
  

 

Abstract—Image fusion is the process of combining 

information of interest in two or more images of a scene into a 

single highly informative image. Generally, the multi-resolution 

image fusion based on the wavelet transform performs better on 

diverse images than traditional methods. Therefore, a 

comparative study of wavelet-based image fusion with different 

wavelet families and fusion methods are far-reaching to guide 

people in their applications. On the other hand, in this paper, a 

novel fusion rule based on focus measure and local contrast 

measure is proposed to analyze the information in images and 

help selecting appropriate information from different source 

images to obtain a fused image. Experimental results on various 

wavelet functions and fusion rules demonstrate that the 

proposed fusion approach outperforms traditional methods in 

real images. 

 
Index Terms—Fusion rule, image fusion, local contrast 

measure, wavelet transform.  

 

I. INTRODUCTION 

The computer vision area is to simulate the human vision 

and the human brain to understand image, then carry out 

corresponding tasks. Therefore, acquired images from scenes 

containing all relevant objects in focus are significant for 

post-processes. However, during imaging, since the camera 

lens could only focus at a certain distance, some objects in the 

scene are out of focus and, thus, are blurred and not sharp 

enough. One solution to overcome this problem is image 

fusion, which could allow the integration of different 

information sources with different focus settings to extend the 

depth of field of an image. 

So far, several fusion algorithms have been proposed [1], 

[2], which are mainly performed at different levels of 

information representation: pixel-level, feature-level, and 

decision-level [3]. In pixel-level fusion, the data are 

combined at the pixel-level of the source images. In the 

feature-level fusion, the features are extracted from each 

source data and combined. In the decision-level fusion, the 

fusion is performed on decisions determined by such as 

statistical analysis, inference, or classification. 
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Currently, one widely used framework of image fusion 

works in multi-resolution analysis, which is generally 

generated by pyramid transform, wavelet transform, curvelet 

transform, etc. The discrete wavelet transform (DWT) is the 

most popular and important multi-scale decomposition 

method in image fusion, for it could provide more details in 

spatial domain and has shown a comparative better 

performance than other fusion methods [4]. 

A general procedure of the wavelet-based transform 

includes three steps [5]: first, decompose source images by 

applying a wavelet transform to obtain wavelet coefficients at 

different levels; then, combine wavelet coefficients at each 

decomposition level by a certain fusion rule; and, apply an 

inverse wavelet transform to obtain a fused image. 

Concerning the various methods developed for fusing 

various images from diverse areas, it is necessary to give a 

general assessment and analysis of the wavelet-based fusion 

methods. The results could be, then, used as a reference for 

selecting the fusion method for image fusion. Therefore, the 

purpose of this paper is to facilitate the understanding of 

wavelet-based fusion methods and to provide a review and 

comparison of the methods by introducing a selection of 

wavelet transforms and a group of different fusion rules. 

These methods are further analyzed and discussed according 

to a series of evaluation criteria. And some overall comments 

are given regarding the advantages and limitations of 

wavelet-based fusion. 

On the other hand, for an image fusion algorithm based on 

DWT, one of the essential things to improve fusion quality is 

the selection of fusion rules, which influences the 

performance of fusion algorithm remarkably [5]. Generally, 

the concerns of the fusion rules are different for low- and 

high-frequency subimages. For low-frequency coefficients, 

whether a coefficient at different decomposition levels 

in-focus or out-of-focus determines the clarity of a fused 

image. So, a novel local feature detection method-average 

energy of Laplacian (AEL) is proposed to be as the focus 

measure to select the coefficients from the clear regions of the 

source images. 

According to physiological and psychological research, the 

human vision system (HVS) is highly sensitive to the local 

image contrast. So, inspired by the local image contrast level 

measure [6], a novel local contrast measure (LCM) is 

proposed to select high-frequency coefficients by measuring 

the ratio of the high-frequency component of image to the 

local luminance of the background in this paper. The 

experimental results show that the proposed rule based on 

AEL and LCM outperforms traditional rules in terms of 

subjective assessment and objective criteria. 

The rest of this paper is organized as follows: Section II 
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briefly introduce the wavelet-based image fusion. Section III 

explains the proposed fusion rules. To assess the quality of 

fused images and evaluate the performance of different 

methods, a group of objective evaluation criteria are 

introduced in Section IV. Experimental results and 

performance analysis are demonstrated in Section V. Section 

VI presents the conclusion. 

 

II. WAVELET-BASED IMAGE FUSION 

A. Multi-resolution Decomposition 

The DWT is a tool for multi-resolution analysis which 

could be extended from one-dimensional (1-D) DWT to 

two-dimensional (2-D) DWT to handle 2-D image signals, 

then, used to represent image variations at different scales and 

orientations. During decomposing, the processes in the DWT 

include recursive filtering and subsampling. The 

decomposition will produce four subimages representing four 

frequency bands: one approximation image Low-Low (LL), 

and three detail images, such as Low-High (LH), High-Low 

(HL) and High-High (HH). The LL represents the 

low-frequency band, which is a smooth subimage of the 

multi-scale decomposition. Generally, it can be considered as 

a coarse and sub-sampled approximation of original image. 

The LH, HL, and HH subimages represent high-frequency 

bands, which describe the details in the horizontal, vertical, 

and diagonal orientations of the input image. 

After one-level decomposition, the multi-level DWT could 

further decompose these subimages. Generally, the next level 

decomposition is only applied to the LL band of the current 

decomposition stage, which will form a recursive 

decomposition procedure. Thus, N-level decomposition will 

finally generate 3N+1 frequency bands, which 

include 3N high-frequency bands and only one low-frequency 

band. The 2-D DWT will have a pyramid structure shown in 

the Fig. 1, which shows the structures of 2-D DWT with three 

decomposition levels. The frequency bands in higher 

decomposition levels will have smaller size due to 

subsampling [7]. 

 

 
Fig. 1. Pyramid hierarchy of decomposition based on 2-D DWT. 

 

B. Wavelet-Based Image Fusion 

A generic wavelet-based image fusion scheme is shown as 

follows in Fig. 2 [7]. The DWT is first applied on each source 

image to generate a fusion decision map is generated based on 

a set of fusion rules, where the fused wavelet coefficient map 

can be constructed from the wavelet coefficients of the source 

images according to the fusion decision map. Finally, the 

fused image is obtained by performing the inverse DWT. 

 
Fig. 2. Block diagram of a generic wavelet-based image fusion approach. 

 

III. PROPOSED FUSION TECHNIQUE 

As shown in Fig. 2, the key step in image fusion based on 

wavelet is that of coefficient combination, namely, the 

process of merge the coefficients in an appropriate way in 

order to obtain the best quality in the fused image [5]. An 

appropriate image fusion rule should preserve all the salient 

features of the source images and introduces as less artifacts 

or inconsistency as possible. In addition, the fusion algorithm 

should be reliable and robust to imperfections such as noise. 

In this article, we develop a novel multi-focus image scheme 

to incorporate into the image fusion technique. 

As described in Section II, the decomposed coefficients are 

composed by the low-frequency and high-frequency 

coefficients, which are generally dealt with separately. For 

example, an averaging fusion rule tends to merge the mean of 

the coefficients from source images, but this rule would blur 

images and reduce the contrast of features appearing in a 

fused image. Or, a maximum-selection fusion rule selects the 

largest absolute coefficient at each location from the input 

images as the coefficient at that location in the fused image. 

However, an image feature is not only composed and 

determined by a pixel. 

In this paper, we propose the following fusing rules applied 

to low- and high-frequency subimages: 

1) For low-frequency subimages, a novel focus measure 

based on average energy of Laplacian (AEL) is proposed 

to select clear coefficients. 

2) For high-frequency subimages, a new local contrast 

measure (LCM) is proposed to select sharp coefficients. 

A. Selection of Low-Frequency Subimage Coefficients 

Since the coefficients in the low-frequency subimage 

represent the approximation component of the source images, 

a focus measure checking whether a coefficient is in-focus or 

out-of-focus is necessary. Various focus measures, e. g. 

gradient-based measure, wavelet-based measure, 

statistics-based measure, etc., have been proposed to measure 

the variation of pixels [8], where Laplacian-based measure 

(LBM) can provide a better performance than others in most 

cases. In this paper, a new measure-average energy of 

Laplacian (AEL) based on LBM is proposed to select 

coefficients from the clear parts of the source images. 

The original expression of the energy of Laplacian (EOL) 

[10] is shown in Equation: 
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where f” represents the second-order derivative of the pixel at 

position (x, y) of image f, which could represent different 

frequency subbands, such as the approximation or the detail 

of the source images. 

However, the EOL only pays attention to vertical and 

horizontal orientations. From our former work [9], [10], all 

four orientations including vertical, horizontal, 45 degree, and 

135 degree, have to be examined to fully detect and localize 

image features. Therefore, a modified sum of Laplacian or 

second-order derivatives of image f is computed as: 
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In general, a focus measure will be only performed in the 

being processed pixel. However, as we stated above, the 

image feature will be not only decided by a single pixel. 

Therefore, the region-based AEL are used to be a clarity 

measure to determine whether a coefficient is in-focus or not. 

The proposed region-based AEL fusion rule is stated below: 
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where W(m, n) is a weight kernel, and the sum of the kernel 

should be one to normalize the region area. In this paper, the 

kernel size is set as 3×3. To highlight the center pixel of the 

window, the kernel is set as: 
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The AEL is used to as a focus measure to determine which 

coefficient is in focus, where pixels with larger values are 

more possible in-focus. Then, the proposed rule can select 

in-focus information from source images and put them into 

the fused image. The proposed AEL-based fusion rule is 

shown below: 

, ,1 ,1 ,2 ,2( , ) ( , ) ( , ),L L L

A F A A A Af x y w f x y w f x y            (5) 

where 

,1 ,1 ,1 ,2( , ) / ( ( , ) ( , ))L L L

A A A Aw AEL x y AEL x y AEL x y  ,    (6) 

,2 ,2 ,1 ,2( , ) / ( ( , ) ( , ))L L L

A A A Aw AEL x y AEL x y AEL x y  ,  (7) 

where f1 (x, y) and f2(x, y) represent different source images. A 

represents the approximation image of the source image after 

Lth decomposition. L denotes the Lth decomposition level. w1 

and w2 represent different weights for associated source 

images, respectively. F means the fused image. 

B. Selection of High-Frequency Subimage Coefficients 

The coefficients in the high-frequency subimages describe 

the detail component of the source images, which are 

generally considered as representing salient features such as 

edges, boundaries, etc. In general, during fusion, the 

coefficients in the fused image are the coefficients having 

larger absolute value from each high-frequency subimage. 

But, as we stated above, the image features are determined 

by a group of pixels [9], [10]. Therefore, the value of a single 

pixel is not robustly to determine which pixel belongs to the 

sharp part of the subimage. On the other hand, the 

physiological study shows that the HVS is highly sensitive to 

the local image contrast level, which could be defined as the 

ratio of the local graylevel variation and the local brightness 

of the background [6]. 

Therefore, the LCM is proposed based on this 

physiological study in this paper. The local graylevel 

variation will be denoted by the region-based AEL, for it can 

effectively represent the salient features or sharp boundaries 

of an image. Pixels with larger values of the AEL are more 

possible in-focus. And, the local brightness of the background 

is represented as the low-frequency component in the 

low-frequency subimages. The local brightness of the 

background will be represented as the mean of a 3×3 area. 
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where the local are size m×n is set as 3×3. D represents the 

detail image in the horizontal, vertical, or diagonal orientation 

of the original image after Lth decomposition. A represents 

the approximation image of the image after Lth 

decomposition. L denotes the Lth decomposition level. 

Therefore, the proposed selection rule for the 

high-frequency coefficients in associated subimages is the 

same as the low-frequency coefficients shown above, except 

that the values of AEL should be computed based on every 

detail images, which is shown below:  

, ,1 ,1 ,2 ,2( , ) ( , ) ( , ),L L L

D F D D D Df x y w f x y w f x y           (10) 

where 

,1 ,1 ,1 ,2( , ) / ( ( , ) ( , ))L L L

D D D Dw LCM x y LCM x y LCM x y  ,   (11) 

,2 ,2 ,1 ,2( , ) / ( ( , ) ( , )))L L L

D D D Dw LCM x y LCM x y LCM x y  ,   (12) 

where a larger value of the local contrast measure means more 

high frequency information. Consequently, the proposed rule 

is to extract more useful details from the source image having 

larger local contrast and put them into the fused image. 

 

IV. OBJECTIVE EVALUATION CRITERIA 

It is a challenge to assess the performance of image fusion 

as the ground-truth is not available in most of cases. For 

exhaustive study, several classical evaluation criteria shown 

in different literatures [11], [12] are used in this paper, which 

are listed as follows: 

1) Mean [12]: average pixel intensity measures image 

brightness. 

2) Standard deviation (STD) [12]: square root of the 
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graylevel variance reflects image contrast. 

3) Root-mean-square (RMSE) [11] measures of the 

differences between the fused image and the source 

image. 

4) Peak signal to noise ratio (PSNR) [11]: a term for the 

ratio between the maximum value of a signal and the 

power of distorting noise. 

5) Average gradient (AG) [12] measures a degree of clarity 

and sharpness. 

6) Entropy (H) [12] estimates the amount of information 

presenting in the image. 

 

 
Fig. 3. The best results of “Balloon”: (top-row-left) first source image; 

(top-row-middle) second source image; (top-row-right) haar wavelet, DL = 1; 

(second-row-left) db2 wavelet, DL = 1; (second-row-middle) sym3 wavelet, 

DL = 1; (second-row-right) coif1 wavelet, DL = 1; (bottom-row-left) bior1.3, 

DL = 1; (bottom-row-middle) rbior1.3 wavelet, DL = 1; and 

(bottom-row-right) dmey wavelet, DL = 1. 

 

 
Fig. 4. The best results of “Table”: (top-row-left) first source image; 

(top-row-middle) second source image; (top-row-right) haar wavelet, DL = 2; 

(second-row-left) db20 wavelet, DL = 1; (second-row-middle) sym2 wavelet, 

DL = 1; (second-row-right) coif1 wavelet, DL = 2; (bottom-row-left) bior1.5, 

DL = 2; (bottom-row-middle) rbior1.5 wavelet, DL = 2; and 

(bottom-row-right) dmey wavelet, DL = 2. 

 

V. EXPERIMENTAL RESULTS 

So far, plenty of image fusion algorithms have been 

proposed by researchers, but there is not an universally 

accepted standard method emerged for diverse applications or 

environments. As same as other subareas in image processing, 

a quantitative study and comparison is significant to help 

people initially selecting an appropriate method in their 

specific application. Therefore, a platform assessing the 

performance of the image fusion algorithm, which includes 

diverse images, different decomposition methods, various 

fusion rules, and several evaluation criteria, is an exciting 

research. Experimental tests are carried out on various 

standard test pairs of multi-focus, medical, and multi-spectral 

images acquired from imagefusion.org. In this paper, more 

attention is paid to an ideal image pair “Balloon”, two 

multi-focus pairs “Table” and “Flower”, and one 

multi-spectral pair “Gun” due to limited pages. Also, due to 

the same reason, the rest of the paper mainly focuses on the 

performance of different wavelet families, decomposition 

levels (DL), fusion rules, and evaluation criteria in this paper. 

 

 
Fig. 5. The best results of “Flower”: (top-row-left) first source image; 

(top-row-middle) second source image; (top-row-right) haar wavelet, DL = 2; 

(second-row-left) db2 wavelet, DL = 2; (second-row-middle) sym3 wavelet, 

DL = 2; (second-row-right) coif1 wavelet, DL = 2; (bottom-row-left) bior1.3, 

DL = 2; (bottom-row-middle) rbior1.3 wavelet, DL = 2; and 

(bottom-row-right) dmey wavelet, DL = 2. 

 

 
Fig. 6. The best results of “Gun”: (top-row-left) first source image; 

(top-row-middle) second source image; (top-row-right) haar wavelet, DL = 3; 

(second-row-left) db2 wavelet, DL = 3; (second-row-middle) sym3 wavelet, 

DL = 3; (second-row-right) coif1 wavelet, DL = 4; (bottom-row-left) bior2.2, 

DL = 3; (bottom-row-middle) rbior1.3 wavelet, DL = 3; and 

(bottom-row-right) dmey wavelet, DL = 3. 

 

A test strategy is designed according to the following steps: 
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A. Perform a Comparative Study for Different Wavelet 

Families 

The wavelets families used in our study are: Haar, 

Daubechies (dbN, N = 1…20), Symlets (symN, N = 1…20), 

Coiflets (coifN, N = 1…5), Biorthogonal (bior (M, N), M = 

1…6, N = 1…9), Reverse Biorthogonal (rbior (M, N), M = 

1…6, N = 1…9), and Discrete Meyer (Dmey). We first select 

the member of each family with the best results by human 

perception and this member is used as the representative 

member for this family. Then, different wavelet families 

could be compared against other methods. When comparing 

different wavelet families, the paper only focuses on their 

performance in our proposed rules. More discussions on their 

effects for different image fusion rules may be introduced in 

later work. Besides different wavelet functions, the best 

decomposition level (DL) for different wavelet functions and 

families is also examined. 

 
TABLE I: “BALLOON” BEST RESULTS FOR DIFFERENT WAVELET FUNCTION 

AND DECOMPOSITION LEVEL 

Name DL Mean STD RMSE PSNR AG H 
haar 1 113.37 47.93 15.89 60.81 9.494 7.47 

db2 1 112.90 48.01 15.95 60.74 9.505 7.48 

sym3 1 113.38 47.94 15.88 60.83 9.51 7.47 

coif1 1 113.37 47.94 15.90 60.81 9.51 7.47 

bior1.3 1 113.37 47.95 15.90 60.80 9.50 7.47 

rbior1.3 1 113.37 47.93 15.89 60.82 9.51 7.47 

dmey 1 112.95 48.05 15.96 60.74 9.53 7.48 

 
TABLE II: “TABLE” BEST RESULTS FOR DIFFERENT WAVELET FUNCTION 

AND DECOMPOSITION LEVEL 

Name DL Mean STD RMSE PSNR AG H 
haar 2 97.47 46.44 23.06 54.84 7.66 7.29 

db20 1 97.35 46.69 23.68 54.52 7.73 7.31 

sym2 1 97.49 46.56 23.60 54.46 7.77 7.31 

coif1 2 97.45 46.42 23.05 54.85 7.67 7.29 

bior1.5 2 97.43 46.43 23.11 54.78 7.70 7.29 

rbior1.5 2 97.46 46.41 23.03 54.87 7.66 7.30 

dmey 2 97.44 46.39 23.02 54.90 7.66 7.29 

 

TABLE III: “FLOWER” BEST RESULTS FOR DIFFERENT WAVELET FUNCTION 

AND DECOMPOSITION LEVEL 

Name DL Mean STD RMSE PSNR AG H 
haar 2 113.41 51.17 23.74 53.62 6.25 7.42 

db2 2 113.40 52.21 23.82 53.54 6.16 7.42 

sym3 2 113.36 52.24 23.83 53.55 6.15 7.42 

coif1 2 113.38 52.21 23.79 53.59 6.17 7.42 

bior1.3 2 113.38 52.26 23.90 53.50 6.27 7.43 

rbior1.3 2 113.37 52.17 23.76 53.60 6.13 7.41 

dmey 2 113.40 52.27 23.82 53.55 6.13 7.42 

 
TABLE IV: “GUN” BEST RESULTS FOR DIFFERENT WAVELET FUNCTION AND 

DECOMPOSITION LEVEL 

Name DL Mean STD RMSE PSNR AG H 
haar 3 36.55 35.56 82.53 31.70 22.56 6.41 

db2 3 36.66 36.19 83.06 31.60 23.63 6.29 

sym3 3 36.55 36.27 83.12 31.58 23.88 6.28 

coif1 4 34.76 34.87 79.66 32.30 23.06 6.26 

bior2.2 3 36.35 36.13 82.84 31.64 23.96 6.26 

rbior1.3 3 36.55 35.84 82.93 31.61 22.08 6.38 

dmey 3 36.50 36.37 83.32 31.53 23.68 6.30 

 

The results of “Balloon”, “Table”, “Flower”, and “Gun” 

representing the best result of each wavelet family are shown 

in Figs. 3, 4, 5, and 6. The subjective (visual) analysis is 

included in the performance evaluation step, for the goal of 

image fusion is to enhance comprehensive, accurate, and 

stable information to make that the fused image is more 

suitable for human perception. There are three criteria that are 

used widely in the literature: (1) information transferred from 

each individual image to fused image, (2) information lost 

from the source images, and (3) artifacts introduced due to 

fusion. Besides subjective analysis, the objective 

performance measures stated in Section IV are shown in 

Tables I, II, III, and IV for associated figures. Generally, 

higher value of these metrics, the quality of the fused image is 

considered as better, except the RMSE. In these tables, the 

highest values are bolded, except that the lowest values of the 

RMSE are bolded. 

For these ideal images no matter tested in our experiments 

or in other researchers’ work, they are created by locally 

smoothing by some filters, such as Gaussian filter based on 

one reference image. A group of images from one reference 

image have different, not overlapped, filtered areas. 

Therefore, they could be used  to  test  the algorithm of the 

image fusion. But, for these ideal images, the differences 

among different wavelet families, wavelet lengths, and 

decomposition levels are hardly to be discerned by human 

vision (Fig. 3), although there are very small differences in 

their objective evaluation criteria in Table I. For example, for 

“Balloon” image, dmey owns the highest value in standard 

deviation, gradient, and entropy, and sym3 has the best 

performance in the rest criteria. 

 

 
Fig. 7. The best results of “Balloon” (haar wavelet and DL = 2) with different 

fusion rules: (top-row-left) 1a; (-middle) 1b; (-right) 1c; (second-row-left) 1d; 

(-middle) 1e; (-left) 2a; (third-row-middle) 2b; (-left) 2c; (-middle) 3; (-right) 

4; (bottom-row-left) 5; (-middle) 6; and (-right) 7. 

 

When entering into the area with real images, a challenge 

here is that the size of objects are changed due to focus 

varying. Therefore, firstly, the fusion algorithm should 

carefully work at the boundaries of objects to reduce abrupt 

changes, such as artifacts, since these boundaries have been 
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extended from a simple edge, like a line signal, to an intensity 

ramp profile [10]. Secondly, for those flat areas, the fusion 

algorithm has to keep the local information intact, without 

information mingled from other sources. 

 

 
Fig. 8. The best results of “Table” (haar wavelet and DL = 2) with different 

fusion rules: (top-row-left) 1a; (-middle) 1b; (-right) 1c; (second-row-left) 1d; 

(-middle) 1e; (-left) 2a; (third-row-middle) 2b; (-left) 2c; (-middle) 3; (-right) 

4; (bottom-row-left) 5; (-middle) 6; and (-right) 7. 

 

Different from ideal image, different wavelet functions and 

decomposition levels significantly affect the results of the 

image fusion for real images, such as “Table”, “Flower”, 

“Gun”, etc. 

In Fig. 4, Db20 has the best performance by human 

perception and the highest STD (Table II). However, sym2 

has the best results in Mean, AG, and H criteria. For RMSE 

and PSNR, dmey owns better performance than others. 

However, the artifacts in its result are more evident than 

others. 

In Fig. 5, it is hard to determine the better wavelet functions 

by human perception, although their blurriness and artifacts 

are different. Also from Table III, there does not exist any 

wavelet function, which could demonstrate the best 

performance in all objective criteria. 

The image “Gun” is used to test the algorithm for 

multi-spectral fusion. The result of bior2.2 is the best by 

human vision in Fig. 6. The db02 also works well. The result 

of haar wavelet is much worse than bior2.2, but its H is the 

best in Table IV. The output of bior2.2 has good performance 

in AG. The result of coif1 is close to the result of bior2.2, 

which also has best performance shown in RMSE, and PSNR. 

The results stated above suggest that all evaluation criteria 

shown in this paper may work well for some kinds of images, 

but may not for other kinds. As discussed above, one wavelet 

function shows good performance judged by human vision, 

but its visual quality may not be considered as the best one by 

statistical results. For different images, the wavelet function 

having the best performance by subjective evaluation or 

objective evaluation is different. The worst part is that the 

wavelet family could be kept as the same for different images. 

So far, a conclusion could not be drawn that one wavelet 

family or one specific wavelet function is general for various 

applications. But, for most cases, the wavelet functions 

having smaller length work better than these functions with 

longer length. The smaller length also means fewer 

calculations during convolution. For the decomposition level, 

the results suggest the level 2 may be the best choice. Once the 

decomposition level is higher than 3, the blurriness and the 

artifacts in the fused results will be largely increased. A few 

images work well at level 1 or 3, but the level 2 shows the best 

result for most images and wavelet functions. 

B. Comparison of Different Fusion Rules 

As we stated in the Section III, the fusion rule is an 

important step in the image fusion. So, various alternatives are 

compared in this paper, which are as follows: 

1) Averaging fusion rule for low-frequency subimages, and 

for high-frequency subimages: 

a) maximum-selection fusion rule is used to select the pixel 

with larger absolute value [13]. 

b) The pixel from a source image having larger standard 

variance calculated based on its 3×3 neighbors is used to 

be the value in the fused image in the same location [14]. 

c) The pixel from a source image having larger energy 

calculated based on its 3×3 neighbors is used to be the 

value in the fused image in the same location [15]. 

d) The pixel from a source image having larger standard 

deviation calculated based on its 3×3 neighbors with their 

absolute values is used to be the value in the fused image 

in the same location [16]. 

e) The pixel from a source image having more number of 

larger values, e.g. 5, based on its 3×3 neighbors with their 

absolute values is used to be the value in the fused image 

in the same location [17]. 

2) Gradient-based fusion rule: it includes different 

variations such as pixel-, region- and 

global-gradient-based rule [18]. For low-frequency 

subimages, averaging fusion rule is applied to combine 

the information from all source images. For 

high-frequency subimages, 

a) The pixel-gradient-based method will use the weighted 

value based on the gradient value of the pixel in the same 

location from source image HH bands.  

b) The only difference in the region-gradient-based method 

is that it uses the weight based on the 3×3 neighbors of 

the being processed pixel. 

c) The global-gradient-based method is almost the same as 

the region-gradient-based method, except that the 

weights will be calculated from all three high-frequency 

bands, not only HH bands. 

3) For low-frequency subimage, the pixel from a source 

image having lower energy calculated based on its 3×3 

neighbors is used to be the value in the fused image in the 

same location, and for high-frequency subimages, the 

pixel from a source image having larger energy 
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calculated based on its 3×3 neighbors is used to be the 

value in the fused image in the same location [19]. 

4) For low-frequency subimage, weighted averaging rule 

based on the energy of the 3×3 neighbors from different 

source images is used, and for high-frequency 

subimages, the value of a pixel from a source image 

having larger absolute is used to be the value in the fused 

image in the same location [20]. 

5) Activity measurement: it is based on the statistical 

quantities of local windows of size 3×3. For 

low-frequency subimage, the pixel from a source image 

having larger mean and standard deviation calculated 

based on its 3×3 neighbors is used to be the value in the 

fused image in the same location, and for high-frequency 

subimages, the pixel from a source image having larger 

standard variance calculated based on its 3×3 neighbors 

is used to be the value in the fused image in the same 

location [11]. 

6) Pixel significance: it adds the coefficient at the current 

decomposition level and all his children and 

grandchildren coefficients produced during higher-level 

decompositions in the same location together from 

different source images to do weight averaging for all 

low- and high-frequency bands [12].  

7) The proposed rule based on the AEL and the LCM. 

In all, all 13 fusion rules are compared with various images. 

 

 
Fig. 9. The best results of “Flower” (haar wavelet and DL = 2) with different 

fusion rules: (top-row-left) 1a; (-middle) 1b; (-right) 1c; (second-row-left) 1d; 

(-middle) 1e; (-left) 2a; (third-row-middle) 2b; (-left) 2c; (-middle) 3; (-right) 

4; (bottom-row-left) 5; (-middle) 6; and (-right) 7. 

 

In our experimental tests of different fusion rules, the 

wavelet function and the DL are set as the same. For example, 

the wavelet function will be set as haar, db2, db6, etc. The DL 

is set as 2, which is the optimal one achieved in the former 

section. Then, all the fusion rules are compared based on their 

results generated from different images. 
 

 
Fig. 10. The best results of “Gun” (haar wavelet and DL = 3) with different 

fusion rules: (top-row-left) 1a; (-middle) 1b; (-right) 1c; (second-row-left) 1d; 

(-middle) 1e; (-left) 2a; (third-row-middle) 2b; (-left) 2c; (-middle) 3; (-right) 

4; (bottom-row-left) 5; (-middle) 6; and (-right) 7. 

 

The group one has different variants. The 1a is the most 

popular one and is considered as one simple and general rule, 

which could achieve good effects in image fusion for most 

images. During our tests, all these variants in the group one 

have almost same performance with good fusion performance 

except generating artifacts and causing blurriness. However, 

the rule 1d cannot successfully fuse image and should be not 

considered as one rule option in the wavelet-based image 

fusion. The rule 1b should be not considered as an appropriate 

rule too, since it will bring obvious errors such as artifacts 

even for ideal fusion images, such as “balloon”. For all other 

methods, their results are almost the same for ideal fusion 

images without any obvious artifacts. Therefore, the 1a could 

be still considered as a representative in this group. 

Comparing with these methods in the group one, the propose 

rule could further reduce artifacts and produce more smooth 

transitions at boundaries but less blurriness. 

For those gradient-based fusion rules in the group two, the 

region- and global-based rules are obviously better than the 

pixel-based rule due to higher contrast and sharpness, and 

lower blurriness. The region- and global-based are very close. 

The global-gradient-based is slightly better in most cases, but 

it has more blurriness and artifacts than the proposed rule 7. 

Both rules 3 and 4 consider energy as a parameter to select 

an appropriate coefficient. In comparisons, their results have 

more artifacts than our proposed rule 7. The rule 3 generates 
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lots of artifacts in some images above average results. 

Therefore, it is also not recommended as a rule in the fusion. 

The advanced rules 5 and 6 are more complicated 

algorithms than other rules shown above. The rule 5 is more 

like a combination with some basic rules in group one, but it 

doesn’t further improve the overall performance. It will 

improve the contrast in the boundaries, but the artifacts are 

also higher than traditional methods. The rule 6 generally 

generates little more artifacts and more blurriness than the 

proposed rule 7. But, for some images, the rule 6 is better than 

our proposed rule 7 due to less artifacts. 
 

TABLE V: “BALLOON” BEST RESULTS FOR DIFFERENT FUSION RULES WITH 

HAAR WAVELET AND DECOMPOSITION LEVEL 2 

Rule DL Mean STD RMSE PSNR AG H 
1a 2 113.23 47.47 15.74 60.87 9.64 7.47 

1b 2 113.23 47.37 15.77 60.79 9.48 7.47 

1c 2 113.23 47.42 15.73 60.89 9.53 7.47 

1d 2 113.23 46.09 15.67 60.83 6.7 7.45 

1e 2 113.23 47.25 15.68 61.00 9.52 7.46 

2a 2 113.22 46.68 13.69 62.86 7.92 7.45 

2b 2 113.22 47.07 14.26 62.58 8.91 7.46 

2c 2 113.22 46.99 14.01 62.87 8.82 7.46 

3 2 112.99 46.80 16.84 59.50 9.60 7.45 

4 2 113.23 47.50 15.73 60.88 9.64 7.47 

5 2 113.40 47.79 16.15 60.35 9.56 7.47 

6 2 113.28 47.14 13.74 63.37 8.69 7.46 

7 2 113.31 47.67 15.39 61.39 9.40 7.48 

 

TABLE VI: “TABLE” BEST RESULTS FOR DIFFERENT FUSION RULES WITH 

HAAR WAVELET AND DECOMPOSITION LEVEL 2 

Rule DL Mean STD RMSE PSNR AG H 
1a 2 97.90 45.52 22.01 54.90 8.12 7.27 

1b 2 97.90 45.31 22.00 54.92 7.56 7.26 

1c 2 97.90 45.43 21.96 54.99 7.82 7.27 

1d 2 97.90 43.97 22.24 54.55 4.95 7.19 

1e 2 97.90 45.28 22.10 54.75 7.83 7.26 

2a 2 97.89 44.76 20.33 56.17 6.40 7.23 

2b 2 97.88 44.93 20.30 56.33 6.65 7.24 

2c 2 97.88 44.99 20.34 56.28 6.76 7.24 

3 2 95.63 45.86 25.99 51.85 8.29 7.27 

4 2 98.15 45.46 22.12 54.79 8.12 7.27 

5 2 97.64 46.10 24.08 53.61 7.85 7.30 

6 2 97.90 45.32 20.97 55.96 6.85 7.26 

7 2 97.47 46.44 23.06 54.84 7.66 7.29 

 
TABLE VII: “FLOWER” BEST RESULTS FOR DIFFERENT FUSION RULES WITH 

HAAR WAVELET AND DECOMPOSITION LEVEL 2 

Rule DL Mean STD RMSE PSNR AG H 
1a 2 113.22 50.65 20.50 55.88 6.61 7.39 

1b 2 113.23 50.38 20.52 55.84 5.89 7.38 

1c 2 113.22 50.60 20.49 55.89 6.38 7.38 

1d 2 113.23 49.81 20.52 55.84 4.49 7.36 

1e 2 113.22 50.47 20.49 55.88 6.36 7.38 

2a 2 113.21 50.22 19.22 57.00 5.05 7.37 

2b 2 113.21 50.31 19.31 56.93 5.24 7.37 

2c 2 113.21 50.38 19.56 56.69 5.53 7.37 

3 2 109.58 50.81 25.90 51.78 7.06 7.39 

4 2 113.78 50.53 20.75 55.67 6.63 7.39 

5 2 113.25 51.79 24.05 53.18 6.42 7.42 

6 2 113.25 50.53 20.28 56.20 5.50 7.38 

7 2 113.40 52.17 23.74 53.62 6.25 7.41 

 

Partial experimental results are shown in Figs. 7, 8, 9, and 

10. Their statistical results are demonstrated in Tables V, VI, 

VII, and VIII, which show that the best fusion rule 7 doesn’t 

achieve the best performance based on all statistical criteria. 

In all, during image fusion, a balance has to be always 

determined among details, contrast, and artifacts during 

design. So far, the same as other areas in computer vision, 

human perception still acts as a critical tool for image fusion. 

Therefore, a more appropriate criteria based on the local area 

information to assess the performance of image fusion 

technologies is an important task to be explored in the future. 

 
TABLE VIII: “GUN” BEST RESULTS FOR DIFFERENT FUSION RULES WITH 

HAAR WAVELET AND DECOMPOSITION LEVEL 2 

Rule DL Mean STD RMSE PSNR AG H 
1a 3 26.78 27.59 61.25 36.85 26.3 5.77 

1b 3 26.35 26.05 59.95 37.21 24.5 5.85 

1c 3 26.63 27.19 61.09 36.89 25.2 5.78 

1d 3 25.31 20.91 55.70 38.47 11.9 6.03 

1e 3 26.58 26.88 60.75 36.98 24.8 5.79 

2a 3 25.48 23.06 56.52 38.22 14.7 5.98 

2b 3 25.89 24.21 56.07 38.38 21.8 5.82 

2c 3 26.08 25.06 57.44 37.96 22.9 5.80 

3 3 14.50 20.94 51.38 40.13 19.9 4.39 

4 3 40.31 36.87 86.59 30.93 28.1 6.13 

5 3 29.30 31.97 72.85 33.81 24.4 5.93 

6 3 36.35 31.87 75.70 33.27 23.9 6.17 

7 3 36.55 35.56 82.53 31.70 22.6 6.41 

 

VI. CONCLUSIONS 

The image fusion technique is going to integrate 

complementary information from different source images 

together to provide more complete information for 

post-processing, which has been applied in diverse areas, such 

as remote sensing, astronomy, medical imaging, security, 

surveillance, etc. During fusing, a tradeoff between 

preserving salient features and reducing artifacts has to be 

carefully balanced. In this paper, more discussions are 

demonstrated on wavelet-based image fusion.  

Since each wavelet-based fusion algorithm has its own set 

of advantages and limitations, more comprehensive testing in 

order to fully assess under what conditions each algorithm is 

more appropriate is significant. Therefore, in this paper, a 

platform of wavelet-based image fusion has been built, which 

includes different wavelet families, image fusion rules, and 

statistical evaluation criteria, which could be used to assess, 

and more importantly, select appropriate method for a 

specific fusion task. In this paper, a review and comparison of 

different wavelet families, decomposition levels, image 

fusion rules, and evaluation criteria is provided. The future 

work will include introducing more methods into current 

platform and make it more generic. More importantly, 

discussions of wavelet-based image fusion on some specific 

area might discover some more solid regularity. 

Besides the comparison, a new fusion rule for the image 

fusion based on DWT is proposed to measure the extent of 

clarity and local contrast, where two proposed measures AEL 

and LCM are designed based on detecting image features. 

During fusing, the weighted averaging fusion scheme is used 

to reduce the artifact occurring at the boundaries of objects. 

Experimental results show that the proposed fusion rule 

outperforms than tradition rules. The future work will include 

developing new fusing scheme instead of the weighted 

averaging fusion to further improve the local contrast of 

image, but suppress the artifacts. 
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