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Abstract—Extreme learning machine (ELM) has attracted 

increasing attention recently with its successful applications in 

classification and regression because it outperforms 

conventional artificial neural networks (ANN), and support 

vector machines (SVM) in some aspects. ELM provides a 

robust learning algorithm, free of local minima, without 

overfitting problems and less dependent on human 

intervention than the above methods. ELM is appropriate for 

the implementation of intelligent autonomous systems with 

real-time learning capability. Moreover, a number of complex 

industrial applications demanding a high performance solution 

could benefit from this approach.  

This work proposes the modelling of a real complex 

cogeneration plant with the aim of obtaining higher energy 

production with a lower cost (i.e. maximum energy efficiency) 

using ELM. The accuracy and training time of the ELM-based 

model are compared with the results obtained using BP-ANN 

and SVM. ELM training is significantly faster than SLFNs and 

SVM while preserving the same accuracy level. 

 
Index Terms—Modelling, extreme learning machine, 

cogeneration, efficiency. 

 

I. INTRODUCTION 

Artificial neural networks (ANN) have been widely used 

in a variety of engineering applications over the last two 

decades due to their ability: (1) to approximate complex 

nonlinear mappings directly from the input/output samples, 

and (2) to provide models for a large class of natural and 

artificial phenomena that are difficult to handle using 

classical parametric techniques. Many of these applications 

are based on single hidden-layer feedforward network 

topologies and gradient-descent training methods (GDM), 

mainly traditional backpropagation (BP) algorithm. 

Although BP-based ANNs have been successfully applied 

to solve numerous problems, as much for classification [1] 

as for regression applications [2], they present some 

drawbacks that make them unsuitable for an increasing 

number of cutting-edge applications. It is well known that 

the design of BP based ANNs is a time-consuming task that 

depends on the skills of the designer to obtain effective 

solutions. The designer has to select the most suitable 

network parameters, optimize the parameters to avoid 
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overfitting, and be aware of local minima. As a 

consequence, applications requiring autonomy (i.e. no 

human intervention) are difficult to manage using this 

approach. Another mature machine learning technique is 

support vector machine (SVM) introduced by Vapnik [3]. 

SVM is free of local minimum, and is able to improve the 

generalization performance of traditional ANNs for some 

important application domains (e.g. machine vision, 

handwritten character recognition, medicine and 

bioinformatics applications, among others). However, they 

present some drawbacks as a time-consuming training 

algorithm difficult to tune without human intervention. 

Extreme learning machine (ELM) is a novel learning 

algorithm for training single hidden-layer feedforward 

neural networks (SLFNs) [4], [5]. It randomly chooses the 

input weights of the hidden-layer neurons and analytically 

determines the output weights through simple matrix 

computations, therefore featuring a much faster learning 

algorithm than most popular learning methods such as back-

propagation [6]. ELM is based on a simple tuning-free 

algorithm and parameter selection is not required. Besides, 

learning with ELM does not present local minima or 

overfitting problems. All these characteristics makes ELM 

very useful dealing with real-life applications where 

autonomous control systems and fast adaptation are 

necessary [7]. A proper example of this kind of applications 

are complex industrial processes where the efficiency of the 

process is to be modelled and optimized in real-time. 

In this work, the modelling of the effective electric 

efficiency (ξEE) of a real complex combined heat and power 

(CHP) process using ELM is proposed. The CHP plant 

generates electricity with four internal combustion engines 

and a steam turbine. The energy is sold and the heat from 

the engines is used to generate more energy in the steam 

turbine and in a slurry drying process. To achieve this 

modellization, the plant is separated into different parts, and 

a model is generated for each subprocess using data sets 

from the real plant. Finally, the ELM models (i.e. accuracy, 

speed and topology) are compared with BP-ANN and SVM 

models to demonstrate the effectiveness of the ELM 

approach. 

 

II. EXTREME LEARNING MACHINE 

Extreme learning machine was originally proposed by 

Huang et al. [6] for the single hidden-layer feedforward 

neural networks and then extended to the generalized single 

hidden-layer feedforward networks where the hidden layer 

needs not be neuron alike [8].  

Suppose a SLFN with n inputs, m outputs and l nodes in 

the hidden layer (see Fig. 1). The output j of the SLFNs can 
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be written as: 

 

         (1) 

 

where                is the weight vector connecting the 

hidden layer and the j th output node,                is 

the vector formed by the values              being      
the activation function,                 the vector 

connecting the input             with the  th hidden 

node and    the bias of the   th hidden node. 

 

 
Fig. 1. The topological structure of the SLFN. 

 

The main difference between ELM and traditional 

learning approaches is that the hidden layer need not be 

tuned; it is a randomized layer. That is to say, the set of 

parameters of the hidden nodes              , are 

randomly generated. Therefore, they are independent of the 

application and of the training samples. Learning in ELM is 

a straightforward procedure that aims at computing the 

vector of output weights,    in (1), for each output node. 

For         arbitrary distinct samples        , where 

      
       

        are the input data and    

   
    

       
         are the target data, the above linear 

equations can be written in the matrix form: 
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where                     
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  is a vector of target labels and   

           . The solution of above equation is given as: 

     , where    is the Moore-Penrose generalized 

inverse of matrix H [9]. 

 

III. COGENERATION PLANT 

The CHP plant being evaluated is located in Monzón 

(Huesca), in the North of Spain. The plant generates 

electricity with four internal combustion engines (nominal 

power of each being 3700 kW) feeded with natural gas and a 

steam turbine. The engines are refrigerated with two 

refrigeration circuits that use water from the cooling towers 

as Fig. 2 shows. Therefore, the engines generate electrical 

energy and high temperature gases. Subsequently, the 

electrical power generated is sold and the high temperature 

gases go to an exhaust steam boiler. Moreover, the steam 

generator creates steam using the heat from the exhaust 

steam boiler. This steam is used in a steam turbine to 

generate more electricity, with 1000 kW of nominal power 

that is also sold. The heat from exhaust steam boiler is also 

used in a slurry drying process that uses the slurry from 

nearby farms. After being processed by the plant it becomes 

fertilizer and clean water for irrigation.  

 

 
Fig. 2. Scheme of the cogeneration process. 

 

The effective electric efficiency of the plant is defined as: 

 

    
  

        
   

 
 
                    (4) 

 

where    is the net useful power output generated by the 

four engines and the steam turbine,        is the total fuel 

(natural gas) input used by the four engines,     is the sum 

of the net useful thermal outputs (related with the useful 

 
TABLE I: MODELS DEVELOPED AND RELATED VARIABLES 

Cogeneration Part Models Inputs Output 

Cooling circuits 
Cooling 

A/B/C/D 
3 inputs Temperature 

Engines 
Engine 

A/B/C/D 
2 inputs Fuel flow 

Recovery Boiler 2 inputs Steam flow 

Steam Turbine Condenser 2 inputs Pressure 

Steam Turbine 3 inputs Power 

Slurry drying process 5 inputs Flow 

 

IV. EXPERIMENTATION AND RESULTS 

In this section, the development of a model of the real 

cogeneration plant using ELM is presented. To do this, the 
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thermal energy used in the slurry process) and    is a bonus 

factor, in this CHP process equal to 0.9. 

Table I shows the different parts of the CHP plant 

together with the corresponding models and the involved 

input/output variables. 



  

plant is separated into different parts (see Table II). A 

dataset with 211 variables collected over a one-year period 

from the whole cogeneration process is available. Data 

mining techniques are applied to choose the meaningful 

variables involved in the modelling (inputs and targets) and 

to obtain a proper dataset without outliers, missing data or 

un-informative variables. Finally, a training set and a testing 

set with almost 19000 data each one are obtained. 

 
TABLE II: RESULTS AND CHARACTERISTICS OF THE MODELS 

 Parameter ELM ANN-BP SVM 

Irrigation 

Engine A 

Training MSE 0.0314 0.0465 0.0243 

Testing MSE 0.0504 0.0507 0.0539 

Training Time (s) 0.0624 14.7109 10.4833 

Testing Time (s) <10-4 0.0312 4.2432 

No. of nodes 18 20 7669 

Irrigation 

Engine B 

Training MSE 0.1530 0.2286 0.1683 

Testing MSE 0.1649 0.2107 0.2139 

Training Time (s) 0.2184 8.2837 11.3257 

Testing Time (s) <10-4 0.0312 5.6472 

No. of nodes 35 10 12236 

Irrigation 

Engine C 

Training MSE 0.2887 0.0992 0.0673 

Testing MSE 0.2845 0.1313 0.1970 

Training Time (s) 0.1716 9.5317 12.7141 

Testing Time (s) <10-4 0.0312 5.1168 

No. of nodes 10 28 10434 

Irrigation 

Engine D 

Training MSE 0.4104 0.4324 0.4251 

Testing MSE 0.2911 0.2973 0.4896 

Training Time (s) <10-4 5.6472 9.9061 

Testing Time (s) <10-4 0.0156 1.794 

No. of nodes 13 5 13607 

Recovery 

Boiler 

Training MSE 0.3407 0.3687 0.2787 

Testing MSE 0.5157 0.6036 0.5449 

Training Time (s) <10-4 5.0856 16.0057 

Testing Time (s) <10-4 0.0468 5.7876 

No. of nodes 4 5 13607 

Steam 

Turbine 

Condenser 

Training MSE 0.3728 0.2478 0.1634 

Testing MSE 0.2979 0.2751 0.3159 

Training Time (s) <10-4 16.1617 4.6332 

Testing Time (s) <10-4 0.0312 1.794 

No. of nodes 4 5 2982 

Engine A 

Training MSE 0.2927 0.1897 0.2047 

Testing MSE 0.2928 0.2933 0.2879 

Training Time (s) 0.1872 31.5434 18.9073 

Testing Time (s) 0.0624 0.0312 8.2837 

No. of nodes 38 10 12860 

Engine B 

Training MSE 0.2133 0.2116 0.1699 

Testing MSE 0.1934 0.2181 0.2098 

Training Time (s) 0.2340 9.9373 11.1477 

Testing Time (s) 0.0624 0.0312 7.9405 

No. of nodes 39 5 12456 

Engine C 

Training MSE 0.2887 0.2324 0.2253 

Testing MSE 0.2845 0.2929 0.3609 

Training Time (s) 0.1716 12.1681 14.1493 

Testing Time (s) 0.0624 0.0468 8.9545 

No. of nodes 28 15 13357 

Engine D Training MSE 0.1595 0.2045 0.1478 

Testing MSE 0.2210 0.2480 0.3380 

Training Time (s) 0.546 15.0541 12.6921 

Testing Time (s) 0.1404 0.0312 7.8781 

No. of nodes 85 20 12089 

Steam 

Turbine 

Training MSE 0.1299 0.2448 0.2484 

Testing MSE 0.2659 0.3314 0.3024 

Training Time (s) 0.0624 9.6097 15.2881 

Testing Time (s) <10-4 0.0156 6.7704 

No. of nodes 8 10 14433 

     

Slurry 

drying 

process 

Training MSE 0.1123 0.1434 0.0604 

Testing MSE 0.0759 0.3645 0.1306 

Training Time (s) 0.3352 5.0856 13.7749 

Testing Time (s) <10-4 0.0468 6.1308 

No. of nodes 11 5 12105 

 

To model the cogeneration plant, each model is trained 

with the ELM algorithm (the number of hidden nodes from 

1 up to 100). Finally, the best performance of 10 trials of 

simulations for each model is selected. The experiments 

were carried out using Matlab tool.  

For comparison purpose, we have also implemented both 

the ANN-BP with a single hidden-layer, and the SVM using 

radial basis function kernel. The same topology as in the 

case of ELM has been used for BP-ANN modelling, but the 

number of hidden nodes are gradually increased by an 

interval of 5 up to 100, and 3000 epoch are selected in each 

training. For the SVM the cost parameter    has been chosen 

equal to the range of output values of training data [10]. The 

kernel parameter   and the intensive zone   values are 

selected from the best accuracy for the combination of: 

                , and                  . SVM 

models are carried out using LIBSVM [11]. Table II 

compares the overall results among all the models. The table 

presents the training and testing accuracy (normalized mean 

square error (MSE)), training and testing time, and number 

of nodes created. 

General speaking, all algorithms provide approximately 

the same accuracy and obtain good performance. However, 

the difference between training and testing accuracy has a 

larger difference in most of cases for ANN and SVM than in 

ELM model. This can be explained by the fact that ANN 

and SVM tends to overfitting the training data. The 

generalization performance of ELM is very stable on a wide 

range of number of hidden nodes, as Fig. 3 shows for the 

four engine models. 

On the other hand, ELM needs more hidden nodes than 

ANN to reach a similar performance, while SVM requires 

much more nodes than ELM and ANN. Regarding the 

training time, ELM is the fastest learning algorithm in all the 

cases, with training time hundreds of times faster than ANN 

and SVM. Also ELM is the fastest algorithm for testing 

(response time to unknown data set for testing). 

The effective electric efficiency of the plant is calculated 

using Equation (4). For this purpose, firstly the real effective 

electric efficiency in each sample of the dataset is calculated 

using real values. To obtain    the real values of the power 

generated by the four engines and the steam power are used. 

To obtain         the real natural gas flow used by each 

engine is used, and for      the real thermal energy used in 
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the slurry process is calculated taken into account the 

amount of slurry dried in each sample of the dataset. 

Afterward, the effective electric efficiency is obtained in the 

same way, but with the predicted values obtained with the 

ELM models, i.e. the power of the steam turbine used is the 

predicted value for the steam turbine model, the natural gas 

flow is the predicted value for each engine ELM model, and 

the thermal energy in the slurry drying process is obtained 

from the prediction of the slurry drying process ELM model. 

To illustrate the result of ELM modelling, Fig. 4 shows the 

effective electric efficiency using Equation (4) with real data 

and using the predictions of the ELM models. As can be 

seen, expected efficiency is able to follow the trend of the 

real efficiency. 

 

 
(a) Performance of ELM according to the number of hidden neurons 

 

 
(b) Performance of ANN-BP according to the number of hidden neurons 

Fig. 3. Performance of ELM and BP according to the number of hidden neurons. 

 

 
Fig. 4. Results of the ELM models for the effective electric efficiency. 

 

V. CONCLUSION 

In this work, the modelling of the effective electric 

efficiency of a real complex cogeneration process using 

ELM is proposed. To achieve this, the plant is separated into 

different parts and a model is generated for each subprocess 

using data sets from the real plant. With the same data sets 

and setting variables, models are also constructed using 

ANN trained with BP-GDM and SVM using radial basis 

function kernel.  

Although all algorithms show proper testing accuracy, the 

large difference between training and testing accuracy in 

ANN and SVM reveals overfitting problems. The number of 

nodes in ELM and ANN models are similar (slightly lower 

for ANN models). Moreover ELM is very stable in a wide 

range of number of hidden nodes. Experimental results also 
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show that ELM is largely the fastest of all, spending 

hundreds of times less than SVM and ANN.  

As a conclusion of the experimental results, ELM 

provides a robust learning algorithm, free of local minima, 

without overfitting problems. ELM algorithm is very fast 

learning and less dependent on human intervention than the 

ANN-BP or SVM. All this characteristics make ELM 

suitable for autonomous real-time monitoring of the plant. 
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