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Detecting Anomalous Data Using Auto-Encoders

Jerone T. A. Andrews, Edward J. Morton, and Lewis D. Griffin

Abstract—The most general mode of detecting anomalous
data would make no assumptions regarding them other than
their atypicality. For such a system, choosing features, to best
support the detection, is problematic. The hidden layer
representation of auto-encoder artificial neural networks is a
potential uncommitted solution to this. We have assessed these
features on a range of problems derived from two image
datasets, feeding the features into one-class Radial Basis
Function (RBF) v-Support Vector Machine (SVM) classifiers.
Our range of problems vary in diversity of the normal and
anomalous classes. Assessed across the range, we find the best
performing feature to be a late fusion of hidden layer
activations, residual error vectors and the raw input signals.
This improves upon the use of auto-encoder residual vector
error magnitude, which has previously been proposed for
anomaly detection.

Index Terms—Anomaly detection, auto-encoders, one-class
support vector machines.

I. INTRODUCTION

Anomalous data are loosely defined as data items that are
atypical relative to a normal class. However, the specific
scenario can influence which aspects of the data are
considered in making an evaluation of atypicality.
Consider, for example, a thermal imaging system used in a
mass transportation-screening context. We may wish to
detect people with abnormal body temperature patterns for
disease control, or we may wish to detect abnormal
temperature patterns across the body indicating concealed
threats, or we may wish to detect people with any kind of
abnormality as a way to direct visual inspection efficiently.
Here we are concerned with this third type of ‘neutral’
anomaly detection.

Many of the successes in pattern recognition and
classification are feature dependent, thus much effort is
placed on the engineering of representative features.
However, these approaches cannot be used when one only
has normal data. Instead, we propose to use features that are
directly learnt from the data without the need for labels.
Within the field of unsupervised feature learning, there are
two distinct routes one may follow: the first lies in
probabilistic graphical models, and the second in
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computational models, namely neural networks [1]. The
probabilistic approach requires a prior on the data
distribution, while the neural network does not; for this
reason, we consider the neural network approach.

Current solutions, fitting this description, typically
employ an unsupervised auto-encoder feed-forward artificial
neural network approach [2]-[9] and make anomaly
assessments based on the magnitude of the residual vector
(the difference between the network's input and output), as a
feature to be compared to a threshold. A single-layered auto-
encoder is composed of input and output layers of equal
cardinality, and a hidden layer that attempts to recreate the
inputs such that the outputs resemble the inputs. The
justification for this use of auto-encoders, for anomaly
detection, is that an auto-encoder trained solely on normal
samples should find it difficult to reconstruct the input
signal of an anomalous sample, hence yielding a large
residual magnitude to such configurations, since one expects
the latent characteristics of anomalous samples to deviate
from that of normal samples. In our work, we only use auto-
encoders with a single hidden layer. We do this in order to
reduce the computational expense of our system, since
‘deeper’ networks tend to be prohibitive [10] due to the need
for pre-training of each hidden layer separately.
Furthermore, there is the issue of the non-trivial choice of
network  architecture  selection  which requires
hyperparameter optimisation over a sizeable space of
possible configurations, where the number of possible
configurations grows exponentially as we increase the
number of hidden layers. Moreover, it is shown in [11] that
it is possible to attain state-of-the-art performance, in
CIFAR-10 and NORB vision tasks, using only ‘shallow’
single-layered networks. In addition, empirical evidence is
provided in [12] which shows shallower networks achieving
recognition rates that are competitive with their deeper
counterparts.
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Fig. 1. High complexity images (left), and low complexity images (right).

Now, imagine an image with a small residual magnitude,
without more qualification this may not be enough evidence
that the image is normal. If for example, our training set is
composed of images with high complexity, then it is
possible that the auto-encoder will find it easy to reconstruct
images that are anomalous in being of low complexity (see
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Fig. 1). That is, the magnitude of the residual vector of low
complexity images may be within the range for normal
samples.

A criticism of making anomaly assessments based solely
on the magnitude of the residual vector is the fact that the
residuals of each feature are summed to give a single value.
This may be an imprudent thing to do, since we are
disregarding which feature dimensions contribute to the
magnitude of the residual vector, and residuals in some
features may be more anomalous than in others. What is
more, current approaches of this type fail to make use of the
hidden representation, which has the potential to be a
competent feature vector in itself since it is capable of
learning first-order (low-level) features. Rather, we could
instead employ a classifier in place of a threshold, such that
we do not need to transform the residual vector into a single
value. Moreover, this allows us to use the input signal
vector, hidden representation, full residual vector, and their
combinations. Our hypotheses are thus:

1) Using only the magnitude of the residual vector is
under-utilising it for the task of anomaly detection: the
full vector will give improved performance.

The hidden layer representations of an auto-encoder are

effective ‘neutral’ features for anomaly detection.

Some anomalies may have abnormal

representations but normal residuals.

To test our hypotheses, we formed several test problems

using two different datasets: low-resolution X-ray images of

freight containers that may be empty or containing cargo,
and MNIST handwritten digits [13]. For each of the datasets
we constructed a range of test problems with combinations
of tight and diverse, normal and anomaly classes. In all
cases, we constructed the anomaly detection system on the
basis of the normal class only. Our system does make
minimal use of an anomaly set during classifier

2)

3) hidden

construction: we use it to choose a small number of
hyperparameters. This is a weakness that we intend to
remove in future work, but we note that it is quite different
from using an anomaly set to choose features or a two-class
feature space boundary.

Our results empirically support our hypotheses:
employing the full residual vector gives an improved
recognition rate over using the residual magnitude; the
hidden representation has benefits above using the input
signals and residuals; and the hidden representation together
with the residuals and input signal is superior to any of those
constituents alone. In addition, we compared a post-
classifier fusion technique and pre-classifier feature vector
concatenation. In the former, we built three separate
classifier models trained on the input signals, hidden
representations, and full residual vectors, and then combine
their label outputs, for each sample, in order to give an
anomaly score. Whereas in the latter, we concatenated the
input signals, hidden representations, and full residual
vectors to form new feature vector representations for
classifier model construction. The results show the post-
classifier fusion technique to be a workable alternative,
attaining higher recognition rates, particularly when
compared to pre-classifier feature vector concatenation.

Il. DATASETS

We used two datasets (see Fig. 2) to assess our anomaly
detection system: low-resolution X-ray images of freight
containers that may be empty or containing cargo; and
MNIST handwritten digits. For each dataset we constructed
a range of test problems with combinations of tight and
diverse, normal and anomaly classes. In all cases we
constructed the anomaly detection system on the basis of the
normal class only.

Fig. 2. Some typical samples from the two datasets: X-ray transmission images of non-empty freight containers (left), X-ray transmission images

of empty

freight containers (centre), and MNIST handwritten digits (right).

A. X-Ray Transmission Images of Freight Containers

This dataset consists of X-ray transmission images of
freight containers, obtained from a Rapiscan Eagle ®R60
rail car scanner. The scanner images individual rail cars
moving at speeds of up to 60km/h with 5.6mm pixels.

The dataset consists of 2560 images of freight containers
containing cargo (non-empty) and 2560 images of freight
containers containing no cargo (empty). All images vary due
to small differences in freight containers and their furniture,
while cargo images also vary in the cargo. We down-
sampled the images, for ease of experiment, to 32x9
pixels.

B. MNIST Handwritten Digits
This widely used dataset consists of handwritten digits O
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through 9, centred and scaled to similar size. We use the
full dataset of 70000 samples. Images were resized to
14x14 pixels.

C. Anomaly Detection Test Problems

Our six anomaly detection test problems derived from the
two datasets were:
1) Ftd. Normal class: empty freight containers (tight);
anomaly class: non-empty freight containers (diverse).
Fdt. Normal class: non-empty freight containers
(diverse); anomaly class: empty freight containers
(tight).
Mtt. Normal class: handwritten digits of {5} (tight);
anomaly class: handwritten digits of {2} (tight).
Mdt. Normal class: handwritten digits of odds {1, 3, 5,
7, 9} (diverse); anomaly class: handwritten digits of {2}

2)

3)

4)
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(tight).
Mtd. Normal class: handwritten digits of {5} (tight);
anomaly class: handwritten digits of evens {0, 2, 4, 6,
8} (diverse).
Mdd. Normal class: handwritten digits of odds {1, 3, 5,
7, 9} (diverse); anomaly class: handwritten digits of
evens {0, 2, 4, 6, 8} (diverse).
For each of these test problems, we sampled without
replacement the following sets:
Training set. 2048 images from the normal class.
Validation set. 2048 images from the anomaly class.
Testing set. 512 images from the normal class and
512 images from the anomaly class.

5)

6)

In this section, we will describe our anomaly detection
framework. Although our approach is quite general we will
focus on components suitable for images.

Our system performs the following steps given a set of p

ANOMALY DETECTION FRAMEWORK

training images Xppoon X
1) Learn a feature encoding, of the training images, using
an unsupervised sparse feed-forward neural network
auto-encoder.
Extract features for each image using the trained sparse
auto-encoder.
Train a one-class non-linear Radial Basis Function v -
Support Vector Machine (RBF SVM) [14], [15]
classifier to predict the label, normal or anomalous,
given the computed features.
Next, we will go on to describing the steps of our system
in finer detail.

2)

3)

A. Unsupervised Sparse Auto-Encoder Feature Learning

A single-layered auto-encoder is a type of feed-forward
artificial neural network with one hidden layer. An auto-
encoder is trained to reconstruct its input signal by finding
useful features from the input space. The auto-encoder
learns a map from input to representation, where the
representation consists of the activations of the m hidden

layer units. Concretely, given an input x € R", the auto-
encoder computes an output Y € R", via a hidden layer

representation f € R™. The hidden layer activations are
computed from the input according to f(x) =g(Wx+b,),
and the output layer from the hidden layer according to
y=9(W,f(x)+b,). Where W e R™ and W, € R™" are

weight matrices, b, € R™ and b, € R" are bias vectors, and

g(z)=1/(1+exp(-z)) is our chosen activation function

applied to the vector z component-wise.
Auto-encoders apply back-propagation,

W, W, ,b

2’
attempt to achieve y = X for the training data. If the hidden
layer has dimensionality not less than the input and output
layers (m=n) then it is trivial for the auto-encoder to
succeed in exactly reproducing its inputs, and nothing of use
is learnt. However, if the hidden layer activations are

for training
and b2, by means of gradient descent, in an
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encouraged to be sparse then its units are forced to learn
significant structures within the data. Imposing sparsity, we
have a minimisation problem of the form:

minimise{é:"xi i+ ﬂlzrl:KL(p”ﬁj)},
where KL(pH,aj) :pln(p/ﬁj)+(1—p)|n((1—p)/(l—ﬁj)) is

our sparsity penalty term, [)J. is the average activation over

(1)

the whole training set for hidden unit j, p is our (desired)
sparsity level parameter which we constrain [)j to

approximate, and £ is used to control the weight of the
sparsity penalty term.

TABLE I: SPARSE AUTO-ENCODER HYPERPARAMETER VALUES

Ftd Fdt Mitt Mdt Mtd Mdd
m 576 144 392 392 98 98
P 0.1 0.5 0.5 0.5 0.25 0.25
Vij 4 16 4 4 4 4
A 10* 10°° 10° 10° 10° 10°

Evidently, there are several hyperparameters associated
with the simple single-layered sparse auto-encoders we
employ: M (number of units in the hidden layer, excluding
the bias unit), A (weight decay) used during back-
propagation, o (sparsity level), and S (weight of sparsity
penalty term), which were all set to reasonable values based
on preliminary results for each test problem. For
reproducibility our chosen set of hyperparameter values,

{m,p,ﬂ,i}, are listed in Table | for each of the six anomaly
detection test problems.

B. Features

We use our sparse auto-encoder to compute several types
of features for use in anomaly detection:

Input (INP): X, (2

Hidden Representation (HR): f (x), (3)

Scalar Residual Magnitude (SRM): “x—y“l, (4)
Signed Residual (R): X—VY, (5)

Absolute Residual (AR): ‘X—y‘, (6)

Squared Residual (SR): (x—y)z, )
Normalised Signed Residual (NR): (x—y)/o—, and  (8)
Normalised Squared Residual (NSR): (x—y)z/az, 9)

where a:\/(llp)Z:_l(xk—yk)2 is the vector of root-

mean-square residuals between input and output across the
training set. All of the features set out above are vectors of
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dimension M, except for the scalar residual magnitude
feature.

C. One-Class RBF SVM Classification

Consider our set of training samples Xppon X and

suppose that these samples are drawn from a probability
distribution P, in the feature space. We apply a non-linear
one-class classification algorithm, namely a Radial Basis
Function v -Support Vector Machine, [14], [15] in an
attempt to estimate the support of this distribution.

This one-class formulation, of the standard two-class
SVM procedure, first transforms the feature vector via a
non-linear RBF kernel, where the origin is viewed as the
sole member of the unknown second class. The one-class
SVM gives a function h that outputs +1 in a region that
encompasses most of the training samples, and outputs —1
everywhere else.

The objective function to separate the training samples
from the origin of our one-class RBF SVM classifier is the
following quadratic programming minimisation task:

1 1<
Yol + 2 3e -

min, . . > ypa (10)

subject to:
(0-¢(x))2a-¢,Vi=1..,p, (11)
£>0,Vi=1..,p, (12)

where ¢ is a kernel mapping of X.into a dot product space
F. g is abias term, and v e (0,1) is an upper bound on the

fraction of the training samples that are considered to be
out-of-class and a lower bound on the fraction of training
samples used as Support Vectors (SVs).

Our decision rule, having solved the quadratic
programming minimisation problem using Lagrange
multipliers, is:

p
h(x) :sgn(zfxi K(x, xi)—qj, (13)
i=1
where the ¢ are the Lagrange multipliers, and
K (xi%;)=exp(~7-x,~x,[[).>0 (14)

is the RBF kernel with width parameter y.

There is no clear means in which to differentiate between
alternative one-class RBF SVM models, in the case of
classification accuracy ties, when testing on the validation
set. Therefore, we employ an ensemble composed of the
winning models and take the majority output as the class
label. Formally, our procedure for selecting hyperparameter
values for v and y is as follows:

1) Sample without replacement 1024 normal samples
from the training set.

2) Sample 512 normal samples from the training set and
512 anomalous samples from the validation set.
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3) Perform a grid-search over the hyperparameters, and
then select all (in the case of ties) hyperparameter tuples
that give rise to the highest classification accuracy, for
the samples in Step 2.

4) Go back to Step 1 and repeat this process twice more.

We now have a set of hyperparameter tuples {V, 7}. We

will train an ensemble of one-class RBF SVMs (using the
set of tuples {V,y}), on the entire training set of 2048

samples, such that they are now ready to predict the labels
of unseen test samples. We combine the label outputs of
each one-class RBF SVM, in the ensemble, by taking the
majority output as the predicted label of an unseen test
sample.

To be clear, we have made use of an anomaly set in order
to select hyperparameter values for our one-class RBF
SVMs. We emphasise that this is a deficiency within our
system, however we do not use the anomaly set to choose
features or a two-class feature space boundary. We aim to
remove the need for anomalous samples, for classifier
hyperparameter optimisation, in future work.

For this study, we utilised the readily available LIBSVM
toolbox (Version 3.20) [16], which is an integrated piece of
software with built-in distribution estimation (one-class
SVM).

IV. EXPERIMENTS AND ANALYSIS

Using our anomaly detection framework outlined in
Section I11, the experiments that are reported in this paper
are as follows:

1) We began by performing a comparison of the features,
(2)-(9), across all six test problems specified in Section
I11LA. From this it will be possible to evaluate which of
the features are better suited as representations for the
concept of normality. Furthermore, we may assess
whether anomalous samples, do in some cases, give rise
to abnormal auto-encoder features but normal residuals,
whilst others have abnormal residuals but normal auto-
encoder features.

Lastly, we performed a comparison of two different
ways of combining the best performing feature vectors,
namely:

Pre-classifier feature vector concatenation where we

combined the best feature vectors into a single new

feature vector.

Post-classifier fusion whereby a different sparse

auto-encoder is trained on each of the chosen feature

vectors separately and then we combined the results
of the various one-class RBF SVMs to determine
whether a sample is anomalous or not.

2)

A. Comparison of Features

Our experiments first considered the usefulness of the
features: (2)-(9). Table Il shows the classification accuracy
of each ensemble of one-class RBF SVMs, across the six
test problems, on the unseen testing sets described in
Section I1.C. There are several notable observations that can
be taken from Table II:
1) The hidden representation is on average the best
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performing feature vector across all six test problems,
and most notably it outperforms the raw input signal.
The best performing residual is the normalised signed
residual vector, most importantly showing itself to be
better than the scalar residual magnitude feature.

The normalised signed residual vector has superiority
over the hidden representation when the normal class is
tight or the anomaly class is diverse, exemplified in the
comparison of their scores for Ftd with Fdt. For Ftd the
hidden representation scores 94.43% while the
normalised signed residual vector scores 98.24% ; for
Fdt the scores are 92.99% and 73.34%, respectively.
for comparison of features

2)

3)

B. Feature Vector Combination

Having established that input features (2), hidden layer
features (3), and reconstruction errors—encoded as
normalised signed residuals (8)—are all sometimes
effective, but each on different problems, we then
considered the most effective means of combining them. We
compared pre-classifier feature vector concatenation and
post-classifier fusion using a combination of these three
features.

1) Pre-Classifier Feature Vector Concatenation (PRE)

1) Create combined feature vectors for the training data
comprised of the features derived from (2), (3), and (8)

by concatenation.

Scale feature dimensions so that each has zero-mean
and unit-variance across the training set.

Retrieve the predicted class labels for the testing set
given by the ensemble of one-class RBF SVMs trained
on normal data, with the combined feature vectors, and
take the mode of the predictions, for each sample, as the
label.

2) Post-Classifier Fusion (POST):

Retrieve the predicted class labels for the testing set
given by the ensemble of one-class RBF SVMs trained
on normal data with feature vectors of the form (2).
Then compute the mean label, for each sample, given
the predictions from the ensemble.

Repeat Step 1, but this time for feature vectors of the
form (3).

Repeat Step 1, but this time for feature vectors of the
form (8).

Compute the mean of the labels given by Steps 1--3,
then label a sample as normal if the output is positive,
otherwise label as anomalous.

The results in Table 111 show post-classifier fusion to be
superior to using any of the stand-alone feature vectors: (2),
(3), or (8). In contrast, pre-classifier feature vector
concatenation is on average the worst performing approach,
receiving the lowest classification accuracy.

2)

3)

1)

2)
3)

4)

TABLE |I: TEST CLASSIFICATION ACCURACY (%) ON THE TEST PROBLEMS (BOLD INDICATES THE HIGHEST ACCURACY WITHIN A ROW)

Test Problem INP HR SRM R AR SR NR NSR
Ftd 98.24 94.43 95.02 98.24 98.93 98.54 98.24 99.22

Fdt 80.37 92.99 81.15 55.08 48.14 50.78 73.34 48.44

Mtt 91.11 91.21 84.96 86.91 88.77 83.59 91.80 90.43
Mdt 86.23 85.06 70.70 79.69 81.35 78.71 83.40 80.08

Mtd 85.74 88.77 87.60 50.00 50.00 86.91 86.33 83.01
Mdd 78.52 75.29 80.66 50.00 50.00 70.12 75.59 74.80
Average 86.70 87.96 83.35 69.99 69.53 78.11 84.78 79.33

TABLE I11: TEST CLASSIFICATION ACCURACY (%) ON THE TEST PROBLEMS (BOLD INDICATES THE HIGHEST CLASSIFICATION ACCURACY WITHIN A ROw)
FOR FEATURE VECTOR COMBINATION

Test Problem INP HR SRM NR PRE POST
Ftd 98.24 94.43 95.02 98.24 98.24 97.66

Fdt 80.37 92.99 81.15 73.34 51.86 89.55

Mtt 91.11 91.21 84.96 91.80 92.19 92.29

Mdt 86.23 85.06 70.70 83.40 82.91 87.01

Mtd 85.74 88.77 87.60 86.33 86.82 89.75
Mdd 78.52 75.29 80.66 75.59 72.95 78.22
Average 86.70 87.96 83.35 84.78 80.83 89.08

V. SUMMARY

In this empirical study, on the detection of anomalous
data using auto-encoders, we have conducted several
experiments on a range of anomaly detection test problems.
Our experiments compared a selection of different feature
vectors derived from a sparse auto-encoder feed-forward
neural network. The empirical results appear to support our
hypothesis that there is indeed a better way to use residual
errors than simply computing the magnitude, and this is
most apparent when the normalised signed residual is
employed. Furthermore, the results suggest that the hidden
layer representation, as a stand-alone feature vector, is more
than capable of characterising the fundamental attributes of
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normality. Its competence is shown through it having the
highest average recognition rate amongst the stand-alone
feature vectors. The robustness of the hidden layer
representation is best illustrated in situations where the auto-
encoder does not struggle to reconstruct anomalous images,
and so gives rise to low residuals. For instance, in Fdt,
where we have a diverse normal class of high-complexity
non-empty cargo containers and an anomaly class of empty
cargo containers. In this test problem the auto-encoder is
able to reconstruct the low-complexity empty cargo
containers, despite having never been trained to do so.
However, the units of the hidden representation are activated
in an abnormal fashion, and as such we are able to identify a
greater number of anomalous images, as opposed to using
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the residuals to make a prediction. This differs from the
converse test problem, Ftd, where the class labels have been
swapped. We see in this case a performance increase across
all the feature vectors, since the auto-encoder finds it
difficult to encode a more-complex non-empty cargo
container image having been trained on empty cargo
containers, which are relatively homogeneous in
appearance. Nonetheless, the use of the normalised signed
residual, the hidden representation and the input signal work
effectively when all three are used in tandem and combined
using a post-classifier fusion. By doing this, we are able to
benefit from their individual anomaly detection capabilities,
that is, some anomalies may only be apparent in one of
those constituents.

Our aim in this work was to consider the problem of
anomaly detection without the knowledge of the anomaly
class. We note that we deviated from this aim at one stage:
we make use of an anomaly validation set to select
hyperparameters for one-class RBF SVMs. Whilst the use of
a validation set is not ideal, it is a component we aim to
remove in future work so as to move towards a truly
unsupervised system.
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