
  

  
Abstract—Feature selection is an important technique for 

data dimension reduction. Embedded method with sparse 
regression is wildly used for unsupervised feature selection. The 
embedded method aims to find a better feature subset by 
exploiting feature correlation without considering the 
importance of each feature individually. In this paper, we 
propose a framework for unsupervised feature selection based 
on the embedded and spare regression model. Our framework 
not only exploits the correlation of the features but also analyzes 
the importance of each individual feature. By using the weight 
of individual feature to optimize the sparse regression in the 
process of embedding, the correlation and local structure 
preserving property of the selected features can be well 
balanced. We evaluate the proposed framework by using four 
public datasets. The experimental results demonstrate the 
superior performance of the proposed framework. 
 

Index Terms—Unsupervised feature selection, embedding 
method, sparse regression, correlativity, individuality, local 
preserving. 
 

I. INTRODUCTION 
In many applications such as machine learning and data 

mining, the data samples are often represented by a large 
amount of features. However, not all the features are 
important. Usually many of the features are correlated or 
redundant to each other, and some of them are just noise. 
Feature selection is one of the dimensionality reduction 
techniques, which aims to extract the important features and 
eliminate the noisy ones. Feature selection, bringing the 
immediate effects for applications such as speeding up a data 
clustering algorithm and improving the accuracy of the 
predictive results [1], is proven to be an effective and 
efficient method to handle high dimensional data [2], [3].  

Based on the way of utilizing label information, feature 
selection methods can be broadly classified into supervised 
and unsupervised methods. For supervised feature selection, 
the discriminative information is encoded in the labels. It is 
able to select features for distinguishing samples from 
different clusters [4]-[6]. Unsupervised feature selection is 
considered as a much harder problem, since the definition of 
relevance of features becomes unclear due to the lack of label 
information [3], [7], [8]. With the rapid accumulation of high 
dimensional data, there is usually no shortage of unlabeled 
data but labels are expensive [9]. Thus, it is of great 
importance to develop unsupervised feature selection.  

Unsupervised feature selection attracts increasing attention 
in recent years and a large number of methods have been 
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proposed [10]-[13]. The most existing unsupervised feature 
selection methods are the filter and embedded methods. In 
unsupervised filter methods, the features are selected one by 
one based on certain evaluation criteria without involving 
any learning process. The typical methods include the max 
variance (MaxVar) method, the Laplacian score (LapScore) 
method [14] and its extension, i.e., the spectral feature 
selection (SPEC) method [15]. LapScore is based on the local 
geometric structure of the data and selects the features with 
local preserving. However, LapScore only considers the local 
preserving property of individual feature. A common 
disadvantage of such unsupervised filter methods is that the 
correlation among features is neglected [16].  

Unsupervised embedded methods are developed to 
perform feature selection with a learning model 
simultaneously. Usually, sparse regression is added as a 
constraint to learn the feature weights correlatively. A 
number of alternative criteria have been proposed for the 
learning processes in the unsupervised embedded methods 
such as data similarity [17], [18], data separability [19], and 
data discriminative [20]. The method in [17] (i.e., JELSR) 
uses the similarity via locally linear approximation to 
construct graph and unifies embedding learning and sparse 
regression to perform feature selection. The method in [19] 
(i.e., MCFS) selects the features that can best preserve the 
multi-cluster structure by manifold learning and ℓ 1  - 
regularization. The method in [20] (i.e., UDFS) incorporates 
discriminative analysis and ℓ 2,1  - norm minimization into a 
joint framework for unsupervised feature selection. 
Compared with the unsupervised filter methods, the 
unsupervised embedded methods have been proved to 
perform better in many cases [21]. 

In this paper, we propose a novel framework for 
unsupervised feature selection. Our framework utilizes 
sparse regression with the embedded method to exploit the 
feature correlation. Meanwhile, we consider the importance 
(i.e., the weight) of each individual feature in the framework, 
which aims to balance the correlation and local preserving 
property of the selected features. To the best of our 
knowledge, we are the first to consider feature selection with 
correlation and individuality analysis simultaneously. In the 
framework, we use the weight of individual feature to 
optimize the sparse regression in the process of embedding. 
Our proposed framework is flexible and extendable, since 
there are a lot of individual feature measure methods and 
embedded methods with sparse regression can be 
incorporated. In this paper, we use the LapScore method [14] 
to calculate the weight of individual feature, and use the local 
linear embedding (LEE) method [22] as the embedded 
method in the framework. We also present an iterative 
algorithm to efficiently solve the optimization problem in our 
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framework. Many experimental results are provided for 
demonstration. 

The rest of this paper is organized as follows. The relative 
methods are presented in Section II. We present the proposed 
framework and provide an efficient solution algorithm in 
Section III. Section IV shows some comparing results on the 
real world datasets. The conclusion is presented in Section V 

 

II. RELATED METHODS 

A. Notation 

In this paper, we use x1, …, xn  to denote the n unlabeled 

data samples, xi ∈ Rm  and X = [ x1, …, xn ] is the data 

matrix. We use f1 , …, fm  to denote the feature vectors of 
the data samples, and the data matrix is also denoted as 
X = [ f1, ..., fm ]T . We want to select d features form f1 , 

…, fm  to represent the original data, where d < m. For a 

matrix A ∈ Ru×v , its Frobenius norm is defined as 

                 A
F

= aij
2

j=1

v∑i=1

u∑ .                             (1) 

And, the ℓ 2,1 - norm of A is defined as 

                     A
2,1

= aij
2

j=1

v∑i=1

u∑ .                             (2) 

For the n data samples, the pairwise similarity among them 
can be represented as a symmetric matrix S = (sij )n×n , 

where sij  is the pairwise similarity between data ݔ௜ and ݔ௝. 

We construct an undirected k-nearest neighbor (k-NN) graph 
with the n data samples. In the k-NN graph, data ݔ௜  is 
connected to ݔ௝  if ݔ௜  is among the k nearest neighbors of 
 ௜. According toݔ ௝ is among the k nearest neighbors ofݔ ௝ orݔ
the k-NN graph, the pairwise similarity is ݏ௜௝ ( sij ≠ 0 ) if ݔ௜ 

is connected to ݔ௝, otherwise, ݏ௜௝ ൌ 0. 

B. Laplacian Score 
Laplacian Score is proposed to select features that preserve 

sample locality specified by the similarity matrix S. The 
pairwise similarity is calculated as 

௜௝ݏ ൌ ቊexp ቀെฮݔ௜ െ ,௝ݔ  ௜ is connected toݔ   ,ଶቁߪ/௝ฮଶݔ
0,                                           otherwises,

 (3) 

where ฮݔ௜ െ  ,௝ݔ ௜ andݔ ௝ฮ is the Euclidean distance betweenݔ
and ߪ is the kernel parameter. For the similarity matrix S, the 
corresponding degree matrix D is a ݊ ൈ  ݊ diagonal matrix 
with ݀௜ ൌ ∑ s௜௝

௡
௝ୀଵ  on the diagonal. The corresponding 

Laplacian matrix of S is L = D – S. The Laplacian Score of 
feature fi  is calculated as  

                         L( fi ) = fi

~ T

L fi

~

fi

~ T

D fi

~
,                                   (4) 

where  and . In Laplacian 

Score, the features are evaluated independently. Feature 
selection is performed by selecting the top d features which 
have the minimal scores. 

C. Embedded Methods with Sparse Regression 
Different from the Laplacian Score, many methods 

evaluate the features by considering their correlation. In the 
embedded unsupervised feature selection methods, the 
original data xi is embedded in a low dimensional space by a 
transformation matrix W. In the low dimensional space, data 
xi  is represented by yi ∈ Rs , where s is the dimensionality 

of embedding. We use Y = [y1, ..., yn ]  to denote the 
embedding data matrix of X. By embedding, the most 
valuable information of the original data is retained and the 
feature redundancies are eliminated. The problem becomes to 
solve the following optimization problem to obtain the 
transformation matrix W and the embedding data matrix Y. 

         min
W , Y

W T X −Y
F

2
+α W

2,1
+ β Loc(Y ) ,                 (5) 

where α  and β  are the balance parameters, and Loc(Y) is a 
promoting regularization term to satisfy that the  structure of 
the original data is retained in the low dimensional 
embedding data. Note that the second term in (5) is the - 
norm of the transformation matrix W to promote row sparsity, 
which has an effect of feature selection and help to avoid 
selecting redundant features. Denote wi  as the ith  row of the 

m × s  matrix W, i.e., W = [w1, ..., wm ]T . After W is 

obtained, each feature fi  is ranked according to wi 2
in 

descending order and the top rank d features are selected. 
 

III. THE PROPOSED FRAMEWORK 

A. Formulations 
In order to balance the correlation and local preserving 

property of the selected features, we propose a novel 
unsupervised feature selection framework as  

min
W , Y

W T X −Y
F

2
+α diag(L( fi ))W 2,1

+ β Loc(Y ).         (6) 

In (6), we use the Laplacian Score  as the penalty 

parameter for the - norm of W.   The weight of each row 
in W is adjusted by . In (5), when wi 2

= wj 2
, the 

importance of features fi and f j cannot be distinguished. 

The case of wi 2
= wj 2

in (5) is just the case of 

L( fi ) wi 2
= L( f j ) wj 2

in (6). In (6), when 

L( fi ) wi 2
= L( f j ) wj 2

, we can distinguish fi and f j  

according to L( fi )  and L( f j ) . If L( fi ) > L( f j ) , we can 

obtain wi 2
< wj 2

, that is, feature f j  is more important 

than feature fi . Note that, L( fi ) > L( f j )  denotes that f j  

ℓ 2,1

L( fi )
ℓ 2,1

L( fi )



  

has higher local preserving level than fi . Thus, by adjusting 

the - norm of W with Laplacian Score, we can select the 
features with less redundancy and higher local preserving 
property.   

In this paper, we use the local linear embedding (LLE) [22] 
method to calculate Loc(Y) in (6). The pairwise similarity sij  

is calculated by the following locally linear approximation.   

        min
S, sijj∑ =1

xi − sij x jx j ∈N (xi )∑i=1

n∑
2

2
,                       (7) 

where N(xi ) is the set of neighbors of xi  in the k-NN 
graph. If ݔ௜  is not connected to ݔ௝ ௜௝ݏ , ൌ 0 . Since the 
structure of the original data xi  should be retained in the low 

dimensional embedding data yi , we calculate Loc(Y) as 

          Loc(Y ) = min
YY T =Is×s

yi − sij y jj=1

n∑
2

2

i=1

n∑ .                  (8) 

Let M = (In×n − S)T (In×n − S) , (8) is transformed as 

                          Loc(Y ) = tr(YMY T ) .                                (9) 

According to (9), the objective function of our proposed 
framework in (6) is formulated as 

    Φ(W,Y ) = min
W , YY T =Is×s

W T X −Y
F

2
+α diag(L( fi ))W 2,1

+βtr(YMY T )

 .      (10) 

After obtaining W, we select the features by ranking each 
feature fi  according to wi 2

in descending order and 

selecting the top rank d features. 

The optimization problem in (10) is not convex when both 
W and Y are optimized simultaneously. Moreover, the - 
norm of W makes the problem non-smooth. Inspired by  [17] 
and [23], we solve this problem in an alternative way. For 
convenience, we denote Ψ(W ) = diag(L( fi ))W 2,1

.  

The derivative of Ψ(W )with respect to W is 

                ∂Ψ(W )
∂W

= 2U diag(L( fi ))W ,                          (11) 

where U ∈ Rm×m  is a diagonal matrix with the ith  diagonal 
element as 

                        Uii = 1
2 wi 2

.                                     (12) 

When U is fixed, the derivative in (10) can also be 
regarded as the derivative of (13). Thus, we try to solve the 
problem in (13) to approximate the solution to (10). 

Φ(W,U,Y ) = min
W , YY T =Is×s

W T X −Y
F

2

+αtr(W TU diag(L( fi ))W )+ βtr(YMY T )

.              (13) 

We take the derivative of Φ(W ) with respect to W as the 
following equation. 

           
∂Φ(W,U,Y )

∂W
= 2XXTW − 2XY T + 2αU diag(L( fi ))W

.           (14) 

By setting (15) to equal to 0, we can obtain 

            W = (XXT +αU diag(L( fi )))
−1 XY T .                  (15) 

Note that (13) can be transformed as 
Φ(W,U,Y ) = min

W , YY T =Is×s

tr(W T XXTW )− 2tr(W T XY T )+ tr(YY T )

+αtr(W TU diag(L( fi ))W )+ βtr(YMY T )

  (16) 

Then, by substituting (15) into (16), we have  

Φ(W,U,Y ) = min
W , YY T =Is×s

tr(YY T )+ βtr(YMY T )

−tr(W T (XXT +αU diag(L( fi )))W )
.           (17) 

Let B = XXT +αU diag(L( fi )) , according to (15), (17) 
becomes 

 
Φ(W,U,Y )
= min

YY T =Is×s

tr(YY T )+ βtr(YMY T )− tr(YXT B−1XY T )

= min
YY T =Is×s

tr(Y (βM + In×n − XT B−1X)Y T )

.     (18) 

Since M and B are fixed, the solution of (18) can be 
obtained by solving the following eigenvalue problem. 

                (βM + In×n − XT B−1X)yi = λyi .                (19) 

The matrix Y, containing the eigenvectors corresponding 
to the s smallest eigenvalues as the row vectors, is the 
solution of (18).  

In summary, we solve the optimization problem in (10) in 
an alternative way. When W is fixed, U can be updated 
according to (12). When U is fixed, Y can be updated 
according to (19). Then, (15) can be used to update W. After 
that, U can be updated again according to W as defined in 
(12). Similar to the results in [17] and [23], the objective 
function in (10) is convergence. We do not show the 
convergence analysis in this paper due to the limited space. 
The updating process will be done until the objective function 
in (10) converges. 

We summarize the procedure of the proposed framework 
by using LLE to calculate Loc(Y) in Algorithm 1. 

 

 

ℓ 2,1

ℓ 2,1
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IV. EXPERIMENTS 
In this section, we test the performance of the proposed 

framework for unsupervised feature selection. Similar to that 
considered in [14] and [19], we test the performance in terms 
of clustering. After selecting the features, clustering is 
performed by using only the selected features. 

In our experiment, we use a diversity of four public 
datasets to compare the performance of different 
unsupervised feature selection methods. The datasets include 
one object dataset, i.e., COIL20 [19], one face image dataset, 
i.e., UMIST [17], one handwritten digit dataset, i.e., USPS 
[23], and one spoken letter recognition data, i.e., Isolet1 [24]. 
The properties of the four datasets are summarized in Table I. 

We compare the proposed framework with other existing 
unsupervised feature selection methods. Since our 
framework selects features by considering individuality and 
correlation, we use ICFS to denote the method in Algorithm 1 
in the rest of this paper. To show that our framework is also 
efficient when the sparse constrain of W is in ℓ 1- norm, we 
also use Laplacian Score to optimize the embedded process 
of the MCFS method [19] in the experiment. 

 
TABLE I: PROPERTIES OF THE DATASETS 

Dataset Size # of features # of classes 
COIL20 1440 1024 20 
UMIST  575 400 20 
USPS 9298 256 10 
Isolet 1560 617 26 

 
Including the proposed ICFS method, the compared 

unsupervised feature selection methods are summarized as 
follow. 
1) LapScore [14], which selects the features that have high 

level of locality preserving ability. 
2) MCFS [19], which selects the features by using spectral 

regression with ℓ 1- norm regularization. 
3) JELSR [17], which performs feature selection by 

jointing embedding learning with sparse regression. 
4) IC-MCFS, which uses the Laplacian Score  as the 

penalty parameter for the ℓ 1- norm of W in [19]. 
There are some parameters that should be set in advance. 

We set the number of nearest neighbors as k = 5 for all the 
compared methods. To fairly compare different unsupervised 
feature selection method, we tune the parameters from 
{10−6,10−4, ..., 106} . The number of selected features is 
ranged from 20 to 200. We report the best result of all the 
methods by using different parameters.  Each feature 
selection algorithm is first performed to select features. Then 
K-means is performed based on the selected features. We 
repeat K-means 20 times with random initializations and 
report the average results.  

We apply two widely used evaluation metrics, i.e., 
Accuracy (ACC) and Normalized Mutual Information 
(NMI), to evaluate the clustering results.  Given a clustering 
result C, c clusters and the ground truth label G, g clusters. 
Denote ic  as the index of the clustering result of ix  and ig  

as the ground truth label of ix . ACC is defined as 

                 ACC =
δ(gi, map(ci ))i=1

n∑
n

,                          (20) 

where δ(a, b) =1 if a = b and δ(a, b) = 0 otherwise, map(ci )
is the best mapping function that permutes clustering labels to 
match the ground truth labels using the Kuhn-Munkres 
algorithm. A larger value of ACC denotes a better clustering 
result. Denote nl

 as the number of data in the cluster Cl
 (

1≤ l ≤ c). Denote nh
'  as the number of data in the ground 

truth cluster Gh  (1≤ h ≤ g).  Let nl,h denote the number of 
data that are in the intersection between the clusters Cl

 and 

Gh . According to [25], NMI is defined as 

NMI =
nl,h log(n ⋅ nl,h / (nl ⋅ nh

' ))
h=1

g∑l=1

c∑
( nl log(nl / n))( nh

' log(nh
' / n)

h=1

g∑l=1

c∑ )
.      (21) 

A larger value of NMI denotes better performance. The 
largest value of NMI is 1, which occurs when all of the data 
points are assigned to their correct clusters. 

TABLE II: CLUSTERING RESULTS (NMI% ± STD) OF DIFFERENT FEATURE 
SELECTION METHODS 

Dataset LapScore MCFS JELSR IC-MCFS ICFS 

COIL20 
61.56 
± 4.21 

65.82 
± 5.86 

70.18 
± 5.23 

66.12 
± 5.72 

71.22 
± 5.68 

UMIST 
 56.76 
± 3.28 

64.83 
± 4.32 

70.98 
± 3.14 

65.14 
± 4.29 

71.33 
± 3.20 

USPS 
62.57 
± 3.21 

64.19 
± 5.12 

64.87 
± 4.78 

64.42 
± 5.14 

64.95 
± 4.80 

Isolet 
71.38 
± 2.01 

74.42 
± 1.94 

75.10 
± 2.35 

74.83 
± 2.36 

75.84 
± 2.42 

 
TABLE III: CLUSTERING RESULTS (ACC% ± STD) OF DIFFERENT FEATURE 

SELECTION METHODS 

Dataset LapScore MCFS JELSR IC-MCFS ICFS 

COIL20 
45.78 
± 6.26 

50.13 
± 5.22 

56.67
± 4.28 

50.85 
± 5.31 

57.23 
± 4.12 

UMIST 
 40.17 
± 2.15 

43.47 
± 3.39 

52.43 
± 2.15 

43.86 
± 3.42 

53.14 
± 2.35 

USPS 
60.47 
± 2.57 

61.01 
± 1.98 

61.27 
± 2.03 

61.08 
± 2.03 

61.92 
± 2.26 

Isolet 
56.46 
± 3.18 

60.83 
± 4.60 

61.52 
± 4.25 

61.16 
± 4.26 

62.02 
± 4.50 

 
We first compare the performance of different 

unsupervised feature selection methods. The experimental 
results in terms of NMI and ACC evaluation metrics are 
shown in Table II and Table III, respectively. We can see 
from the two tables that the proposed ICFS method performs 
better than the other methods. By the proposed framework, 
the selected features are with less redundancy and higher 
local preserving property. Note that JELSR also applies the 
LLE [22] method. The main difference between JELSR and 
ICFS is that ICFS has the Laplacian Score  as the 

penalty parameter for the - norm of W while JELSR has 
not. We compare JELSR with ICFS to show the efficiency of 
the proposed framework. To show that our framework is also 

L( fi )

L( fi )
ℓ 2,1
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efficient when the sparse constrain of W is in ℓ 1- norm, we 
also compare ICFS with IC-MCFS. From Table II and Table 
III we can see that the IC-MCFS method performs better than 
the MCFS method. The performance of MCFS is improved 
by applying the proposed framework. 

 

 
(a) COIL20 

 
(b) UMIST 

 
(c) USPS 

 
(d) Isolet 

Fig. 1. NMI of the clustering results on four datasets by varying the number 
of selected features. 

Fig. 1 shows the performance of the clustering results on 
the four datasets by varying the number of selected features. 
We can see from Fig. 1 that the proposed ICFS method 
performs better than other methods in most cases. Also, the 
IC-MCFS method performs better than the MCFS method. In 
Fig. 1, we show the performance of the clustering results by 
NMI evaluation metric. We do not show the performance of 
clustering results by ACC evaluation metric, since the trends 
of the performance by using the two evaluation metrics are 
very similar. The proposed ICFS method also performs better 
than other methods when ACC evaluation metric is applied. 

 

V. CONCLUSION 
In this paper, we propose a novel framework for 

unsupervised feature selection to balance the correlation and 
local preserving property of the selected features. Based on 
the framework, we use LapScore to calculate the weight of 
the individual feature, and use the LEE method as the 
embedded method, by which the selected features are with 
less redundancy and higher local preserving property. Many 
experimental results are provided to demonstrate the superior 
performance of the proposed framework. 
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