM+Fused) with 

the hierarchy (SSVM+Hichem) built in [14]. For further 

comparison, we additionally reported the result on three other 

methods: random forest (RF), flat structured multiclass SVM 

(Flat-SVM), and linear-SVM. The results are shown in Fig. 4. 

The structure learning framework with our fused hierarchy 

shows the best performance than the other methods. Our 

fused hierarchy performs an improvement of 1.97% than the 

hierarchy in [14] using the same classifier. The result 

demonstrates that our fused hierarchy can more accurately 

depict the semantic relatedness of the categories. 
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Fig. 4. Performance of different methods on Pascal VOC2010. 

B. Animals with Attribute 

For the Animals with Attribute dataset, we used a subset 

that contained ten classes in [17], and a total of 6,180 images. 

To obtain a rich image features, we made use of the deep 

convolutional activation features (DeCAF) supplied by the 

dataset. In order to comparing with the semantic kernels 

forests (SKF) method [17], these features are reduced to 100 

dimensionality using principal component analysis (PCA).  

For the multiple similarity relatedness, we computed four 

similarity relatedness measures: visual similarity and 

conceptual similarity following PASCAL VOC, and two 

other relatedness, appearance similarity, and habitat 

similarity. The appearance similarity and habitat similarity 

were computed followed the method in [17]. The method 

computed the Euclidean distance between real-valued 

attributes vectors supplied in the dataset for the training 

images. 

We spilt the images into 100/100/100 images per class for 

training/validation/testing, and generated five such random 

splits. We reported the average recognition accuracy and 

standard errors for a 95% confidence interval. Our method is 

compared with several popular multi-class classification 

algorithms, which include random forest (RF), flat structured 

SVM (Flat-SVM), and linear-SVM. We also compared our 

method with semantic kernels forests (SKF) method [17], 

which exploits multiple hierarchies form multiple views. The 

results are summarized in Fig. 5. Our classification 

framework produces the best results than others, which 

include flat and hierarchical methods. The results show that 

the hierarchical method outperforms the flat algorithms. Our 

method is also comparable with the SKF method, which 

exploits multiple kernel learning and nolinear kernels. 
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Fig. 5. Performance of different methods on Animals with Attribute. 

C. Comparison with Different Loss Function 

Base on the intuition that misclassifying an image should 

incurs different semantically penalty, different loss functions 

can be defined based on the hierarchy. We compared four 

loss functions, which include the standard 0/1 loss 

hierarchy-based loss
0/1Δ [25], hierarchy-based loss function 

     Δ ,ˆ ˆ
h i ii

y y y y   , weighted hierarchical 

difference(WHD) loss [26], and our semantic loss. The 

weighted hierarchical difference is defined as:  

       Δ ˆ ˆ, Ψ ΨWHD i i

i

y y y y                         (8) 
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which penalizes more severely, when the misclassification 

occurs higher level of the hierarchy.   Ψ i y  is defined as a 

weighting function, which divides each element  of the binary 

vector  y  by its level. For example, in the hierarchy of Fig. 

2, the   Ψ leopard of class 8:leopard is defined as 

    Ψ 0,0,0,0,0,0,0,1/ 3,0,0,1/ 2,0,0,0,0,1leopard  . We 

reported the performances using different loss functions on 

PASCAL VOC and AWA datasets. The results are list in 

Table I. Our semantic loss function has the best performance. 

These results illustrate that the fused similarity measure is 

more meaningful and precisely describe the relatedness 

between classes.  

 
TABLE I: PERFORMANCES WITH VARIOUS LOSS FUNCTIONS 

Dataset 0/1Δ  Δ h
 ΔWHD

 Δ fused
 

AWA-10 76.64±1.31 75.70±1.01 75.71±1.28 77.50±1.13 

VOC2010 0.3506 0.3101 0.2926 0.3530 

 

IV. CONCLUSIONS 

We presented an approach that can fuse multiple 

relatedness measures to construct a class hierarchy for 

hierarchical classification. The experimental results showed 

that the fused semantic measure can depict the relationship 

between different concepts, and the proposed method 

improved object recognition accuracy. In our future work, we 

plan to explore evaluation criterions to produce more 

semantic prediction for image classification. 
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